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The multiple scattering theory for the optical potential is examined. This series is arranged according to
the number of target particles struck in forming the optical potential. The term which involves two target
particles is summed as a three-body problem. Explicit formulas for calculating the optical potential in the
fixed scatterer approximation are presented. Corrections to the fixed scatterer approximation, one a
correction to closure, another a correction due to nonlocality in the two-body interaction, are presented. The
relation between this work and other formal rearrangements of the multiple scattering series is presented.
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I. INTRODUCTION

Recently, the formal theory of elastic scattering
of protons from finite nuclei has received'"' con-
siderable attention. This attention is prompted by
the existence of new accelerators and spectrome-
ters which will allow the accurate measurement
of elastic differential cross sections. In this work,
we examine the multiple scattering series~' for
elastic scattering. %e develop the series as an
expansion for the optical potential: this is in dis-
tinction to approaches" which develop expansions
for the elastic scattering T matrix directly.

In developing a perturbative theory of the optical
potential, two general attitudes seem to have
emerged. One of these is that the leading term in
the optical potential, which is of the form of a T
matrix folded with the target density, should con-
tain as much of the physics as possible. This then
generally results" in a T matrix which describes
the scattering of the incident particle with the tar-
get particle in the presence of the remaining nu-

cleons. It is this T matrix, itself a solution to a
three-body problem, which must be folded with the
target density to yield the lowest-order optical po-
tential. Although much theoretical progress has
been made along Nese 1ines, and umtarity rela-
tions indicates that such an approach would yield

a more accurate version of the impulse approxi-
mation, the numerical difficulties involved in

using this approach are considerable and, to this
time, have limited greatly any extensive applica-
tions' of the formal developments.

The second approach'" may be characterized by
the use of a simple two-body T matrix, either the
free T matrix or a "closure" T matrix, in the
leading order optical potential, and the treatment
of the corrections as higher-order terms in an ex-
pression for the optical potential. This is the ap-
proach adopted here. If including these correc-
tions to the optical potential proves to be too dif-
ficult, then our approach will have the same prac-
tical disadvantage as Refs. 1 and 2.

In this work, the multiple scattering series for
the pseudo-optical potential of Kerman, McManus,
and Thaier (KMT) is arranged according to the
number of distinct target particles which are in-
volved in building the optical potential. We work
in the closure approximation. The generalization
to the use of other approximate propagators is
presented in Appendix B. The lowest-order term
for the pseudo-optical potential in which the inci-
dent particle interacts with one target particle is
shown to yield the usual impulse approximation.

The second-order term, in which the incident
particle interacts with two target nucleons within
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the optical potential, is shown to be the solution
of a three-body problem. The physical signifi-
cance for elastic scattering of truncating this
series at any order is discussed. Explicit formu-
las for constructing the first- and second-order
optical potentials in the fixed scatterer limit are
presented. In particular, the second-order opti-
cal potential is shown to be related to the scatter-
ing from two fixed scatterers by a one (vector)
dimensional integral equation.

Explicit formulas to calculate the leading cor-
rections to the fixed scatterer approximation are
also derived. There are two corrections of this
type. The first is the correction due to the use of
the closure approximation. This correction is
seen to vanish in the forward direction and to be
proportional to the derivative of the two-body T
matrix with respect to its energy parameter. A
second correction to the fixed scatterer approxima-
tion is also derived. This correction arises only
when the two-body interaction is nonlocal and is pro-
portional to the ratio of the incident particle's mass
to the sum of incident-plus-target particle masses.
It is also proportional to the square of the range of
the nonlocality divided by the wave length of the
incident particle. Thus, this correction does not
vanish at high energies. A rough estimate of the
"convergence" of the correlation expansion is pro-
vided.

In Appendix A an alternate derivation of the cen-
tral result of this work is presented. In Appendix
C the techniques used in the text are employed to
derive a correlation expansion of the optical po-
tential itself. This result is a rearrangement of
the perturbation series for the optical potential
derived by Watson. '

In the text, it is noted how the results of Fesh-
bach and Lambert' can readily be derived from
our results. The work of Foldy and Vfaleeka, '
however, consists of a considerably different re-
arrangement of the multiple- scattering series. In
Appendix D their treatment is examined and the re-
lation to our approach is presented.

v, + g v, G "(E)T,
~l i~1

(2 1)

where e, is the potential between the projectile
and the ith nucleon. The many-body propagator
G "(E)of Eq. (2.1) is

G'&(Z}= [E-h, -H„+fr}7', (2.2)

where E is the parametric energy, h., is the pro-
jectile kinetic energy operator, H„ is the A-body
target nucleus Hamiltonian, and iq is a stylized
reminder of the outgoing wave prescription. We
shall henceforth always assume outgoing waves
without explicitly so noting.

We follow the procedure of Watson' and define
T to be T=+T„with T, given by

Tg = v(+ v)G Q T~. (2 3)

If we now define t, through the relation

t( = v)+ v)gt(, (2 4)

where the propagator g is given by"

g=[E —h, +tg7', (2 6)

then we may rewrite Eq. (2.3) as

Tq=t, +t)G Q T~+tq(G —g}T(.
fCf

(2.6)

teracts with two distinct target particles. This
term is shown in Sec. IV to be a solution to a
three-body problem.

If the interaction of a projectile and a nucleon
is governed by the two-body potential v, then the
scattering of that projectile from a nucleus of A
identical nucleons (fermions} is given by a transi-
tion operator T which satisfies the operator equa-
tion

II. CORRELATION EXPANSION OF THE OPTKAL
POTENTIAL

In the closure approximation, we neglect the last
term of Eq. (2.6), to obtain the approximate rela-
tion.

In this section we develop an expansion for the
pseudo-optical potential of Kerman, McManus,
and Thaler' (KMT). The expansion of the optical
potential is arranged such that all terms in the op-
tical potential which involve the interaction of the
incident particle with a single target nucleon will
be summed as the leading term. The next order
term is found by summing all of the terms in Ne
optical potential in which the incident particle in-

g(ClOS) t + t g ~ g(CIOS)
i i i (2.7)

In Appendix 8 we generalize the development
presented here in such a way that one is not limit-
ed to choosing g as the closure propagator.

Iteration of the set of A coupled equations given
in Eq. (2.7) and summation over the particle index
i, then yields, after some rearrangement
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T"' '=Pt+gt ggt+gt ggt ggt+ ~ ~ ~

g«i i

= Q t(+ Q Q [t(gtg+ t( gtggt)+ tg gt~gt(gtg+ ' ]
i y«i

+ p g p [t&gt&gt»+ t& gt&gt& gt„+ t& gt& gt» gt, + t& gt&gt»gt&+ ~ ~ ~ ]+ ~ ~ ~

k«f

(2.8)

W'e now wish to find the pseudo-optical potential of KMT. An alternate approach would be to work with the
optical potential itself. This approach follows very closely that of %atsone and is presented in Appendix
C. The pseudo-optical potential of KMT is defined as the potential which, when inserted into a Lippmann-
Schwinger equation, yields the pseudo-T matrix, T = [(A —1)/A]T. It is thus defined through the operator
relation,

A —1
A

T=- T'= U'+ U'gPT'

where P is the projector onto the nuclear ground state. From Eq. (2.9) we immediately obtain

(2.9)

O' = T — TgPT+ TgPTgPT+ ~ ~ ~ . (2.10)

Insertion of the expression for T of Eq. (2.8} into Eq. (2.10), then yields

U = t t gt t gt gt, . t gt gt
f 9«i g«C

ti gP t& — ti gP t&g t~ — ti g t&gP t~
f It«y i

A —1 A —1
Q tq gP Q Q t~gt»gtq — t, g t~ gtqgP Q t»

i Jh «j k

A —1
Q t, g QttgPQ t»g Qt, + ~ ~

~

i«a

(2.11)

