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I. INTRODUCTION

12C t(t a +88e2
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The decay to the 'Be ground state (J"=0') is for-
bidden since the conservation of parity forces the
orbital angular momentum between a& and 'Be to
an even value. Furthermore it must be 2, to add

up to 1 with the 'Be's angular momentum value of
2. Thus, this system provides a translwrent ex-
ample for the study of final state ipteractions. De-
tailed experimental results have been obtained by
Balamuth, ZurmChle, and Tabor. '

Since all the angular momenta are fixed, instead

In our study of the "minimal" three-body equa-
tion, ' we have demonstrated the importance of uni-
tarity constraints on the quasi-two-body amplibades
(the amplitudes for the creation of the spectator
particle and correlated pair in the reaction) that

appear in the sequential theory of three-body final
states. The conventional phenomenology is to as-
sume the quasi-two-body amplitude is slowly vary-
ing over the three-body phase space. %e have seen
the shaky validity of this assumptioa for s-wave
resonant pair interactions.

The question arises whether we cap detect the
rescattering effect in the energy spectrum of an
actual system, and draw the conclusion that any
disagreement between the Watson approximation
and experiment is due to the neglect of the
(8 ——,'p') t~' singularity or the rescattertng effect.
The practical system we choose to attack is the de-
cay of "Ce(Z' =1') -3a. Experitaeatally the 1R.Vl

MeV, 1' state is prepared by the reaettatt
"C('He, a)"C*. Then the compouad nucleus "C*
decays either by way of the first excited state of
Be,

of using the "minimal" equations derived from uni-
tarity and analyticity, we start from the Faddeev
equations with separable two-body interactions.
With out' approach, though detaQed dynamics as-
sumptions enter (such as the two-body interaction
on and off shell, primary decay vertex, etc.), the
quasi-two-body amplitude of course satisfies the
unitarity constraint. By comparing with the usual
phenomenology (which violates unitarity), employed
for the analysis of three-body final states we can
learn whether the violation of unitarity is serious
or not.

A similar treatment to ours has been given by
McMahan and Buck' for a different "C state and

the decay scheme is different:

tee*(18 3'l MeV. 2') -a +eBef'.

1 + 88e2+

++Q3.

Their results seem to contradict ours in two re-
spects. First, they show a sizable effect of the
primary decay vextax on the energy spectrum, and

secondly they show in an approximate way, the
necessity of including the Coulomb phase &~, to fit
the experimental data.

In Sec. II the details of the separable T-matrix
approximation are given. In Sec. III we discuss the
integral ecpeation for the decay amplitude with our
particehar asyelar momentum assignment, using
the seyarabke two-body interaction given in the
pxevkms sectile. In Sec. IV, we have calculated
the energy spectrum. In Sec. IV A, we choose the
simple form for the inhomogeneous term of the in-
tegral equation and in Sec. IV B we attempt to im-
prove the results first by including the Coulomb
effect and secondly with a different choice of the
inhomogeaeoes term of the integral equation. Fin-
ally, in Sec;. V we present oar conclusions.
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II. TYCHO-BODY INTERACTION

Since we need an expression for the off-shell
two-body scattering T matrix in order to deal with
the three-particle problem, we discuss in this sec-
tion the yarametrization of a separable potential
to fit the a-e scattering experimental data. The
formalism for a short-range sepuable potential
together with a Coulomb potential has been given
by Harrington. ' This is appropriate for the a-a
interaction. Ne can divide the T matrix into two
parts, the pure Coulomb scattering amplitude 7.'~,
and an amplitude T ~& due to the separable potential
under the influence of a Coulomb field:

T(k ', k) = Tc(k ', k) + Tec(E; k ', k) .

