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Magnetic moment of the J = 6+ isomeric level in Te
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The g factor for the J"= 6+ isomeric level in '"Te can be reproduced within the experimental error by
taking into account core polarization as well as velocity dependence corrections to the magnetic dipole
operator. The wave function describing this isomeric state is obtained by diagonalizing a residual Gaussian
interaction in a two-particle configuration space.

NUCLEAR STRUCTURE Te; calculated levels, J, ~, g factor for isomeric
J~ =6+ level. Corrected M1 operator: core polarization, velocity dependence.

&

In a recent article of Wolf and Cheifetz, ' the
magnetic dipole moment of the ~' =6' isomeric
state in '"Te has been measured. The value of

g,„(6,') =0.846 +0.025 can be reproduced with an
effective spin gyromagnetic factor for the 1g,/2
proton single-particle orbit g, (lg,~,) =2.5, a value
close to effective g, factors used for the 1g,g, proton
orbital in describing the N =82 isotones. ' ' Wolf
and Cheifetz point out that in order to understand
the quenching from the free nucleon value g„(lg,g, ),
core-polarization corrections and configuration
admixtures still leave a discrepancy of 42% (for a
2.3% ~2d,i Ig,y2, 6') admixture') or 22% (for 13.7%
~2d,pig,y„6') admixture') in explaining the differ-
ence g,„,(6,') —g„(lg,)2).

Here, we would like to point out that by taking
into account (i) core-polarization effects, (ii) in-
fluence from velocity dependent two-nucleon inter-
actions on the expression for the magnetic dipole
operator, and (iii} the complete wave function de-

scribing the J",- =6,' level in a two-particle calcula-
tion, one is able to reproduce g,„,(6,') within the
exper imental error. The important first-order
perturbation theory core-polarization diagrams
have been calculated"" by using the Tabakin resi-
dual interaction which was also used earlier in de-
scribing the N =82 isotones. ' 4 The important cor-
rections originate from the proton 1g,~, '1g,~, and
neutron lh, g, 'lb@, excitations for which the energy
denominators have been taken, as in Ref. 10.
Thus, corrected values for the magnetic dipole
moment in the proton single-particle orbits con-
sidered (Ig,~„2d~„2d~„3s,~„ lb»~, ) result. In
the particular case of the most important single-
particle configuration, a correction Ag(lg, ~,} „„,
=0.223 results.

Also, the nondiagonal reduced magnetic dipole
matrix element results from first-order perturba-
tion theory as

2j +I& ~'
(j'[[(-', v) '6II(M1),.„... ii j}=(-1)' '(g, -g, )

1 g (2J+1)W(jhlJj'; j,j)(j'i„.JI v~ jj)),'d}„+(h=p) . (1)

Here, l denotes the orbital angular momentum of the p-h excitation, and (l, s)j coupling is used for defining
the single-particle states; e, denotes the unperturbed single-particle energy, whereas (h=p) means the
same expression interchanging the indices p and h. In the particular case of )' =2d ~, and ) =—1g ~, the re-
duced matrix element becomes 0.944'.„.

Another nonnegligible contribution to the magnetic dipole operator originates from the velocity-dependent
nucleonic forces. If we consider the averaging procedure as discussed by Bohr and Mottelson, " and as-
suming a Woods-Saxon (WS) shape for the nucleon density, the correction term

3 ~2 4m
))aa(M(, g).. . -=( [, f(r)[(2n) '[Y,es]'„'~s, [(t— )

— +, , g(r)s„I (2)

results, where we have used the abbreviations
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f(r)= -V-,) 4' ~ d~ (V„,)
1 d

and
X2

g(r)= VP V

(3)

The one-body spin-orbit potential V„=-f(&)1 o is used and t, denotes the isospin projection quantum num-

ber for the type of nucleon considered. The strength of the spin-orbit potential is denoted by V,~ and &~

gives the proton Compton wavelength and Vo is the strength of the Woods-Saxon potential itself. Here, we

consider the parameters as determined by Blomqvist and Wahlborn" (V, =58 MeV, & =32) in the Pb region,
not differing substantially from medium heavy-mass nuclei. "" By straightforward calculation, a correc-
tion to the single-particle g factor is obtained:

1 . . rn 2Z——&jig(~)lj& —,—
r g(f),.(d., =+

2 2
. ~. &jl 'f( )lj&

2j+1 m, N-Z A.

""d" 2j+2 j I'
+ 1&jig(&)lj& q. ~

(4)

Here, the pips sign and upper part correspond with j= l+ 2, whereas the minus sign and the lower part
correspond with j= l ——,'. All radial integrals are calculated with the use of Woods-Saxon wave functions. "

The nondiagonal term results into" (le I')

&f'll(—', v)"6$II(MI) lip& =(2j+1)''C/+'~'(2(-1)' '"+(-1)' ' ~'[(j+ ')+(-I)' " '(j-'+-')] }

x, (jlr'f(r)[r')(t. — ), (5)

which for j =2'„j=1g,/, gives a correction of 0.286'.„.This contribution, together with the nondiagonal
M1 matrix element from core-polarization effects, results in a total value of

&2', ll(53K(MI) „„,+53K(M1)„,„,)(—', v)'~ll lg7/, & =1.23 ',„.