At this point we recognize that we are dealing with A target nucleons (fermions}, so that the allowed

physical states are completely antisymmetric in the exchange of the target particles. In order to make
this explicit we introduce the projection operator 0, which projects onto the A-body Fock space of anti-
symmetrized states. The operator we seek is thus T, =- HTII, which we may express in terms of the oper-
ator U:=-IIU n as

T = U~I+ U'gP T .A-1, , A —1 (2.12)

From Eq. (2.11) we then observe that

U,'= II((A- 1)t,+ (A —1)'[t,g(1- P)t, + t,g(1 —P)t,g(l- P)t, + t,g(1 —P)t, g(1 —P)t, g(1 —P)t, + . ]

+ (A —I)»(A —2)[t,g(1- P)t, g(i —P)t» + t, g(1 —P)t, g(l —P)t,g(i —P)t»+ t,g(l —P)t,g(1 —P)t»g(1 —P)t,

+ t, g(1 —P)t, g(1 —P)t,g(l —P)t, + . ]

+ (A —1)'(A —2)(A —3)[t,g(1 —P)t, g(1 —P)t,g(l —P)t, + . ]+ . )II. (2.13)

The expansion of the optical potential given in Eq. (2.13) has now been rearranged according to the num-

ber of target particles which are struck by the incident particle. To make this more explicit, we keep in

mind that we may only take matrix elements of U' between antisymmetrized states, in order to rewrite U'

as
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pi= (w&'&+ w&'&+ w"&+ + w&"&}
A —1

A

where

W(~» =AI;~,

~(2& =A(A —1)[t(g(I —P)t2+ t&g(I —P)tig(1 —P)t&+ t, g(l —P)tlg(1 —P)t&g(I —P}t2+ ~ ~ ~ ],
II &'& =A(A 1)(A 2)[t,g(1 P)t,g(l P)t, i t,g(1 —P)t,g(l —P)t, g(1 P}t,

+ t,g(l - P)t,g(1- P)t,g(1 —P}t,+ t,g(1 —P)t,g(1 —P)t, g(1 —P)t, + ].

(2.14)

(2.15)

(2.15)

(2.1V)

This e&(pansion for U', given in Eqs. (2.14)-
(2.1V), represents the correlation (&&(pansion we
seek. It is a correlation expansion in Re sense
that each of the terms 8'"' collects all terms in
which the incident particle interacts with i dis-
tinct particles within the opticalpotential. " This
expansion is analogous to treatments of nuclear
structure in terms of hole-Bne expansions. In
that case the expansion is in terms of the number
of occupied states participating in a given pro-
cess, not in terms of powers of a reaction matrix.
Here we expand in the number of struck nucleons
and not in the powers of t. In the next sectioa we
explore the utility and meaning of this expansi. on.
In Appendix A this result is rederived according
to the method of KMT.

III. INTERPRETATION OF THE CORRFLATION
EXPANSION OF THE OPTICAL OPELN|&TOR IN THE

MULTIPLE-SCATTERING SIQURI

In order to interpret the result given in Eqs.
(2.14)-(2.1V), we will examine the correlation ex-
pansion term by term. %'e begin with the standard
impulse approximation, i.e. ,

(3.1)

Insertion of U&» into Eq. (2.9) yields the result that

11 T «;'&"&ll = iigt, iA(A I)t,gPt,

+A (A —1)'t,gPt, gPt,

+A (A —I)~t& gPt(gPt, gPt&+ ~ ~ ~ }II.
(3.2)

Now we observe that Rq. (2.9} for T"& ' is

(3.3)

so that we immediately are able to note that in-
sertion of the projector onto the ground state P for
each intermediate scattering leads to

IIT ' Il= II t 0+II t gP t II
yf(

= IIAt, 11+ IIA(A I)t,gPt, II

+ &&A(A —1)lt,gPt, gPt&II+ ~ ~

(3.4)

Thus we see that we obtain the interpretation of
7(g )

' as the scatte ring that results from taking
account of the multiple scattering of the projectile
from any given target particle to all orders, with
scattering from any oae target particle to the next
included, provided that the nucleus is in its ground
state when the projectile scatters from the one
target particle to the next. The achievement of
the KlHT pseudo-optical potential to this order is
that just the scattering from one target particle
goes into O'. If we insert this U' into the one-body
Lippmann-Schwinger equation, Eq. (2.9), and
solve for T, we include all the scattering from
target particle to target particle that proceeds
through the ground state.

I et us sow proceed to truncate U' at the next
order of the ~ansion of Eqs. (2.14)-(2.1V), i.e. ,
we take

UI — (gr &1&+ ~(I&}(2)

gt(+A(A- l)[t(g(I —P)tl+ t(g(l- P)t~g(I —P)t(+ t(g(l. —P)tlg(l —P)t, g(1 —P)t2+ ~ ]}.
A-1

A

(3.5)
Insertion of Eq. (3.5) into Eq. (2.9) yields the result that
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llr&&» 11=11{At,+A(A —1)[t,gt, +t,gt, gt, + ]

+A(A —1)(A —2)[t,gt, gPt, + t,gPt, gt, t,—gPt, gPt, + ]+ }II

= 11{At,+A(A —1)[t,gt, +t,gt, gt, + ]

+A(A —1)(A —2) [t,gt, gt, —t,g(1 —P)t,g(1 —P)t, + )+ ]II.
Now Eq. (3.6) may be compared with Eq. (2.8) for T'""&, which may be written as

lir&"-&11=11{At,+A(A 1)[t,gt, +t,gt, gt, + "]+A(A I)(A 2)[t,gt, gt, + ]+ )11.

(3.6}

(3.7)

If we wished to keep all terms in Eq. (3.7) in which the projectile scattered from any one or two target
particles hut did not scatter from a third particle, we would truncate Eq. (3.7) at the end of the first square brack-
et. However, if, as inthepreviousdiscussion, we wish to include scattering from a third particle which may
occur when the nucleus is in its ground state, then other terms enter. The lowest-order term involving

scattering from three particles is Ilt, gt, gt, O. If we wish to exclude all scatterings from three different
particles which do not proceed through the ground state after scattering from one or two different particles
we would substract t, g(1 —P}t2g(1- P)t~ from t,gt2gt, . Thus the appropriate modification of Eq. (3.7) would

be

IIT~~'~ 'll = 11{At&+A(A —1)[t&gt2+ t& gtmgt&+ ~ ~ ]

+A(A —1)(A —2)[t,gt, gt, —t,g(1 —P)t, g(1- P)t, + ]+ . ]II

= 11{At, A+(A —1)[t,gt, +t,gt, gt, + ]
+A(A —1)(A —2)[t,gt, gt, —t, g(1 —P) t,g(1 —P)t, + ]+ jii

=IIT ' II(2) (3.8)

Thus we see that the T matrix resulting from the
second-order KMT optical potential. includes all
scatterings involving two particles. It also in-
cludes some of the scatterings involving more
than two particles; a1.1 of these terms are included
so long as they do not contain successive scatter-
ing from three different particles (a, f&, c) in which
the scattering does not proceed through the ground
state between particles e and b or b and c. This
means that terms such as ty gt2 Pfs tg gt2 gPE
and t,gt, gPt, gt, gPt, are included. Terms such
as t~gt2gt3, t~gt2gtsPt~, and t~gt2gPt3gt4gt5 are
not included. This result, which we have explicit-
ly demonstrated only to lowest relevant order,
holds to all orders.

%e may now interpret the truncation of U' as
U&„&. The scattering of the incident particle from
n target particles is included in U', „,. The scat-
tering T,„, calculated from U', „& as a pseudo-opti-
cal potential contains all terms which involve n

scatterings. Terms which involve more than n

scatterings are also included. These terms do
not contain, however, successive scatterings

from more than n different target particles in
which the scattering does not proceed through the
ground state at some point between the n scatter-
ings.

