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Final-state interactions in the decay of 2C* into three a particles
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We apply the Faddeev equations with separable potentials for the decay of '€* (4 ™ = 1%; 12.71 MeV)
[formed in the reaction '*C(*He,a)'?C*] via *Be (2*; 2.9 MeV) into three a partioles. The a-particle energy
spectrum is caleulated. No effect of unitarity constraints (rescattering) is obsesved in the energy spectrum.

spectrum.

[NUCLEAR REACTIONS 3C(*He,@)!?C*—3a, calculated a-particle energy]

I. INTRODUCTION

In our study of the “minimal” three-body equa-
tion,! we have demonstrated the importance of uni-
tarity constraints on the quasi-two-body amplitudes
(the amplitudes for the creation of the spectator
particle and correlated pair in the reaction) that
appear in the sequential theory of three-body final
states. The conventional phenomenology is to as-
sume the quasi-two-body amplitude is slowly vary-
ing over the three-body phase space. We have seen
the shaky validity of this assumption for s-wave
resonant pair interactions.

The question arises whether we ¢an detect the
rescattering effect in the energy spectrum of an
actual system, and draw the conclusion that any
disagreement between the Watson approximation
and experiment is due to the neglect of the
(E = $p?)V? gingularity or the rescattering effect.
The practical system we choose to attack is the de-
cay of 2C*J"=1")~3a. Experimentally the 12.71
MeV, 1" state is prepared by the reaction
3C(°He, @)**C*. Then the compound nucleus '2C*
decays either by way of the first excited state of
8Be,

+
2C* - @, +°Be?
a, +a;,
or directly,

PC*—q, + 0y + 0.

The decay to the ®Be ground state (J" =0") is for-
bidden since the conservation of parity forces the
orbital angular momentum between a, and °Be to
an even value. Furthermore it must be 2, to add
up to 1 with the ®Be’s angular momentum value of
2. Thus, this system provides a transparent ex-
ample for the study of final state interactions. De-
tailed experimental results have been obtained by
Balamuth, Zurmihle, and Tabor.?

Since all the angular momenta are fixed, instead
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of using the “minimal” equations derived from uni-
tarity and analyticity, we start from the Faddeev
equations with separable two-body interactions.
With our approach, though detailed dynamics as-
sumptions enter (such as the two-body interaction
on and off shell, primary decay vertex, etc.), the
quasi-two-body amplitude of course satisfies the
unitarity constraint. By comparing with the usual
phenomenology (which violates unitarity), employed
for the analysis of three-body final states we can
learn whether the violation of unitarity is serious
or not.

A similar treatment to ours has been given by
MecMahan and Duck® for a different '2C state and
the decay scheme is different:

12C%(18.37 MeV; 2*) ~a, +°Bef

Loy,
+

a, +°Be?

a,+a,.

Their results seem to contradict ours in two re-
spects. First, they show a sizable effect of the
primary decay vertex on the energy spectrum, and
secondly they show in an approximate way, the
necessity of including the Coulomb phase 6 ; to fit
the experimental data.

In Sec. II the details of the separable T-matrix
approximation are given. In Sec. III we discuss the
integral equation for the decay amplitude with our
particular angular momentum assignment, using
the separable two-body interaction given in the
previous section. In Sec. IV, we have calculated
the energy spectrum. In Sec. IV A, we choose the
simple form for the inhomogeneous term of the in-
tegral equation and in Sec. IV B we attempt to im-~
prove the results first by including the Coulomb
effect and secondly with a different choice of the
inhomogeneous term of the integral equation. Fin-
ally, in Sec. V we present our conclusions.
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II. TWO-BODY INTERACTION

Since we need an expression for the off-shell
two-body scattering T matrix in order to deal with
the three-particle problem, we discuss in this sec-
tion the parametrization of a separable potential
to fit the a-a scattering experimental data. The
formalism for a short-range separable potential
together with a Coulomb potential has been given
by Harrington.? This is appropriate for the a-a
interaction. We can divide the T matrix into two
parts, the pure Coulomb scattering amplitude T,
and an amplitude T gc due to the separable potential
under the influence of a Coulomb field:

T(k',K) = Tc(', K) + T 5ol E; K, B) . (1)

We have the explicit form of the partial wave de-
composition of each amplitude (# =C=1):

