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The problem of two distinct pairs of identical particles is considered in Faddeev-Yakubovsky formalism. A set
of seven coupled integral equations is obtained which is simplified by assuming separable s-wave forms for the
interaction between any two particles. An angular momentum analysis is carried out to obtain the equations
satisfied by the partial wave components.
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I. INTRODUCTION

A mathematically rigorous approach to study the
motion of a system of three particles was pro-
posed by Faddeev' in 1960. Since then, this meth-
od has been used to investigate the properties of
three-body systems consisting of nucleons and hy-
perons by a number of workers. ' However, for
the problem of motion of four particles, the varia-
tional method, in which one has to start with a
trial w'ave function, was the only available one till
the elegant works by Faddeev' and by Yakubovsky'
were published. In their works, Faddeev and
Yakubovsky clarified the difficulties associated
with a correct formulation of the equations of mo-
tion of a four-body system. Similar nonvariational
formalisms for dealing with four-particle dynam-
ics have been proposed by Alt, Grassberger and
Sandhas' and Sloan. ' The Faddeev- Yakubovsky
approach has been used by Kharchenko and Kuz-
michev, ' Narodetsky, ' and Tjon' to obtain the equa-
tions satisfied by the components of four-body
wave functions, which are required for investi-
gating the properties of a system of four identical
particles. Gibson and I,ehman, "starting directly
from the Schrodinger equation and utilizing the
assumption of two-body separable potentials, have
obtained the coupled two-variable integral equa-
tions that determine the four-nucleon bound state.
Using an alternative field-theoretic approach,
Fonseca and Shanley" have recently derived the
integral equations for four-body scattering pro-
cesses including breakup for the case of pairs of
spinless identical particles n, n and a, a. They
have introduced three spinless quasiparticles C, D,
and a with s-wave couplings D —n+n, C —a+a, and

n —D+a only. They have avoided the particle ex-
change contribution to the three-body amplitude
and arrived at the relevant equations for different
four-body processes. Thi.s model has been used to
study the four-nucleon problem" where the posi-
tions of the four-body bound states have been found
out and a complete phase shift calculation has been
performed. To our knowledge, no attempt has so
far been made in. Faddeev- Yakubovsky formalism
to consider rigorously the problem where the
particles are not all identical. In this work we
derive the necessary dynamical equations within
the formalism of Refs. 3, 4, and 7 for the case
where the constituents of the four-body. system are
two different pairs of identical particles. It may
be noted that in the Faddeev- Yakubovsky formalism
all possible pair interactions are allowed. The
symmetry properties of the system in our problem
are quite different from that of four identical part-
icles and we have a larger number of coupled in-
tegral equations with which to deal. Our equations
will be useful to explore systems like ~'~OBe (in the
o.nAA model).

In the next section. , we give the four-particle in-
tegral equations and their modification for the
case of two distinct pairs of identical particles.
In Sec. III, we formulate the corresponding inte-
gral equations when the two-particle interaction
is separable. The decomposition in terms of an-
gular momenta is carried out in Sec. IV and the
discussion appears in Sec. V.

II. FOUR-PARTICI. E INTEGRAL EQUATIONS AND THE
PROBLEM OF TWO PAIRS OF IDENTICAL PARTICLES

Following Faddeev' and Yakubovsky, ' Kharchenko
and Kuzmichev' have shown that the wave function
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4„ for a four-particle system defined by written as,

4'~ ——lillli kg(E~+ lf)'4~,
0

where 8 represents the full Green's function for
the system with energy E„and 4„represents the
wave function for the asymptotic state A. , can be

y(ifk 1)+ ~ y(f f3kl)

(if»3 &)

(haft

kl)

with 4 „"f' " and 4 „" 'k" satisfying the following
coupled equations:

4&(&fk, l& &fk+ g & ') J3R & ) & )k(ki4 i)+ y«kl, f)+ y(fk, il) + y(k&, fl)]

)&y(ik&, f)+ @(fi),k)+ @(ki, fl) + k)(if, kl)]

~ JR & )&@(fili k&+ @(kfli i) @&(loki) v &ikeil)]],

+&(f~k(&-g (t)(31 (s)[y(&kfii&+ )k(k(i. f)]+gf (t)[4&(fi),k&+ g(&fk, r)]],
t t

(3)

(4)

1233 4y 2313 4y 31234& . 214t 3& 142t3y 421t 3t

1343 2& 341t 2y 413t2& 2433 1y 4323 1y 3243 1 t

where the subscript (ijk, l} represents the case of
the particle l being scattered by the bound state
(ijk) For this .type of asymptotic state any one of
the following functions will have the proper sym-
metry required for the problem:

10 123, 4 214t 3 t

@2a @243,1+ 324, 1+ @134,2+ 413, 2 t

30 341t 2 4323 1 t

(5a)

(5b)

(Sc)

where p=E„+i&. The expression for the inhomo-
geneous part g~

» when the particle 4 is scattered
by the bound state of particles 1,2, 3, can be found
in Ref. 7. 3R 3 and '2

3 satisfy Eqs. (9) and (10)
of Ref. 7.