This structure of the scattering amplitude which
results from the use of U&„& is also evident in the
unitarity relations satisfied by T,„&. In Ref. 13 it
was shown that T&„& satisfies a unitarity relation
to within terms which involve scattering from
n+ 1 different particles. Thus the impulse ap-
proximation produces a T matrix which satisfies
unitarity to within terms which involve scattering
from two different target nucleons, while the use
of U&» will produce a T matrix which will satisfy
unitarity to within terms which involve scattering
from three different target nucleons.

IV. SECOND-ORDER POTENTIAL

In this section we shall discuss in some detail
the second-order pseudo- optical potential, which
in the present expansion is given by

U(2& = (A —1)t&+ (A —1) [t&g(1 —P)t2+ tig(1 —P)t2g(1 —P)ti + tig(1 —P)tmg(1 —P)t&g(1 —P)t2+ ~ ~ ~ ] . (4.1)

To understand this expression better let us dis-
cuss the scattering of a projectile from two fixed
scatterers.

The T matrix for an incident particle scattering t&2 = (V&+ V2) + (Vz+ V2) gt&~ . (4 2)

from two infinitely massive noninteracting target
particles may be written as
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This equation is poorly defined and difficult to
study as its kernel is disconnected. %e thus re-
place Eq. (4.2) by two coupled equations in the us-
ual manner, i.e. , we write t» as

recover Eq. (4.1).
We rewrite Eq. (4.12) as

g+ - i t12+

12 1+ 2'

where T, and T2 satisfy the equations

(4.3)
(4.13)

1 1 1~ 1 1~2 (4.4)

T2 = 82+ 52gT2+ 82gT1 . (4.5)

In terms of the bm-body T matrix defined in Eq.
(2.4) these become the usual Watson-Faddeev equa-
tions given by

T1 —t1+ t1gT2 (4.6)

T2 = t2+ t2gT1 ~ (4.7)

The substitution of Eq. (4.7) into Eq. (4.6) gives an
uncoupled equation for T, with a connected kernel:

T1=t1+ t1gt2+tZ gt 2gT, . (4 8)

The iteration of this equation clearly produces a
series which is quite similar to that contained in
Uo&, Eq. (4.1), the only difference being the re-
placement of the propagator g in Eq. (4.8) by the
propagator g(1 —P) in Eq. (4.11).

It should be noted that, here, since the target
particles are considered to be infinitely massive,
they can absorb momentum, but not energy. Hence
no energy can be transferred to the nucleus. How-
ever, the assumption that the constituent particles
are infinitel, y massive also implies that all the
nuclear excited states are degenerate in energy
with the ground state and thus it takes no energy to
excite these nuclear states, so that the propagator
g(l- P) is well defined.

%'e thus define the operators 7,' and T,' by

t, =(1+v, g) 'r, (4.14)

t (21+ r g) (rm. (4.15)

Substitution of these equations in Eqs. (4.9) and
(4.10) gives

T1 = T1+ T1gT2 - T 2 gT1 —T1gPT (4.16)

T2= T2+ T2gT1- T 1gT2- T2gPT1 (4.17)

If we now add Eqs. (4.15) and (4.16}, we obtain

The interpretation of the quantity in the curly
brackets is straightforward. The operator t»
represents the transition operator for the scat-
tering of a projectile from a pair of target parti-
cles, with the propagator modification discussed
above. The factor ~A(A —1) represents the number
of independent pairs in the target. The second
term represents the usual first-order term from
which has been subtracted the extra number of t,
(single particle) terms which have been included in
the pair scattering part.

Solution of the scattering from two fixed scat-
ters as given in Eqs. (4.6) and (4.V) is a soluble
numerical problem, expecially if the two-body
interaction is taken as separable. It is thus useful
to rewrite f,'I [which involves the solution of three-
body equations with the propagator g(1- P)] in
te~ms of the scattering amplitude t».

We may formally solve Eqs. (4.6) and (4.V) for
t, and t, to give

r (I = t(+ t(g(1 —P) rm', (4.9) (r ', + rm) = (7;+ r2) —v,gPr ~
—rm gPr( .

Thus we have that

(4.18)

7'2=f, +f,g(1 —P)r,',
and also define t»i to be

t12=T1+ T2

(4.10)

(4.11)

(4.12)

The operator t,', thus represents the scattering
from two fixed scattering centers where the in-
cident particle propagates behveen the two par-
ticles via the propagator g(l- P} For identic. al
target particles, U+& may be written

U(~(= (A —1)f,+ (A —1) (g t~ —t(),

1
12P ~12~12P 2 ~12Pg~12P ~ (4.19)

The matrix elements of this operator equation
yield a simple one-body integral equation. Thus
the solution of t» can in a simple way give the re-
quired matrix element of t».

Instead of the three-body calculation necessary
to calculate t,'„one might undertake a Born series
expansion of Eqs. (4.9) and (4.10). If this is done
and one keeps only the lowest nonvanishing terms,
one has

which follows immediately from the insertion of the
iteration of Eqs. {4.9) and (4.10) into Eq. (4.11) to

Ui(1) = (A- 1)t,+ (A- 1) t,g(1- P)t2.

This is exactly the formal result of Ref. S.

(4.20)
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If we keep all the terms in the expansion of U'

which involve three two-body t matrices, we have
from Eq. (2.13)

U' = (A —1)t,+ (A —I)'tg(1 —P)t,

+ (A —I)'t,g(1- P)t,g(l —P)t,

+ (A —l)~ (A —2)t~g(1 —P)tmg(l —P)t~. (4.21)

This approximation has beeg. calculated in Ref. 6.
In our rearrangement of the multiple-scattering
series, the term in Eq. (4.21) which involves scat-
tering from particle 1 to 2 then back to 1 would be
included in our second-order optical potential,
while the term which scatters 1 to 2 to 3 would be
the leading term in our third-order potential.

V. EXPLKIT EVALUATION OF MATRIX ELEMENTS

Although we will show in Appendix 9 that the cor-
relation expansion developed here does not re-
quire the use of the closure approximation, this
approximation will greatly simplify the numerical
evaluation of our formulas. At this point, we will
present a specific way to evaluate the matrix ele-
ments involved in calculating the pseudo-optical
potential in the fixed scatterer approximation. For
a local potential the fixed scatterer and closure
approximations are equivalent. For a nonlocal po-
tential, they are not. Corrections to the fixed
scatterer limit are presented in the next section.
We emphasize that this is not a unique way of
develoying the numerics; one need not take the
fixed scatterer limit, nor necessarily use the clos-
ure approximation. The treatment presented here,
as we shall see, leads to a paxticularly convenient
numerical approach. We begin by noting that the
two-body interaction ~ may be written in momen-
tum space as

(k'f'lo
I kjp = 5(k + p k

„Mp —mk' Mp mk

where we are using nonrelativistic kinematics.
Momenta which are labeled p refer to the incident
particle, those labeled k refer to target particle
momenta, M is the mass of a single target parti-
cle, and m is the mass of the projectile.

It is important to note'4 that the use of the Gali-
lean and translationally invariant form of the two-
body potential, Eq. (5.1), together with the clos-
ure propagator in the two-body I.ippmann-Schwin-
ger equations, Eq. (2.4), does not in general yield
the fixed scatterer approximation. For a local
potential, we have

("p I "z I @= 5(k' + p' —k —p)o(Ii' —p) . (5.2)

Substitution of this into Eq. (2.4) with the closure

x (p" It(E} lp), (5 5)

where, since we have used the closure propagator,
E~ is given by

pty2
E~„=

2m

The Fourier transform of Eq. (5.4) yields

(5 5)

(r,'r', lt(E) Ir,r, )

=5(r', —r, )(r,' —r, lt(E) lr, —r,), (5.7)

where r, refers to the incident particle and r,
refers to the target particle. The matrix element
(r,' lt(E) I r,) is the Fourier transform of (p' lt(E) jp).