Ty(k, k) = = ""21 —sing,()e'*1V, @)
TC,I(k, k) = - 1r:lk Sinbc.l(k)e‘ac"(.) , (3)

T c,l(E; kl’ k) = eiac',(h') ”c,t(k')’-’c,x(k) eloa_;(k) ,

D,(E)
@
where
N _ - ° v AR) .,
o,() = (o [ P wa),
(5

m is the a-particle mass, and A, is a coupling
strength of the separable potential. From the on-
shell expression for the 7 matrix (1) to (4), one
gets

v Ak) 2

5 i0sC,ik)
D(E) s sinbgc, (k) e . (6)
where
8,(k) =5c,1(k) + bsc, (k). (7

We can identify 05¢ ; as the commonly called “nu-
clear” phase shift, but it is by no means equal to
the phase shift which would be obtained if the Cou-
lomb field were switched off. Rather, it is defined
by (7) under the presence of the Coulomb field.

We choose the separable potential

Vo o(k) = Uez—k;:z'gz)—z, (8)

where 87! is the range of the force. This form
does not have the correct threshold behavior
e~"k"!; here 1= e, ek, e e, are the respective
electric charge, u is the reduced mass, yet the

potential still includes the Coulomb effect in a
sense that it reproduces the observed nuclear
phase shift 8gc,. The form (8) clearly does have
the correct angular momentum threshold for the
case without the Coulomb force. Form (5) we see
that

B 1 m k8
Dz(;‘-) e T <55 +58%2 +158k% = 5 —B—>

5
+i§(1rm)——-——(k21i32)4 . (9

The parameters A, and 8 are determined through
(6) to fit the experimental result® for the nuclear
phase shift at the resonance energy E,=3.4 MeV.
Thus, we get 871, =227 MeV, B =1.58 fm™ from

dbsCz

dE oz, =48.6 (deg/MeV) (10)
and
Re[D,(E,)] =0. (11)

The theoretical phase shift 8s., obtained in this way
is shown in Fig. 1 where it is compared with the
phase shift determined from the data.

III. THREE-BODY EQUATIONS

The decay amplitude for 2C*-3a is given by

Ry =g o [FCweak[2C) (12)

where M denotes the spin projection of the 2C*
state and (¥, | denotes the final state vector of
three outgoing particles defined in terms of three-
particle plane wave states (3af as

(W0l =(30] +(3a|T, (E)Gy(E) . (13)

Here E is the total energy and G, is the free three-

120+
90°H ! 4
60° -

30° -

O° 1 1 | | 1 1 L |
0 1 2 3 4 5 6 7 8 9 10

c.m. ENERGY (MeV)

FIG. 1. The theoretical ! =2 phase shift as a function
of the c.m. energy E. The experimental values are the
points.
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particle Green function (E +ie=H))™*. The T ma-
trix may be decomposed, following Faddeev, into
the sum of three terms

3
T, (E)=) X;(E). (14)
The X; satisfy the Faddeev equations
Xy(E) = t,(E) + t‘(E)Go(E)jZ_,:XAE) , (15)

where, for example, f,(E) is the fully off-shell
two-body T matrix for particles 2 and 3. From
(12) and (13) we obtain an equation for R,:
Ry =(3apCuesk['?C) +(3a|T; o E)Go( E)ICyesk[2C)
(16)

Thus we need to know the following matrix element:

(B, Kyl Xi(E)Go( EYSeueu[*C) ¢!

where P; is the momentum of particle ¢ and &;
=3(P, - P,) (4,], k cyclic) is the momentum conju-
gate to the relative coordinate of the ( j, #) pair.

The fully off-shell two-body T matrix appearing
in Eq. (15) is taken to have the separable form Ty,
just discussed in the previous section. We neglect
the Coulomb amplitude T on the grounds that it
acts on less strongly correlated pairs than T gc.
We have
(B, kilt(B)BY, kD

=8(P; - B))Tso(E - 3 P2 K, K))

Vg (i) Ve o)) #
e = Vin(K]) .
D;(E-%P,'z) I ( i)

(18)

-5(B, - ﬁ;)Z Y1)

K(p, p'; E)

We put 0;; =0 for simplicity, because we do not
know the exact nature of the shielding. Equation
(18) allows us to write