&2', ll(—', v)'"3)I(MI)ll lg/. &.„,=1.10',„
results.

Finally, we consider the wave function resulting
from diagonalizing a residual Gaussian two-body
force within the 1g,/„2d~, 2d~„3s,@, and 1h,~2
proton single-particle states. ' The resulting wave
function is then obtained as

l&;M& =gQ'(ab;&}la&;&M&,
ab

(6)

An estimate for this particular matrix element can
be obtained starting from the experimentally deter-
mined half-life of the first excited state in the odd-
mass Sb isotopes" (—", = —,"), taking into account
that the M1 transition is mainly 24~2-1g,/2. When

the single-particle amplitude, as deduced from
the experimental one-nucleon transfer spectro-
scopic factors, is used, "the nondiagonal reduced
M1 matrix element results. If B(M1)=0 02)/.„'.
is taken as an average value for the Z =51 mass
region" as well as the average spectroscopic fac-
tors" &$2d~& =0.75, &Slg/, & =0.80, a value of

Contributions Wildenthal This work

(1) g(1g7/~)

+g(1g7/2) oore pol.

(3) &g(1g7/2)„f. d,„
l(ig'f/g); 6')

l(»gg/p) s lad~

(4) &g(6')

0.491

0.223

0.079

0.681

0.002

0.491

0.223

0.079

0.722

0.002

(5) +g(6 f) (diag. ) 0.151 0.096

(6) 4g(6f) (nondiag. )

g(6, ) (total)

0.025 0.027 0.021 0.022

0.859 0.861 0.841 0.842

TABLE I. The separate contributions to g(6f). Results
from our calculation are compared with Wildenthal and

Larson (Ref. 8). In the last row, we distinguish between
the nondiagonal M1 matrix element connecting the 2d5/&
and 1g7/2 single-particle states as taken from experi-
ment (first column) or calculated from core polarization
and velocity dependence (second colu~~).
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FIG. 1. The level scheme for ~34Te as calculated with
a Gaussian residual interaction (Ref. 4) of force strength
V0 = 37 MeV, t =+0.2, compared with experiment and
with calculations from Wildenthal (Ref. 8).

FIG. 2. The calculated g factor for the J&~ =6+~ level in
Te in this study (A) compared with the calculations of

Wildenthal (Ref. 8) (B) and with the experimental value
(error bar). The dashed-dot, dashed, and full lines are
drawn as an eye guide and indicate (i) influence of the
(2d~&t1g7/t 6+l admixture with diagonal core-polarization
effects only, (ii) all contributions with the nondiagonal
reduced M1 matrix element connecting the 2d5&2 and

1g7/2 single-particle states taken from experiment, and

(iii) same as (ii), but with the reduced M1 matrix el-
ement as calculated from core polarization and velocity
dependence, respectively.

where Q'(ab;d) describes the amplitudes for the
two-particle configurations ~ab; JM). The single-
particle energies are taken from Ref. 18, whereas
the best agreement with the experimental level

scheme is obtained for a force strength Vot =-37
MeV. The level scheme is shown in Fig. 1 in which
the calculation of Wildenthal and Larson' is also
indicated. The ~=6, wave function results in

~ 6,') =0.954((lg g );6+) + 0.297~ 2dga1gvt„6') —0.042~(lb„y )'; 6+) .
The magnetic dipole moment can then be calculated with this particular wave function from

g(6t') =(—'&)"(8)"2 0'(ab'6')0'(cd 6') ((I +~.n)(I +~.u))
'+

ab
cd

&& (-1) ~' ~[5~~W(66ac; Id)(c(~K(MI)((a) +(d= c) y(b=a) y(d= c; b=a)]. (7)

In Table I, all separate contributions to g(6,')
(also for the &," =6,' wave function of Wildenthal
and Larson') are given. In the last row, distinction
is made between the theoretically (core polariza-
tion + velocity dependence) and experimentally
determined nondiagonal reduced matrix element.

We thus observe that the contributions, as con-
sidered by Wolf and Cheifetz, add up to g(6, )
=0.741(0.757) with our wave function and Wilden-
thal's, respectively (see Fig. 2). The neglected
contributions: velocity dependence correction to
the single-particle magnetic dipole moments, the
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nonzero reduced M1 matrix element connecting
the 2d,y, and 1g,y, single-particle states, and the

~(1&»y,)'; 6 ) admixtures, give an additional b,g(6,')
=0.101(0.104) when using our wave function and
Wildenthal's, respectively. So, we can conclude
that by taking into account core polarization and
velocity dependence as well as the full J; =6,' wave

function, the experimental value of g(6,') can be
reproduced within the error.
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this work.
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