~ 1 u5
+i &(s)n} (+ (9)

The parameters A, and P are determined through
(6) to fit the experimental result' for the nuclear
phase shift at the resonance energy E„=3.4 MeV.
Thus, we get P 'X, = 227 MeV, P = 1.58 fm ' from

potential still includes the Coulomb effect in a
sense that it reproduces the observed nuclear
phase shift 6zc, . The form (8) clearly does have
the correct angular momentum threshold for the
case without the Coulomb force. Form (5}we see
that

1 mm u6
D2 —=- —+

32()P + P')' P2 4 p'+5psk'+15pk'~ —5—

%e have the explicit form of the partial wave de-
composition of each amplitude (ff = C = 1):

T)(k, k) =- sin6, (k)e' 'i~)2
and

d58c2 =48.6 (deg/MeV}dE E ~„

Re[D,(E„)]=0.

(10)

Tc, )()), )t}= - sin6c, (k)e'~c)&»,

T (g. yr y) e)oc (k)') c.l( ) c, l( ) elle )(»
&)(&)

where

(3) The theoretical phase shift &~~, obtained in this way
is shown in Fig. 1 where it is compared with the
phase shift determined from the data.

III. THREE-BODY EQUATIONS

The decay amplitude for "C*- 3a is given by

g -j. +m P R~s R„=&y,.I30,~~"C), (12)

(5)

os is the a-particle mass, and &, is a coupling
strength of the separable potential. From the on-
shell expression for the T matrix (1) to (4), one
gets

v 2(P)c.l ( ) ~

6 (y)e)dec, la)
D(Z) s~u"" "' )

where M denotes the spin projection of the "C*
stiate and &g, ] denotes the final state vector of
three outgoing particles defined in terms of three-
particle plane wave states (3a~ as

&y,.[
= &3 +(+&3a~T,.(E)G,(Z) . (13)

Here E is the total energy and G, is the free three-

)P
&c.a(&) = (p, pa)a, (8)

where P ' is the range of the force. This form
does not have the correct threshold behavior
8 ""4 '; here g= p,e,e,k ', e,e, are the respective
electric charge, p is the reduced mass, yet the

6)(&) = 6c )(&) + 6sc., )(&) ~

%'e can identify &+«as the commonly called "nu-
clear" phase shift, but it is by no means equal to
the yhase shift which would be obtained if the Cou-
lomb field were switched off. Rather, it is defined
by (I) under the presence of the Coulomb field.

Vfe choose the separable potential

90—

60—

I I i i I I
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c.m. E~ERG~ (MeV~

FIG. 1. The theoretical l =2 phase shift as a function
of the c.m. energy E. The experimental values are the
points.
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(14)

particle Green function (E+ie =Ho} '. The T ma-
trix may be decomposed, following Faddeev, into
the sum of three terms

T3 (E) = X,(E).
=1

We put && &
=0 for simplicity, because we do not

know the exact nature of the shielding. Equation
(18}allows us to write

(P, k IX(E)G (E)X»s»I"C&

The X~ satisfy the Faddeev equations

X,(E) = i,(E) + l;(E)Go(E)Q XgE), (15)

= 2 1'»~(P) y'Z»» (k)(/LJMllm» LMI}
EL

where, for example, l,(E}is the fully off-shell
two-body T matrix for particles 2 and 3. From
(12) and (13}we obtain an equation for R»»:

Es=&3~I36 ~l"C&+&3~IT,.(E)G,(E}X.~I"C&.
(16)

Thus we need to know the following matrix element:

&P k IX (E)G.(E)X- I"C&,

where I'& is the momentum of particle i and k&

= 2(P» - P», ) (i, j, l» cyclic) is the momentum conju-
gate to the relative coordinate of the ( j, k) pair.