Kharchenko and Kuzmichev' have investigated a
system consisting of four identical bosons. In this
work, we consider the problem of two different
pairs of identical particles with the pair interac-
tions invariant under space inversion. Further,
we will assume the space part of the wave function
of any two particles to be of even parity. Using
Eq. (1), the wave function of the four-particle state .

can be built from an asymptotic state of correct
symmetry. To be specific, let the particles 1 and
2 form one pair of identical particles and the parti-
cles 3 and 4 form the other one.

First we start with the scattering of a particle on
three particles in a bound state. The possible
asymptotic wave functions are

4a 142t3 421 3 231 4 312 4' (5d)

1b 12t34 y

2b 34 12t

3b 23t 14 14t 23 31t 24 24t 31

(6a)

(Gb)

(6c)

For the asymptotic functions of the type 4,f » we
have, of course,

haft»1 @fftkl ift Lk fit lk '

We can choose any one of the 4 's given in Eqs.
(5) and (6) to be the state @„for determining )1„of
Eq. (1). Choosing (f&„of Eq. (5a) to be the required
asymptotic state and writing C„as a sum of com-
ponents in the form given in Eq. (2), 4",,(fk' " and
4,&,'f'3" will satisfy equations similar to Eqs. (3)
and (4), respectively. These 18 equations are not
all independent, and utilizing the symmetry of the
pairs of particles can be reduced to a set of seven
coupled integral equati, ons given below:

It may be noted that according to what has been
stated above the asymptotic wave functions 4,»,
and 4»,», are identical.

For the case of scattering between two pairs of
bound particles, the possible asymptotic wave
functions are

12t 34' 343 12' 233 14' 14323& 31t 24y 24t 31 t

where the subscript (ij, kl} stands for the scattering
of the combination of particles (ij ) by the combina-
tion (kl). Corresponding to this type of asymptotic
states, the functions which have the proper sym-
metry are

q', :=4,".".g.(s)([3R,.„,()&).3R,....(s)](~',:.x,".) 5R,...,(s)(~,". &&',.')],
4~; = 290()&)(23R33 33(s) (@3,;+ 2&&33) + [3R33 34((&) +3R33 ~()&)](4',;+ &&3„')],

~i'. = 90(sH[3R34.34(s)+3RM. 4((»](+i'.+ &&1!)+ 5R34. i3(s}(+3:+'&&i'}&

(7a)

(Vb)

(7c)
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= 242 + 29 (S)(2K (S)(4( + 2X,')+ [N„„(S)+SR„,„(S)](klk',;+X'„')]',

X14= go(&)[~12,12(&)@2'o+~ka. sq(&)+2']

x,".= 6.(s) [&.....(»4,'+ &..„.(s)4'".],

(7d)

(7e)

(7f)

(7g)

where

(i/) (i j) (i j)
la 123,4+ 214& 3

with

q", 22.'2 go=-(~) JC';s. 2.

The superscripts on the 4 's and the g's stand for
the same type of linear combination which has been
used to define the subscripts in Eqs. (5) and (6).

If instead of choosing C„as the asymptotic state
to be used in Eq. (1), we choose any of the other
six states defined in Eqs. (5) and (6) and proceed
in the manner explained above, we will arrive at
six other sets of seven coupled integral equations.
The integral equations belonging to these six sets
will differ from those belonging to the set of Eqs.
(7) in their inhomogeneous parts. However, the
kernels. of corresponding equations in the different
sets will be identical.

For bound state problems, solutions are to be
found for the integral equations after dropping out
the inhomogeneous parts. It will be sufficient,
therefore, to consider the set of Eqs. (7) and
henceforth we will limit our discussions to this
set only. The subscript 1a attached to the wave
functions in Eqs. (7) will also be omitted in the
rest of the paper.

The Eqs. (7) are given in operator form. To get
corresponding equations in momentum space one
has to introduce a set of relative momentum vari-
ables. Taking the momentum representation of the
component states 4"~"'" and 4 '~'~" in terms of
their characteristic set of variables' and combining
these representations in the same way in which we
have obtained Eqs. (7) from Eqs. (3) and (4), we

get the integral equations for the wave functions in

momentum space. These equations without their
inhomogeneous parts are given below:

k2 p2 1

4"(k, p, q) = z, —
~12, 3

2M„„(kji;K',P,', z,)q"(k', j( 2
' j)', il'

m + Plb

~ (M„.„(kji;K,'P', ;z,) M„„(kP;K',P,', ,)]2"(k', 2+ 2', 2')2mb+ ma

+ 4M„„(kp;K,'P,', z, )X' (k', q —aq', q )

+ [M,a 12(kp, K,Ps, z1)+ M, a as(kp; KoPo, z, )]

X S(i 2 m() 2 2 [ dk' dq'
q m. +m, q q

I
(2v)' (2v)"