The lowest-order pseudo-optical potential, as
given in Eq. (3.1), then becomes

where p(p' —p) is the Fourier transform of the
diagonal part of the single particle density p(r)
given by

p(r) = d r, ~ ~ dr„P~(r, r2, . . . r„) . (5.9)

The factorization in Eq. (5.8) is a result of our
use of the closure propagator~ and (for a nonlocal
potential) the infinite mass limit used in going
from Eq. (5.1) to Eq. (5.3).

In order to calculate the second-order term in
the optical potential, we have suggested that one
first calculate the scattering from two fixed scat-
tering centers, Eqs. (4.6) and (4.V). These equa-
tions written explicitly in coordinate space are

propagator then yields' the fixed scatterer approx-
imation.

For a nonlocal potential, the fixed scatterer ap-
proximation requires an additional approximation:
we must also take the limit of the nucleon mass M
going to infinity in Eq. (5.1). In the next section,
we present the leading order correction terms to the
optical potential which arise due to our use of the clo-
sure propagator and the fixed scatterer approxima-
tion.

If the mass of the target nucleon in Eq. (5.1) is
taken to be infinite, we may write

(k'p' jv lk~p=5(k'+p' —k-p)(p' lv jp). (5.3}

We then have, from Eq. (2.4), that the two-body
T matrix has a similar form:

(k'p' It(E} Ie&=5(k'+p'- k- p}(p' It(E} Ip}
(5.4)

and (P'
I
t (E) I p} satisfies

(p' It(E) IP) =(p' jo lp)

+ gp" ' v
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(r' r~~. Ir~ lra r~r.}=(ro rx lfi Iro rx)

5k+(V x )
+ drdr' r' —r~ I', r —r, , r', r, r, 7 2 ro, r~r,2vP E —Eq+zq

(5.10)

and a similar equation for ~, in terms of 7;.
for $, and r, given by

R=s (r, +r,)

and

If we introduce the center-of-mass andrelative coordinates

(5.11)

r~g = r~ —12 (5.12)

then Eq. (5.7) may be solved by introducing the related quantities V, and 7,. To this end we must first
solve

e&& (r r')
drdr'(r, ' ——,'r

z if, ir —2r z) „.(r', r, i, ir„r,), (5.13)
2w)3 E —E~ + xg

(ro, r,r, i r, i ro, r,r,) =(r,'- R(r„r),r, (r„r,}i r, i r, —R(r» r), r~, (r» r)) .
The ground state matrix element of Pt»'P [which we will denote as (r,' i{&(,) i r,)] is then given by the one
(vector) dimensional equation, Eq. (4.18), which is

(~:l«kl~d=(F.' I«,.) l~)-2 j«~~'(:l((,.) I )f, . 8 E ("I«JI d,

where (r, i{f,j i
rJ is the ground state matrix element of Pt»P given by

(5.14)

(5.15)

and the accompanying analogous equation for 'T,. These are the standard Faddeev equations for the scat-
tering of a particle of mass m from two infinitely massive particles located a distance r„, apart. The usual
techniques for solving these equations may be used. In particular, for separable t, and t„ the angular mo-
mentum decomposed form of Eq. (5.13) leads to a one dimensional integral equation.

The general operator r, may be found from the solution to Eq. (5.13) via the relation

('( i(' 3 )".) f~» «~F" '4=((„('.i,',)p.(r, ").
The diagonal two-body density p, (r„r,) is given by

~(r„r,) f«, «„e'( „„," „).

(5.18)

(5.1V)

This may be combined with Eq. (5.8) and substituted into Eq. (4.13) to yield the optical potential through
second order.

The approximation to the optical potential which arises from keeping only the second-order term in the
Born expansion of t» produces a particularly simple result. This approximation, given in Eq. (4.20), may
be written explicitly as

(ro i V&'» i ro) = ((4 —1)fdr, (ro —r~ it& i ro r, )p (r,—)+ (A —1)'fdr~dr, (ro' —r, ~f i ro- r2)C2(r„r,), (5.18)

where C,(r„r,) is the two-body correlation function as defined and studied in Ref. 2 and is given by

C,(r„r,) = p,(r„r,) —p(r, )p (r,) .

The function (r, —r, if i r, —r, ) in Eq. (5.18) is given by

fks(X r&)(:—
~ )&I" ")=f"«"(~: ~, «. l ")j .--(-—. I(. l .- .).

))

(5.19)

(5.20)

Again we emphasize that only the diagonal part of
the density, the two-body density, and the correla-
tion function enter because we have used the clo-
sure approximation and, for a nonlocal potential,

the infinite target mass approximation. The approxi-
mation given in Eq. (5.18}is identical to the approx-
imation to the optical potential derived in Ref. 2.
In that work additional approximations to the inte-
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grations in Eq. (5.20) are made, and the resulting
optical potential is calculated and studied indehaN.

From Eqs. (5.18) and (5.20) it is straightforward
to estimate the convergence of the correlation ex-
pansion developed here. This estimate is presented
in Sec. VII.

VI. CORRECTIONS TO THE FIXED SCAnxRER
APFROXMATION

We have, in the previous sections, presented the
formal theory of higher-order corrections to the
impulse approximaticm where at each state we
have used the closure approximation. There is
no reason, u Priori, to assume that the higher-
order corrections in the multiple- scattering series
(for all targets, energies, and projectiles) will be
more significant than the corrections which arise
from using the closure propagator. In this sec-
tion, we, therefore, present a perturbative tech-
nique for improving the closure approximation.
In addition, we have noted that, for a nonlocal po-
tential, the fixed scatterer approximation requires
an additional approximation. Such corrections are
also discussed in this section.

Vfe remind the reader once more that we have

developed our expansion in terms of a particular
propagator. It is also possible to use other pro-
pagators, as outlined in Appendix 9, for example.
No matter what the choice, however, one must can-
cel a many-body propagator with a two-body pro-
pagator. Thus, corrections of the type whiqh,

here, we shall present for the particular choice of
the closure propagator, will always be required.

These corrections can readily be derived, if we
start with the formula for the optical potential
from Ref. 15, which is also derived in Append3Ix

A, via.

G =g+gH„G.

We then have for Eq. (6.1)

U'=(A- 1)t,+(A —1)t,(II —P)g U'

+t, (II-1)gU'+(A —l)t, (II-P)gH„GU'

+&,vga„GV' .

(6.2)

(6.3)

The first three terms represent the closure ap-
proximation to U', and the last two terms provide
the corrections to closure 4U'.

*U'=(A —l)t~(II-P)gH"GU'+t~II gH~GU'. (6.4)

If we now approximate U' by

U'= (A-l)t~ (6 5)

Eq. (6.4) becomes

(6 6)

'U'~(A —1)At~IIH„gt, , (6.7)

where we have used PH„=O.
We now take the ground state matrix elements of

this expression to obtain the following expression
for the change in U'.

U'=g- l)t, +(A —l)t, (v-P)GU'+t, (vG- g)U',

(6.1)

where G, t, andg are defined in Eqs. (2.2), (2.4),
and (2.5), respectively. This equation is an exact
integral equation for the pseudo-optical potential of
KMT in terms of the two-body scattering amplitude

t„The closure approximation arises from the re-
placement of the many-body operator G by the
"closure" propagator g. %e may derive the correc-
tion to this approximation by using

(6.S)

This matrix element may be written as

(r'I''ls) ("„'jf@=5I(is)~N )z'm)(r I(la'(&E"""""'«.g~."'-"'i(~), (6')
i

where @ represents the target ground state wave function and the implied matrix element is to be taken by

integrating over r, r„, and where gg ) is the closure propagator in momentum space, viz. ,

z(i)-(&-: +(n

(4 IZ -""-"' H. Z ' "' l~)=-*'(~l ~ '""".H. , Z '" "' I4)
f

(6.10)

For a local potential, this double commutator involves only the kinetic energy pa~t of H„and is given

by
]-f(I' 5") 'fg n V -f(5"-5)'f') ~ V ) )) a)i, I g K -f(1" $)~ Py

f
(6.11)

The change in V' is then given by
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(6.12)

This is a general formula for ~U' which, given
the two-body t matrix in the closure approximation
and the target density, may be used to calculate
the correction to the optical potential.