The fully off-shell two-body T matrix appearing
in Eq. (15) is taken to have the separable form Tsc,
just discussed in the previous section. We neglect
the Coulomb amplitude T& on the grounds that it
acts on less strongly correlated pairs than T~~.
We have

&P», k»ll (E)IP»', k»&

1
x vc i(k). . . EI, »(O', E), (19}

and for the primitive decay vertex

&p, @c ~l"c&

= Q Y»~(P) Fi~gi(k)(lL JMIlm, LML)GI »(p', k; E) .
lL

(20)

From these we have the reduced Faddeev equation

»(O', .E)

= g'. (O', E) +Q P "»fP'if(p, O'; E)EI„(p",E}
L, E p

(21}
Zi. »

(O' E}

= 6(P» —P») Tsc(E —~a P; k„k»')

i}gy (k } c»(») c»(»} y (k

where

u'duVCL a t."OP', k';8 &~i., i P', u

(22)

lf(P, P'; E)

=[» s)', » u'| J do;s~ g»r cvM» c»f, )r', »s)' r,'„,;»»f . —,'T. )„i.s ~ —,',plh„»lp' ~ —,'p»
Nl&L

ea'HLs

x'G, (p', (p'+op)2;E}(lL~MIim LMc)yi*(p')y*„((p+-,'p')/Ip+ pl)vcr(lp+ p'I) 3 (23}

and the free three-particle Green function
Go(p', O2; E) = (E + ie - ~ p' - k') ' (8 =m = 1). The
sequence of above equations is represented dia-
grammatically in Fig. 2.

The above expressions are general; now we as-
sign the angular momenta of our case, I =E =I.'=l'
=2, /=1. The evaluation of the kernel K(p, p', E)
is tedious. We do the following partial wave de-
composition

s(lp+ lp'l)s(lp'+ apl)f P, p') =-

E-p —p -P P'

=Sf'(p ' P}y(»»)Pl'i» (P'), (24) FIG. 2. Diagrammatic representation of (a) Eq. (16)
and (b) Eq. (21).
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where t(c,(k) =0's(A). Further, we use the formulas

F,.(2') = 5
3

Q(-1)"
I

F22(&) F22 (&),
2s ~' „['1 1 2 )

[5t t' -[2J
(25)

r„(5+lp )llew+-.'p I

,
I

[FF„(P)+-,'Z'F„(P')]. (26)

Then the angular integrals reduce to the evaluation
of 6j, Qj, and 12j symbols. Finally we have

(((2' ()5=((- 2. 2*2 2f. —
2 f, ~

2 (f)5, 29

+P'P')(f -f ) D(~- P")
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FIG. 3. The quasi-two-body amplitude so1ution E2 2(p')
for the driving term Eq. (28). Driving is shown with
dashed line.

To make life much simpler, we made the detailed
dynamics assumption that the primitive decay ver-
tex ("C*-a2+ a, + a,) is negligible compared to the
amplitude for decay via 'Be". Furthermore we
assume for the form of the driving term

g,', = p'l(~'+ p'), (28)

g' (p' &)= 'sr p'e-" '

where

-&as~' &-ga
((2+5['

y3/2

, P'[5 ~ 25 ~ 2((5( ~ 5[[),

(29)

0 =E- 4P +K2

p2

where p, is some parameter and the factor P' ex-
presses the angular momentum bhrx'ier effect of
the free particles.

%'e can have an alternate expression for the driv-
ipg term, by assuming the primary decay vertex
G„', = yP'k' exp[-2RO'(&P'+ k')], where P'0' is again
the angular momentum threshold and 8, expresses
the range of the decay vertex in the real space.
The strength of the decay z, is immaterial since it
enters linearly in the integral equation and only the
relative rates are compared with experiment. This
choice of the primary decay, in (22), gives

solved numerically by rotating the contours of in-
tegration away from the singularities. o We can
parametrize the result in a form

2
F2 (p') =Ae'~p' 1+Be'~

&max

where e'~ is an observable phase factor, because it
is common for the three terms in (14), and hence
there is no interference effect between them due to
this phase factor. We can interpret the dimension-
less parameter & as a measure of the rescattering
effect. We find B=0.409; P,„is the physically al-
lowed maximum momentum value ~3E. Whereas
Ae'~P' merely expresses the angular momentum
barrier effect. The total decay rate is proportion-
al to