(B, K |X(E) Gy E)3ewenk[2C)
=D YA (B Y 2y (RULIMfim, LM,)
mity
X vg, 1(F) ! Fi,(p%,E), (19)
i) pUE=Tp7) " LiPH ),

and for the primitive decay vertex
(ﬁ, kf3Cyea [2C)

= ZL) Y (B Y 2, (LIM|Im, LM)GE (%, ¥; E) .

mMy,

(20)

From these we have the reduced Faddeev equation
Fi,v(p? E)
=sla0, B)+ 2 [ PRAPK(p, b EFLAP™, B,
0

(21)
gi’,l'(ng E)

- [ #d v WG ?, R BYGE, (0%, K5 E),
o]

=[(=DF +(=D*] | d@zdy D ('LIME'M', M) Y A B) Yy (B’ +5B)/[B7 + 3BDey (| B’ +3B))
L

miy
m’ My

} -~
X Go(p?, (P' +3P)% E) (LIMEm, LMY fu(PVY 1y (B +3P")/[B +3P|) vey( [P+

and the free three-particle Green function
G(p?, F* E) =(E +ie - 3p2-K)' (A=m =1). The
sequence of above equations is represented dia-
grammatically in Fig. 2.

The above expressions are general; now we as-
sign the angular momenta of our case, L=Il=L'=]’
=2, J=1. The evaluation of the kernel K(p, p’; E)
is tedious. We do the following partial wave de-
composition

(B + 3B u(|B’ +3P))
E-p*-p?-P.P’

(B, B =

=‘x2ufx(1>, PP Y LB, 24)

(22)
where
B) 1 (23)
DyE - 3p")’
3
R RGN
i=1 i
(a)
J
@ Ot
i i=i i
(b)

FIG. 2. Diagrammatic representation of (a) Eq. (16)
and (b) Eq. (21).
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where v,(k) =k*u(k). Further, we use the formulas

o[ 2m\V2 y/1 1 2 . .
19 =5( ) 30 (t . _V> YD Y03,
(25)

Y, B+ 45)/|B+35|
- T [PYu®) P T®). 20)

Then the angular integrals reduce to the evaluation
of 6j, 94, and 12j symbols. Finally we have

5 2 2
K@, 5B~ - 00 = s+ 5o

3 3
— G B0 D PNS, - 1] OB 7).

(27)

To make life much simpler, we made the detailed
dynamics assumption that the primitive decay ver-
tex (*C*—~q, +a, + a,) is negligible compared to the
amplitude for decay via ®Be?*. Furthermore we
assume for the form of the driving term

82 =P /(W +?), (28)

where U is some parameter and the factor p? ex-
presses the angular momentum barrier effect of
the free particles.

We can have an alternate expression for the driv-
ing term, by assuming the primary decay vertex
G}, = YoP*R? exp[-3R,2(5p% +#?)], where p2k? is again
the angular momentum threshold and R, expresses
the range of the decay vertex in the real space.
The strength of the decay v, is immaterial since it
enters linearly in the integral equation and only the
relative rates are compared with experiment. This
choice of the primary decay, in (22), gives

- 2
g12(0% E) =3my, p2e~3/*k?

—ia/? —ka
><<(a To7
p3/2

+ We’”’[Sa +3b +2Kb(a +b)]) N

29
where (29)

a=E-3p?+ie,
b=p2,
K=3R?.
IV. RESULTS

A. Energy spectrum

With the choice of driving term (28) and p=1
fm~™!, we have the quasi-two-body amplitude F},
as shown in Fig. 3. The integral equation (21) is

0.7 T T T

06k REAL F
il
> 0.5+ —
> 04

o — //" —
ot _—" DRIVING
< - - .
@ 03 -
= -
m 0.2 - —~
14 //
< oabk -~ _

' /// Im F

1 1 I
OO | 2 3 4
E, (MeV)

FIG. 3. The quasi-two-body amplitude solution F} 5(p?)
for the driving term Eq. (28). Driving is shown with
dashed line.

solved numerically by rotating the contours of in-
tegration away from the singularities.® We can
parametrize the result in a form

max

2
Fiap =acp[1e8e (Z2) ], (30)

where €' is an observable phase factor, because it
is common for the three terms in (14), and hence
there is no interference effect between them due to
this phase factor. We can interpret the dimension-
less parameter B as a measure of the rescattering
effect. We find B=0.409; P, is the physically al-
lowed maximum momentum value vZ-E. Whereas
Ae'®p? merely expresses the angular momentum
barrier effect. The total decay rate is proportion-
al to