We may now roughly estimate the size of this
correction. We note that in the integrand in Eq.
(6.12) there are two factors which are both forward
peaked. The product g'lflp )(p" lflg will peak
near the value of p given by

P = -'(p+ p') (6.13}

We thus replace p in the expression gi"- $) ~ (p"
-j5') by its approximate value —,(p'- p)' determined
by Eq. (6.13). The change in U' then becomes

PF ll g 0 g lt g it

f(E)gs gs&(E) =
eE f(E)—

to rewrite Eq. (6.14) as

(6.15)

(6.16)

From this formula we see that this correction
vanishes in the forward direction where P'=P.
Away from the forward direction, the change in
U' is of order

(6.14)

We now use the identity for the off-shell t matrix"

(6.17}

where ~E is an energy parameter characteristic
of the rate of change of f(E). For nucleons incident
on a nucleus, this correction is very small for two
reasons. First, one is not generally interested in
scattering through momentum transfer as great as
8M. Secondly, the nucleon- nucleon interaction is
a very smooth function of energy and thus 4E will
be a large number. For pions incident on a nu-

cleus, for example, Eq. (6.1f) is maximized at the
resonance where ~E- &I'-60 MeV. Pn the reso-
nance, for a large momentum transfer of -200
MeV/c, this correction is then about 10%."

Before proceeding it is necessary to note that
the use of the first order approximation to U',
Eq. (6.5), may result in an underestimate of the
effect. If one uses the second-order optical poten-
tial one allows for the possibility of having a high-

ly excited intermediate state so that the value of
H„could be large. This would enhance the correc-
tion. However, such a term involves at least a
double-scattering event followed by an action of
H„ followed by another scattering from one of the
struck two nucleons. Because H„rearranges one
of the struck nucleons, such a term may be thought
of as a part of the third-order optical potential,
and such terms are conventionally believed to be
small.

As we noted at the beginning of Sec. V, for a
nonlocal potential the fixed scatterer approxima-
tion requires, in addition to the closure approxi-
mation, the limit of an infinite target nucleon
mass in Eq. (5.1). We will now examine the lead-
ing correction to this approximation.

We begin by "expanding" the 5 function in Eq.
(5.1):

= 6(r( —r, )(ro —rf le lr, —r, )+ (r,' —r( —r, + r,}~ 0&,5(F', —r, ) (r,' —r', le I r, —r, ) . (6.18)

If we define the last term in this equation as 4v, we may use the off-shell two potential formula to esti-
mate the change in the two-body T matrix due to &v. We have

t(E') = t,(E')+ Q, t(E )nvQ(E'), (6.19)

where t,(E') is given explicitly by Eqs. (5.5) and (4.8), and Q(E'} and Q, (E') are the usual wave operators
given by

Q(E') = 1+ „.t(E'),E —A,o+zq
(6.20)
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The change in t(E') is thus given by

d.t(E )=n, '(E)n.vn(E') =n, '(E )n-vn, (E'). (6.21)

Because we are using the fixed scatterer approximation, Q, (E } is diagonal in the target nucleon coor-
dinates, i.e. ,

(r,'r,'( Q, (E')
) r,r, ) = 6(r', —r,)(r,'(Q, (r„E ) ( r,) .

The lowest-order correction to the pseudo-optical potential is then given by

('.I« I-.)= ~~-() j~-;~-,(':I»I-,)

(6.22)

drod'fo ro 00 r&, E ro r~- r,' v r"- r&

x [(ro'- r( —ra+ r() &p.&(r'- rg)](r, ~n, (rg, E') y,).
We now define the correction to U' without the distortion factors, Q(E') and n ~(E ), as t] Us

(».'I'(»»I".) =„,M(&-() f&(&»i( (»I) »I» )(»: »)I»—I»»)],(—»'-»(- ».+» ) ()» (}(»i- »)l.

(6.23)

(6.24)

At this point it is convenient to work in the variables
wp w 1 poc= r( —r(, e]()= rf) —ro» R= z(r(+ r()» R()= 2(r()+ ro} ~

In terms of these variables, ~U~ becomes

Ar»»(a, a}=
M

(A —() j»()»»(%u(rl —R, i]i — ))(((R», n)( I—iK) I)»}5()(),

where

(r'
~

v
~
r) = v [-,'(r'+ r},r ' —r],

(r'~]o~ r) = p[k(r'+ r), r'- r].
If we now introduce the Fourier transform of v and p, we have

~rr (R a) = " g-()(»»)- JdRd%dRd( deed])»(k, K)e»"»-(('»6), p)»'»»(»'». "

") (v;69M,

where

(6.25)

(6.26)

(6.27)

(6.28)

t}»'I»IR)=»[)»' —}»,—.'()»»kl] =(2»l' Jd](d@e"»'"'»»' "'""»(R, %), (6.29)

with a similar expression for p(P, p}. Straightforward manipulations then give &Us in momentum space as

(]( I«;I =„])",)e-M)f d)&»e ]&)(])'( ' ) )] )-'((»»)»,».»Ij ']() )»).]). - (6.30)

If the density is constructed from orbitals such that the time reversed orbitals are filled pairwise, then

we have"

f~5))»((( ]);)))=0.

In this case, we have

(6.31)

(I}'l«elÃ=-, M(&- I)8(5+p) &(s.y}~.v[p-p, k(p'+p)])p(p' p), - (6.32)

where pgi —p) is the Fourier transform of the diagonal coordinate space density Eq. (5.10). If we insert
Eq. (6.32) into Eq. (6.23), we find that the correction to U is given by
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&&)'I~))'15)=-,MH-)) f~r&$ &'):"e )Qe +-&)) &)~-.y i~))) -))";le +i))1)

x p( ~~ p~)y &')g~), (6.33)

&iP(AU' I5)=( ) &4 —1)a*i&i)'+&))'

x gp I v» I $)pg) ' - p) . (6.35)

The expansion parameter that relates the size of
this term to the leading term is thus

p2g2 gg (6.36)

where V»/V is the ratio of the strength of the
nonlocal part of the two-body interaction to the
total strength of the interaction. For pion-nucleus
scattering, the pion-nucleon interaction is approx-
imately separable so that V»- V, and the range
a is about (500 MeV) ', thus X is 0.1 for an energy
E,= 500 MeV. For nucleon- nucleus scatteriag,
we might estimate the range of the nonlocality to
be 0.2 fm (-1 GeV') in which case X is 0.1 for the
kinetic energy of T„~100 MeV x V/V», where the
ratio of V/V» is not reliably known.

where &))s&')(p') are scattering states in momentum
space with outgoing (+) or incoming (-) boundary
conditions, which describe scattering of the inci-
dent projectile from a single fixed target particle.

First, one should notice that for a local poten-
tial, the two-body potential in momentum space is
a function of momentum transfer |)'-g, alone. In
this case, 4U' clearly vanishes, as we knew in
advance it must. Secondly, the correction is pro-
portional to m/(m+M); for nucleon-nucleus scat-
tering this is ~, while for pion-nucleus scattering
this is about 8.

The momentum dependence of the correction is
complicated by the distorting wave functions g&".
A qualitative estimate of the behavior of this term
can probably be obtained by approximating 4U by
nUs, Eq. (6.32). In this approximation we have
that this correction is proportional to |)'+P, and
thus relative to the leading term in the optical po-
tential; its importance grows as the energy of the
incident projectile increases. This correction is
thus unique in the sense that its importance does
not manifestly vanish at high energies.