(31)

The alignment of the initial spin state in "C*was
determined by a measurement of the angular cor-
relation of 12.71 MeV y rays and e particles from
"C('He, a)»C»„M y p+ Cl at the same bom-
barding energy as the experiment
"C('He, a)»C»» „,v -3a. The total decay rate is
then calculated with the experimentally given align-
ment as

0 dp, std, ,O p, + p, + 9,)
K= —'A

2 0 ~

x 5(E- lp, '- kp, 2- 2p.*)Al'. (32)
IV. RESULTS

A. Energy spectrum

With the choice of driving term (28) and p =1
fm ', we have the quasi-two-body amplitude E,',,
as shown in Fig. 3. The integral equation (21) is

We choose a coordinate system in which the initial
"C*momentum I'0 is in the positive z direction and
the final e-particle momentum I' is in the x-a
plane (see Fig. 4). The energy spectrum in the
center of mass system is
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FIG. 4. The coordin ate system used in Eq. (42).
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FIG. 9. The driving and the quasi-boo-body amplitude
for Ra=2 fm.
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FIG. 11. Same as Fig. 6 except the quasi-two-body
amplitude is obtained from the driving Eq. (29), Ro =3 fm.

(35)

with B=2.82 and t- =1.64. Despite the fact, that
the large rescattering effect changes the behavior
of (P&, k, IX&(E)G,(E)X~I"C), the energy spectrum
obtained only from the i =1 amplitude squared and
the energy spectrum obtained only from the i =2 or
3 amplitude squared is shown in Fig. 11. In com-
parison with Fig. 6 we see the large differences.
However, after allowing for interference of three

i l I

DRIVING

/

-2

30

E( (MeV)

FIG. 10. The driving and the quasi-boo-body amplitude
for 80~3 fm.

amplitudes, the final spectra do not show any
difference to the previous results (Fig. 5) and
hence we do not show them in a separate figure.

V. CONCLUSIONS

We have solved the reduced Faddeev equations
with separable potentials for the decay of "C~(1')
into three a particles in order to study the effect
of the square root singularity (rescattering).

We have solved the integral equations of the
quasi-two-body amplitude with the assumptions
about the driving (the inhomogeneous) term: (a)
P /(g2+P2), p =1 fm ', (b} the driving term was
constructed from the primitive decay vertex (the
direct breakup amplitude to the 3a) which is spread
out in configuration space, and (c) the driving term
is point-like.

For the cases (a) and (b) we had similar results,
namely a small effect of the square root singulari-
ty compared with the simple quasi-two-body ampli-
tude P' (Watson approximation).

We have calculated the energy spectra and com-
pared with experiment for various detector angles
8,~. We cannot observe the square root singularity
effect. The spectra of the (a), (b), and Watson ap-
proximations do not show any difference. Even for
the case (c}, although we had a large rescattering
effect (clearly the strong interaction effect, the
wave function at a short range more than one
spread out in momentum space), we couid not de-
tect its effect in the spectrum. In general this
must not be the case. Amado and Noble' have stud-
ied with a similar model, the decay of a 0 particle
into three identical 0' particles interacting through
separable s-wave interactions. They show differ-
ent single particle spectra for the different spread-
ing size of primary decay vertex input. The reason
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we could not detect the square root singularity is
due to the angular momentum distribution and the
interference effect.

%'e cannot explain the disagreement of the Watson
approximation theory and the experimental result
for the spectrum at large detector angle 8, I, and the
observed particle lab energy E,I =2-3 MeV by
solving our exact soluble model.

Our spectrum is kinematically incomplete; that
is we integrate over the unobserved second particle
direction (8„$,). It is possible to do a triple coin-
cidence spectrum, measure d'o/dE, ldA, I do I,,

and have more detailed information about the
quasi-two-body amplitude. This may help to clari-
fy the discrepancy. More theoretical and experi-
mental work should be done in this direction.
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