IRP = 2R, +2 IR +5IR_,F . (31)

The alignment of the initial spin state in *C* was
determined by a measurement of the angular cor-
relation of 12.71 MeV vy rays and « particles from
BC(°*He, @)'?C571mev = ¥ +12C s at the same bom-
barding energy as the experiment
3C(*He, @)'*C,5.1 mev —3@. The total decay rate is
then calculated with the experimentally given align-
ment as

0 f dﬁxdﬁzdﬁsb(-ﬁ1 + 52 +-IS3)

x 8(E=5p7 = 55,7 = 5p,2) IRE . (32)

We choose a coordinate system in which the initial
12C* momentum P, is in the positive z direction and
the final a-particle momentum P is in the x-z
plane (see Fig. 4). The energy spectrum in the
center of mass system is



FIG. 4. The coordinate system used in Eq. (42).
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(33)

where cosA,, =cosf, cosb, +sinb, sinf, cos¢,, A, is
the angle between the direction of particle 1 and 2.
In order to make the best of experimental results,

we go to the lab system:

do___, d%
dQl LdE1L dQLdEl ’

(34

where the Jacobian J =P, ;/P,, the subscript L re-
fers to laboratory quantities. We evaluate the
above double integral on a computer, carefully
treating the limitations imposed by the & functions.

The comparison with the experiment is made for
laboratory angles 6,,=30, 45, 55, and 70° in Fig.
5. The amplitude (B, |[X,(E)Gy(E)3wesk|*C) is re-
sponsible for the middle peak, while the other two
amplitudes (with suffix =2, 3 instead of 1) each
contribute to the two side peaks (Fig. 6). In other
words, the other two terms are identical functions
of P, after the integration of P, and P,.

E, (MeV)

FIG. 5. A comparison of the calculated and experimental (Ref. 2) a-particle spectra with the movable detector at the

angles indicated.
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ARBITRARY UNITS

E,(MeV)

FIG. 6. The solid line indicates the energy spectrum
obtained only from the amplitude (Pl, & I1x,(B)
X G( E)¥Cyeq I'*C) (Without Interference with other ampli-
tudes) and the dashed line is the energy spectrum ob-
tained only from the amplitude (B;,k;|X(E)
X Go( EYICeq '2C), 1=2,3.

We also evaluated the spectrum with the quasi-
two-body amplitude F}, =p?, namely just the an-
gular momentum barrier effect. This corresponds
to putting B=0, no rescattering effect in (30).
We find no difference in the energy spectrum.
From this fact, we may conclude that the (E
-32p2)V2 gingularity or the rescattering effect is not
important in the energy spectrum with the choice
of the driving term (28).

B. Further attempts

In order to explain the disagreement with the ex-
periment for larger 6, and E,;=2-3 MeV, we re-
place the last decay vertex with the vertex includ-
ing the Coulomb phase shift factor and the Coulomb
penetration factor, i.e., Uc,=~ tc,e”™e'¢1. The
shielding radius was taken to be R=10° fm. The
exponential penetration factor is necessary physi-
cally and mathematically to suppress the rapid
phase factor’s oscillation for the low momentum.
This approximate way to include the Coulomb ef-
fect was used by McMahan and Duck?® to improve
their agreement with experiment. In our case we
do not see any improvement from making this
change (Fig. 7). In addition to that, we included the
Coulomb phase shift factor and the Coulomb pene-
tration factor between a and ®Be, in the quasi-two-
body amplitude (30), which is obtained by solving
the integral equation (in which the Coulomb effect
is partly ignored for simplicity). That is vc,(k)
-7 e"”'e'&"‘2 and F},(p?, E)~F;,(p% E)

X ¢ 7' gloc ip (19). The same shielding radius R
=10°fm wasusedto evaluate 6;,and &;+,. Againwe
donot observe any improvement (Fig. 8).

700 T : T T
600}
500+ . . ° .
4001 ¢ ° . .
300 . —

2001 m

NUMBER OF COUNTS
[ ]
[ ]

100} ]

E . (MeV)

FIG. 7. The energy spectrum of a particles including
the Coulomb penetrability and phase shift between a-a.
0y =T70°.