In order to elucidate this further, let us examine
a particular model for the two-body interaction.
If we take

(p'I IR=v (O'-I))+(5'lv IÃ
= V~(p' —P)+ V,gi' —ga'e ' 's"~~2) (8 34)

with a the range of the nonlocality, then Eq. (8.28)
gives

The physical interpretation of Eq. (6.36) is that
one cannot "fix" a particle %'hich interacts non-
locaDy to within the range of the nonkocslity. If
the incident wavelength of particle zero is much
larger Naa the eonlocal recap: of the interaction,
then "fixing" the target particle within this range
is sufficient. %hen the incident wavelength be-
comes comparable to the nonlocal range, then the
inability to "fix" the target particle will cause
significant corrections. The increase in the cor-
reei'ion term, Eq. (6.36), with I)' is clearly a re-
sult of our expanding this correction. If this esti-
mate produce a large correction, one, of course,
must include higher-order terms in the series to
achieve a quantitafive estimate of the correction.

VII. ESTIMATE OF CONVERGENCE GF CORRELATION
EXPANSION

In this section we provide a rough estimate-of
the convergence of the corre1ation expansion for
the optical potential. %e shall consider the trun-
cation of our expansion for the optical potentisl
given in Eq. (5.18). Tlfis equation written in mo-
mentum space is

&W'If/' I@=@'Iv'"l0&+&Flv"'I@ (7.1)

with

&O'I v"'l5&= 8- 1)(5'lfl@p5'-5)
and

(7.2)

~V(s)
~B-=

)V(~)
(7.4)

In order to obtain an estimate of the nag@inde
of V"' and V"' we will make a forward scattering
approximation to T matrices, via.

&O'Ifll& fe(0). (7 5)

This is a standard approximation often made in
Eq. (7.2), where in coordinate space the two-body
E matrix is of shorter range than the nuclear
rs4ivs. %e shall also m» tbks a@a'ae5~ tjon ia

&&)'I""'I&))=«-))'J')) &))'I)I&))))*«))

x&5 lf)5&~5'-P, 5-5 )
(7.3)

where g(f', k& is the Fourler transform of the cor-
relation function defined in Eq. (5.19). An esti-
ma+ of +9 cogvegg@ggy og tW gggp~~iou, will then
be provided by the magnitude of 8 defined by
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(r,'
~

V'2' (r, ) g(r, )dr,

V"' r — e'"'dF g r' . 7.8

Corrections to this approximation are reasonably
small for m-nucleus scattering, and should be
even smaller for nucleon-nucleus scattering, where
V~/E is even smaller. Upon substitution of Eq.
(V.V}, we have

V~+'(rJ = (A —I)'ts'(0) (2s)'

AC ro, ro- gz e»

We now assume a Jastrow form' for the correla-
tion function

(V.9)

C(r„r,—I) = p'(rgH(s) .
This gives in Eq. (7.9)

V~+'(rg = (A —1)'f,'(0) (2s}'p'(rJ

x H(s)gs(II}e"'dI

(V. 10)

(V. 11)

If we now use an explicit form for gs(s) and per-
form the angular integration, this becomes

V~+'(rJ =-(A —1)~t z~(0)(2v)sp (rgE~

x —. H(s)(1 —e"~')ds .ik 0
(7.12)

The exponential term in the integral will tend to
oscillate, and for reasonably large values of k
the integral will be dominated by the 1, giving

V"'(rJ = (A —1)'t '(0)(2v)'p'(rJE —', (V. 13)

where l, is a correlation length defined by

H(s)ds . (7.14)

We now approximate A p(rJ = (A- 1)p(rJ = 0.17

Eq. (7.3). Here the approximation can at best be
qualitative as we are interested in changes in the
correlation function which (in coordinate space)
occur over a range of -0.5 fm which is comparable
to the range of the T matrix. Making this approx-
imation yields

(roi V"'erg=(A —l)ts(0)(2s)'p(r, )6(r,' —rJ (7.6)

and

( ro I
V +'

I ro) = (A —1) tz (0)(2v) ' gs(ro —ro}C(r~, ro} .
(7.7)

In order to estimate the magnitude of V"', we shall
consider an, approximately equivalent local po-
tential. This potentia1. is given by'

fm ', the density of nuclear matter, and we take
ts(0) to correspond to a total nucleon-nucleon cross
section of 40 mb. This gives

(7.15)

For correlation length of 0.5 fm, one finds that 8
= 10% for a 400 MeV proton, and that the correla-
tion term should be expected to decrease with in-
creasing incident momentum.

VIII. CONCLUSIONS

We have seen how the multiple scattering series
for the KMT pseudo-optical potential may be syste-
matically arranged according to the number of
target particles which are actively involved in
building the optical potential. In the closure ap-
proximation, the first term was seen to yield the
usual impulse approximation. The second term,
in which the incident particle interacts with two
target particles in the expansion for the optical
potential, was seen. to be the solution of a three-
body problem. For nucleon-nuc1eus elastic scat-
tering at intermediate energies, the second Born
approximation to this three-body problem has been
calculated in Ref. 5. The conclusion reached there
is that although the effects of correlations are not
negligible, they are masked by other unknowns in
the problem, the largest unknown being the spin
dependence of the nucleon-nucleon interaction.
Whether the summation of the second-order term
as a three-body problem will alter this conclusion
cannot be decided without further numerical in-
vestigation.

We have also derived expressions which correct
for the closure approximation and the fixed scat-
terer approximation. Reliable calculations of these
corrections may allow one to investigate correla-
tive effects at lower energies or larger momentum
transfer than has been possible, heretofore. We
have not, however, included the antisymmetriza-
tion" of the incident nucleon with the target nu-

cleons. A completely systematic theory of nu-

cleon-nucleus elastic scattering requires the
ability to calculate all such exchange effects quan-
titatively.

The necessity of the inclusion of correction terms
and exchange effects in order to examine correla-
tions in elastic scattering might be taken as an in-
dication that elastic scattering is not the best place
to try to learn about correlations. One might try
to find a reaction in which the correlation effects
were much 1arger. One must recall, however,
that the correlation function is a ground state to
ground state matrix element, and it is only in
elastic scattering that one measures ground state
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to ground state matrix elements directly. Thus, ln
any inelastic scattering the extraction of a target
correlation function requires further detailed know-
ledge of the relation of the final state to the target
ground state. At the moment, this fact seems to
limit one to elastic scattering or to double charge
exchange to the double analog state as possible
probes of nuclear correlations.

APPENDIX A

T =At + (A —l)t IIG T+ t(IIG —g)T .
The definition of the pseudo-T matrix T' by

(A5)

(AS)

yields

T' = (A - 1)t+ (A - 1)tIIGT'+ t(IIG —g)T' . (A I)

The pseudo-optical potential operator of KMT is
defined by

T'= U'+ O'GPT' . (AS)
In the text, the expansion for the pseudo-optical

potential was derived using algebraic techniques
similar to those originally used by Vfatson and co-
workers. ' Here we present an alternate deriva-
tion of our results which follows more closely the
approach of KMT.

According to KMT, which deals only with a target
of A identical fermions, Eq. (2.1) is written as

Substitution of Eq. (AS) into Eq. (A'I) so as to eli-
minate T' yields the exact operator for U'.

U' = (A —1)t + (A —1)t(II —P)GU'+ t(IIG —g)U' .
(AS)

In the closure approximation, the full many-body
propagator G is approximated by the closure pro-
pagator g; this yields for Eq. (AQ)

IITII = II V, II+ II (Al) U' = (A —l)t + (A —1)tgU', (A10)

DTn=AIlvrr+ArrvIIGTII, (A2}

where II is a projector onto antisymmetrized A-
body states. From Eq. (Al) we obtain

where g is defined by

g=- g(II p)+ g(n i) .1
(A 11)

where v represents any one of the A identical v, .
Bearing in mind that only matrix elements of T
between antisymmetric states will be taken, we
rewrite Eq. (A2) as

T =Av+Av&GT. (A3)

%'e now define the two-body scattering T matrix by

Iteration of Eq. (A10) gives

U' = (A —1)t+ (A —1)'tgt+ (A —I)'tgtgt + ~ ~ ~ .
(A12)

At this point we shall examine the terms in Eq.
(A12) one at a time. The first term is

t=v+Vgt ~ (A4) (A 1)ntn =(A i)n —.P t, nA'
where, to be specific, we shall consider g to be
the "closure" propagator, Eq. (2.5). We use Eq.
(A4) to eliminate v from Eq. (A3) to obtain

= (A —l}IIt,II .
The second term is

(A13}

(A —1)'tgt = (A —1)'IItg(II —P)tII —(A —1)IItg(l —II)tII

nest, g(n p)Qt, n "„'

nest,

gt, n "„,' nest, gnat, n

n Pt~(n- p) Pt n — A I
nest, gt n+ A I

nest, gpss t n
f

=n "„-' gt,g(I P)gt, "„-' gt~, ~ A„-, 'gt~pgt,
'

n
i

= n[ (A —1}'t,g(1 —P)t, + (A —l)t,g(l —P)t, —(A —l)t,g(1 —P)t,] II

= (A -1)'nt,g(1- P)t, II .

Straightforward continuation of the process yields

(A14)
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U'=
A [At, +A(A -1)[t+I—P)t, + t g(1 —P)t,g(1 —P)t, + ~ "](A —1)

+A(A- 1)(A —2)[t g(1-P)t,g(1- P)t, + ~ ~ ] + ~ ~ ~

+A(A —1)(A —2) ' ' '2 ' 1[t,g(1 —P)t, g(1 -P) ~ t&„,)g (1 —P}t„)}
} (K'&+W"+" W{"&).

A (A16}

This is the central result derived in the text.

APPENDIX 8

We have, until now, discussed the correlation"
expansion in terms of the closure approximation.
It is not difficult to reformulate this discussion
without incorporating this approximation. %e find
it instructive to begin by working with the transi-
tion operator, and then to apply the same attitudes
to the optical operator Thus. we recall Eq. (2.1)

r= Pv, +g v, cz . (Bl)

t, =e, +v, Gt, , (B2)

where G is again the many-body propagator of Eq.
(2.2). Elimination of &)& in favor of t, in Eq. (Bl) by
means of Eq. (B2), then leads to the familiar Wat-
son series;

T= Qt& Q+t&G t&+ t&G t&apt + ~ ~ ~ .
i f i

We may then easily reorder the series of Eq. (B3}
into the form

%'e then define the operator t, by means of the rela-
tion

where Ti+f) is given by

T]~ef ) FiGFf + FiGFfGFi + FiGFfGFiGF + ~ ~ ~

+tpF, +FCF;CF, +f CFGF at, + ~ ~ . (B9)

We then note that T,"f' is related to the solution of
the problem of the scattering of the projectile from
the two target particles (i and j), still considered,
however, to be in the nucleus. Let us then formu-
late this scattering problem in order to compare
that result with Eq. (B9).

The scattering of the projectile from two target
particles (i and j), is given by

as expected from Eq. (BS). Comparison of Eq.
(Bll) with Eq. (BQ) leads to the identification of
T"' asff

Tif if (B12)

Ff &
(&&{+ &&f) + (&&& + &)&)GFjJ (BIO)

where F, f is written with a bar to emphasize that the
propagator in Eq. (B10) is the many-body propa-
gator of Eq. (2.2). If we then use Eq. (B2) in the
standard way to eliminate &&& and v& in Eq. (B10) in
favor of Fi and Ff, we find that

F;, = (7&+ f~}+(FGF&+ 7 Gf
& )

+ (F;GF,GF, + t,cf;GF)+ "~, (B11)

with

T(i) + TA)+ T(3)+...
y (B4)

or

T&a) P (f. f. f. ) (B12)

7 = Q (t&at~+ t&Gtjat&
fA

+ t&at)at&at)+ ~ ~ ~ ) (B6)

r&»= p p g (f;GFGF,'+t, cFGFGF;
fit'i

+FiGFf GF GFf

+ F&GI& GF,Gt~+ ~ ~ ~ ) .
The sex ies for T"' is clearly in the form

T{2) Q Q I {8& Q (+{2)+y{R) —Q Zr{2) (B6)
fbi

For a target of A identical fermions we see that

T =AF, + g A(A —1)(F„—2F„')+ ~ ~ ~ .
The first term represents the A single scattering
terms, the second term represents the &A(A —1)
scatterings from pairs (from which the single
particle scatterings have been removed, since they
have already been included in the first terms).

It is of interest to note that to make the closure
approximation at this point, we need only replace
G=—(E —h, -H„i +))'&byg=(E —h, +i&&) ', wherever
it appears. In that case Fi and F, f become t, and
t, f, respectively, where t, satisfies the Lippmann-
Schwinger equation given by Eq. (2.4) and t&& is
given by Eq. (4.2). In this approximation t, rep-
resents the scattering of the projectile from a
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U= g v~ + QV, G(1 —P) U. (815)

In this case we follow Watson and write

fixed target particle (i), and f, &
represents the

scattering of the projectile from a pair of fixed
target particles (f and j).

In an exactly corresponding way, we may begin
with the Lippmann-Schwinger equation for the
optical operator

results. The definition

UII. UI (823)

(824)

or

gives

U»= g v, + gv, GU" — Pv»gPU"
A —1

A

t, = v, + v, G(1 —P)t, ,

to obtain the Watson series for U, viz.

U=gt, + gt, G(1 —P} P f

(816)
Ui -vi+viG ~ Uf — v, GP ~Uf,II— A-1 II

A
(825)

where

+ Q t,G(1 —P) Q tqG(l —P) Q t»+ ~ ~ ~ . UII = Ull (826)

(817)
This series may be resummed, as before, to give

We may eliminate v, in favor of F, in Eq. (825) to
obtain

U= U"'+ U~" + U"'+ "-
where

U(1)

(816}
U»"=7, F+)G(1 —P) Q Uq»

fbi

+ —F)GP QU~q' —AU»»
A

(827)

U+» = Q Q [t»G(1 —P}t~+t»G(1 —P)
fbi

xt&G(1 —P)t, + t, G(1 —P)tp(1- P)

x t»G(1- P)ti+ ~ ~ ~ ], (819)

and so on. We then observe that

A A

U — (t» ~ t» —t»), -
where t, f satisfies the relation

t»~ = (v»+ v») + (v» + vg )G(1 —P}f»g .

(820)

(821)

T'= v + v GT'.

If T' is then eliminated between Eq. (2.9) and Eq.
(822), the relation

Thus, the only difference between the treatment
of the multiple scattering of the transition operator
T and the optical operator U is that the propagator
G is replaced by G(1- P) wherever it appears,
again just as anticipated.

In the KMT formulation the operator U' appears.
This operator is defined in Eq. (2.9). Combining
the definition Eq. (2.9) with Eq. (81), we obtain

Ui~II= F, +FiG1 P U, rr,
fbi

since

U Q Ui —AUi) U= 0.
f

(826)

(829)

Thus in the case that the target states are com-
pletely antisymmetric, we may substitute the sim-
pler relation

U»»=E(+F(G(l —P} Q U»»

fA
(830)

for Eq. (827). This is the approach taken by KMT,
although the algebra here is slightly different.