The alert reader may suspect that the inclusion
of effects of the primitive decay vertex will change
the result greatly, especially since a little phase
difference is crucial to the destructive interference
producing the minimum at about E,;=2.5-3 MeV,
but that is not the case. The primitive decay ver-
tex is much smaller in comparison to the decay
amplitude via ®Be?*, because of the resonance
peak.

In Figs. 9 and 10 we show the solution of the re-
duced Faddeev equation by using the inhomogeneous
term (29), with the range R;=2 and 3 fm. For R,
=2 fm, the result is quite similar to the previous
case; we can parametrize again in a form (30) with
B=0.391. We are not surprised to have the same
spectrum. However, for R,=3 fm, we have large
rescattering effects. We can parametrize the re-

7001

600

400

300

NUMBER OF COUNTS

w

E . (MeV)

FIG. 8. The energy spectrum of a particles including
the Coulomb penetrability and phase shift between a -«
and a-%Be. 6, =70°.
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FIG. 9. The driving and the quasi-two-body amplitude
for Ry=2 fm.

sult as

’ 2 ” 4
F1,(0?) =Ae‘°‘p=[1 +Be* (P—’;‘x> +Ce* (—P >],

(35)

with B=2.82 and C=1.64. Despite the fact, that
the large rescattering effect changes the behavior
of (B, k| X;(E)G,(E)3Cwea|**C), the energy spectrum
obtained only from the =1 amplitude squared and
the energy spectrum obtained only from the ¢=2 or
3 amplitude squared is shown in Fig. 11. In com-
parison with Fig. 6 we see the large differences.
However, after allowing for interference of three

4 T T T
——
// . DRIVING
N

ARBITRARY UNITS

-

-3 1 1

E, (MeV)

FIG. 10. The driving and the quasi-two-body amplitude
for Ry=3 fm.

ARBITRARY UNITS

E,L (Mev)

FIG. 11. Same as Fig. 6 except the quasi-two-body
amplitude is obtained from the driving Eq. (29), R;=3 fm.

amplitudes, the final spectra do not show any
difference to the previous results (Fig. 5) and
hence we do not show them in a separate figure.

V. CONCLUSIONS

We have solved the reduced Faddeev equations
with separable potentials for the decay of 2C*(1*)
into three a particles in order to study the effect
of the square root singularity (rescattering).

We have solved the integral equations of the
quasi-two-body amplitude with the assumptions
about the driving (the inhomogeneous) term: (a)
P2/(2 +p?), pu=1fm™, (b) the driving term was
constructed from the primitive decay vertex (the
direct breakup amplitude to the 3a) which is spread
out in configuration space, and (c) the driving term
is point-like.

For the cases (a) and (b) we had similar results,
namely a small effect of the square root singulari-
ty compared with the simple quasi-two-body ampli-
tude P? (Watson approximation).

We have calculated the energy spectra and com-
pared with experiment for various detector angles
6,;. We cannot observe the square root singularity
effect. The spectra of the (a), (b), and Watson ap-
proximations do not show any difference. Even for
the case (c), although we had a large rescattering
effect (clearly the strong interaction effect, the
wave function at a short range more than one
spread out in momentum space), we could not de-
tect its effect in the spectrum. In general this
must not be the case. Amado and Noble” have stud-
ied with a similar model, the decay of a 0* particle
into three identical 0* particles interacting through
separable s-wave interactions. They show differ-
ent single particle spectra for the different spread-
ing size of primary decay vertex input. The reason
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we could not detect the square root singularity is
due to the angular momentum distribution and the
interference effect.

We cannot explain the disagreement of the Watson
approximation theory and the experimental result
for the spectrum at large detector angle 6,; and the
observed particle lab energy E,;=2-3 MeV by
solving our exact soluble model.

Our spectrum is kinematically incomplete; that
is we integrate over the unobserved second particle
direction (6,, ¢,). It is possible to do a triple coin-
cidence spectrum, measure d%c/dE, ;dQ, ,dQ,,,

and have more detailed information about the
quasi-two-body amplitude. This may help to clari-
fy the discrepancy. More theoretical and experi-
mental work should be done in this direction.
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