The definition Eq. (826} together with Eq. (830)
implies, in the usual way, that

U"=Pf, + P&G(1-P) g ~,

At this point we then particularize our discussion
to the case where all the target particles are
identical fermions. In that case U, O', U, T, T',
etc. are all taken to be operators which operate
only on completely antisymmetric target states.
The operator II has been defined as the projector
onto the space of antisymmetric target states. We
then note tha, t

+ g V, GU' —
A QV, GPU'A —1 +Q t,G(1 —P) Q t)G(1 —P) Q f, + ~ ~ ~ (831)

kPf
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or

A —1

i pH

x+F,G(i P) pf;+ ~ ~ ~ . (BSS)
pH %f4'

Resummation of the series of Eq. (BSS) as

which permits one to determine the approximation
for Uwhich is exactly equivalent to a given approxi-
mationfor U'. The relation, Eq. (CS), canbeusedto
generate an expansion for Ufrom our expansion for
O'. It is simpler, however, to derive the expansion
directlyfrom Eq. (Cl). Using Eq. (1.1)and Eq. (Cl)
we may derive an integral equation for U which
becomes, in the closure approximation,

Uc g(1)I+ 04)t+ U(3)t (833)
U=Av+Av(1- P)llgU. (C3)

U&~~~= Qt, ,
i

(834)
In this paper, we have demonstrated that the equa-
tion for the man. y-body T matrix given by

T =Av+Avg IIT, (C4)

and so on. The operator tip which appears in Eq.
(835) is given by the series

may be rearranged according to a hierarchy of the
number of target particles participating in the
scattering process. This rearrangement is

t(i= t(+ t,G(l —P)t~+ t, G(1 —P)tiG(1 —P)

&& t, + ~ ~ ~ +tq+tg(1 —P)tg

—tg(l- P)t,G(1- P)tq+ ~ ~ ~, (83

or equivalently F,&
= A, &+ Az~, where A, &

and Az,
satisfy the coupled equations

(BSV)

T =At, +A(A —1)(g t„,—t,)+ ~ ~ ~,

where t, was given by

1 11gi
and

12 1 lg2 1g 2g 1

The similarity between Eqs. (C3) and (C4) al-
lows us to immediately rewrite Eq. (C3) as

(CS)

(C8)

(CV)

A~) ~t~+Fjg(l —P)Aq~ . (838)

Again we recognize that the two coupled equations
above are equivalent to the two uncoupled equations

A, ) = 7, + F,G(l —P)Fq

+ FG(l —P)FjG(l —P)A, ~, (839)

A„=7,+ Fp(1- P}7;

+ FP(1-P)FtG(1 —P)A~, (840)

and that iteration of these equations yields the series
Eq. (BM). The pair of equations (BSV)-(838) are,
of course, the Watson-Faddeev equations for the
scattering of the pro]ectile from the pair of
particles ij with a modified propagator.

U=At, +A(A —1)(-,' t„ t,), (C8)

t, = v, + v~(l —P) t„ (C 9)

~tx2=4+4@1- P)t2

+ t,g(1 —P)t,g(1 —P)t, + ~ ~ ~ . (C 10)

These equations, Eqs. (C8)-(C10), provide a cor-
relation expansion of the optical operator U. How-
ever, we find the expansion of U' preferable be-
cause it is an expansion in t, while the expansion
of U is an expansion in t, defined in Eq. (C9).

O' = - U+ —VI GU',A-1
A.

(CS)

APPENDIX C

In the paper we developed an expansion for the
pseudo- gygeg. p05pgti& operator gf KIT, The
techniques used there can just as readily be used
to obtain an 4ep~~lon for the optical operator of
Watsoe, de5ned by

r = v+ IJCpr. (Cl)
As has beennoted in Ref. 15 the operators U" and U

are related by the integral equation

In this paper we have arranged the multiple scat-
tering series for the pseudo-optical potential of
KMT according to the number of distinct target
particles which are involved in constructing the
optical potential. We have seen that a Born ap-
proximation to a three-body problem mill yield the
result of Refs. 5 and 6. In Appendix B we have
shown how a similar arrangement may be per-
formed for the optical potential itself; this yields
a resummation of higher-order terms in the Vfat-
son~ expansion of the optical potential. Foldy and
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Walecka' have proposed an alternate rearrange-
ment of the multiple scattering series which is not
closely related either to this work or to that of
Refs. 5, 6, 8, and 9. The techniques used here,
however, can be readily adapted to derive their
results. In this Appendix, we rederive their re-
sults and compare their rearrangement of the
multiple scattering series with the one derived
here.

Foldy and Walecka begin with the multiple scat-
tering series in the closure approximation, Eq.
(2.8), rewritten slightly: T T(oy&)

P% (D6)

the "local field" correction or the "rescattering"
term.

Recently" the accuracy of Eq. (D5) as an approx-
imation to the optical potential has been examined
numerically. It was found thaP for proton scat-
tering from 'He, ~C, and ~ Ca at energies from
90 MeV to 1.05 GeV, Eq. (D5) is not an accurate
approximation to the optical potential. The use
of this optical potential in a Lippmann-Schwinger
equation clearly generates the approximation for
elastic scattering

T= Z'~+XV Z'.&+Z'«Z'~& Z 'a
i gAi i 9&i k&i f

+ Qfg Qf~gf(+'' (Dl)

with Trg" defined in Eq. (DS). A comparison with

Eq. (D2) shows that the correction terms to this
approximation are

s.T=Atg Pf, +A(SA —2)t g Pf,gPt,
They then keep only single particle density matrix
contributions to those terms in which a given
particle participates no more than once. This is
exaCtly equivalent to inserting the projection oper-
ator P into Eq. (Dl) in the following manner:

Trs =At, +A(A —1)t,gPt,
+A(A-1)(A- 2)fgPf,gPf,

+ ~ ~ +A(A —l)t,gtmgt~+ ~ ~ ~, (D2)

where we have made use of the fact that we are
only going to take matrix elements with fully anti-
symmetrized A-body states.

At this point, they make the approximation that
the number of target particles struck is much
smaller than the total number of particles in the
target. This mathematically consists of approxi-
mating A(A —1) by A', A(A —1)(A —2) by A', etc.
With this approximation, Eq. (D2) becomes

T»= At~+A t~gPt, +Ast~gPt~gPt, + ~ ~ ~

+ A(A —1)f,gt, gt, + ~ ~ ~ . (DS)

This equatiorr then is broken into two parts defined

by

T~(ovyt) At~+A2txgPtx+Ast g PtxgPtx ~

Tr~~v' =A(A —1)f~gtmt~+ ~ ~ ~ . (D4)

The ground state matrix elements of the optical po-
tential part T~~'~" are clearly a solution of a Lipp-
mann-Schwinger equation with an optical potential
defined by

(D5)

where we have already noted that the factorization
in Eq. (D4) results from the use of the closure pro-
pagator, and, in the case of a nonlocal potential,
the assumption of an infinite target particle mass.
The second part of the T matrix T~„' is termed

~ ~ ~ T (res)
FN

The first set of correction terms might be re-
ferred to as "counting" terms.

It is precisely these correction terms which
are eliminated by the use of the KMT pseudo-
optical potential or by the Watson two-body T ma-
trix defined in Eq. (C9). This is readily seen by

returning to Eq. (D2) and including that part of the
Foldy-Walecka "rescattering" term which pro-
ceeds from one particle to another through the
ground state in the first series. This gives

T =At, +A(A —1)tg Pti+A(A —1) fig Pt gPf,

+A(A —1)[t,gPt, g(1 —P)t, + t,g (1—P)t, gPt,

+ t,g (1—P)t, g(1 —P)t,], (D8)

from which it is clear how the KMT pseudo-optical
potential exactly sums the first series in this ex-
pression. The second term in this expression has
here been shown to be a part of a systematic cor-
relation expansion.

Foldy and Walecka then propose two corrections
to Eq. (D5). One is the rescattering correction,
the leading term of which is given in Eq. (D4).
The second correction is the correlation correction
to the approximation used in going from Eq. (Dl)
to Eq. (D2).

We feel that the arrangement of the multiple
scattering series presented in this work or in
Refs. 5 and 6 yields a more systematic approach
to calculating elastic scattering. These works
may be viewed as breaking the Foldy-Walecka
rescattering correction into two pieces. The
first is used to eliminate the counting correction
of Eq. (D7), while the remaining piece quite nat-
urally combines with the Foldy-Walecka correla-
tion correction to yield the correlation expansion
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developed here. Thus in these storks, there is ie
the closure approximation only a single correction
term to the leading order optical potential and this
is a correlation correction. 1n the Foldy-Vfalecka
arrangement, there are three corrections to their

leading order optical potential: the rescattering,
correlation, and counting corrections. Al.l three
must be included to exactly reproduce the term in
Eq. (Dl) which is second order in the two-body 7
matrix.
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