2 ~]4"(k, p, q) = 2 (2, — — 2M„„(kp;K'P', ;z,)q" k', q+ ' q', q')2 ~23 2 ~23, 4 mb+ ma

q2
Z

2P123 4

(8a)

+ (M„, (kji;K', P,', ,)+M„„(kp;K',P',;,)]2 '(k', q+ ' q', q')2'm + Plb

+ ~as, as(kPi KzoP&oi 2)X (k'

[ 22 24(@2 11 112 2) 22242( Vz K12 122 2)l

xX",q- ' 'l' q (2„)
'

(2 )

42.(k p qq z z, p '(k, p, q), z, = s
2 ' 2 P34 2 934 1 P23 ~23, 4 ~341,2

q2
Z2 2 &234, 1

(8b)

(8c)
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4"'(k, p, q) =2 z, — — z, — — ("(k,p, q),2@4, 2@41 2 2P12 2@12 3
'

2W412 3

(8d)

y"(k, «, s) =
2 ~2 1

p(...,.(&& l p+tY, R;*,)p*' &, - p-
p

' c(' t('}
2 @12 2 +34 2mb+ ma

dk'

k2 ~2 -1 g2
}C"(k,«, 0)= z, z, ("(k,«, s), z, =a

,34 2 P,,2
' 2 P,,2 P,34

' ' 2 P,34~12

S2
Z 5

~12,34

(8e)

(8f)

k2

2m +m23 41 a b b a

where

+N„„kPc; s+q', k', z, 4" k',' m, +mb

dq' s
(2w)' (2v)'

a+
2m. +m, q'q

(Sg)

mb mb 2m, + mb, , 2m, + mb

m, + m~ 2(m, + m~) 2(m, + m~) 4 2(m, + m~)

I I m
P, =k — q- 2q =P, —2q,

2(2m, + m~)

m 2m +mb 2m +mb
2(m, +m, ) q 2(m, +m, ) q + 2(m, +m, )

m mbP'=k'—
(m, + m ~)(2m, + m p)

mb mb

m+m, q ' m+m,

2m a r pr a

(m, +m~)(2m, +m, ) m, +m, ' m, +mc,

The expressions for (K,'P,'), (K,'P,'), . . . , (K,',P'„) are similar to those for (K,'P', ), (K,'P,'), . . . , (K',P',), re-
spectively, but with the replacement m, m, . In Eq. (8c), the function ( ' has a form similar to the
right-hand side of Eq. (8b) but with M»», M»~„and M» „replaced by M„», M„„, and M,«„re-
spectively. Also, z, is replaced by z, . The functions $" and $" occurring in Eqs. (Sd) and (8f) have the
form of the right-hand sides of Eqs. (8a) and (8e), respectively, with the replacements M»»-M„„,

] 2 23 M4, ,4, M»» —M„„, and z, -z4 in the first case and N» „-N, ~», N», 4
—N. . . z, —z, in the

second one.
The three-particle scattering amplitude M z(kp;k'p';z) and the scattering amplitude of two noninter-

acting pairs N z(k«;k'T«', z) satisfy the integral equations

M p(cp;k'p'; )= (p )'(k lt * — "~ p') (k')5(p —p')()

+ 2 f(pl'. '- " p*) '
p ~ p")(*- — — p p")

CP
&& p+ p" p" M (z}~k' p') a(P or y) =ij,jk, ki; (9a)
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/P)).,(i»; i'»';») = (2»)'(i(». (» -," (»')»(» »-')

krr + ~+ ktt @ g kt ~t

K 2 yrr2 ((fk
)»,»()»»i(»» )») f()»=I».(»-,' I«"& *- — (» )7" IN»»(») I»''»'&

where PWQ. ;

(9c)

for n) 4 p, o((p) =ij,kf;

In Eqs. (8) and (9) m, = m, = m, and m« = m, = m„
where m, is the mass of the ith particle and the
reduced masses p, are defined as in Ref. 7. The

's and mo's occurring in Eqs. (9) are defined
a,s fg = fQ —7R and vl = apl]J = TA —sl ~ —pBg where

is the sum of the masses of three particles i,
j, and k.

III. REDUCTION OF FOUR-BODY EQUATIONS IN

CASE OF SEPARABLE POTENTIALS

The integral equations (8) get simplified if the

two-particle interactions have separable form.
Separable interactions have been widely used for
investigations of scattering and bound states of
nucleons and hyperons. ' %e will be primarily in-
terested in bound states involving nuclei and hyper-
ons and will assume s-wave separable interaction
between any pair of particles. Then

(k
~ V, ~k ) = ~,g„.(k)g„(k ) (10)

for the interaction of the ith particle with the jth
one. X,~'s are the potential strength parameters
and g;,.'s are the form factors depending only on

the modulus of the momentum vectors. Using the

potential form given in Eq. (10) the matrix ele-
ments of the two-body I, matrix can be written as

&;y(k, k', z) = (k
~
f; J (z)

~

k')

=g;;(k) &(g(z)g;y(k')

where

g; (e)
(z-e'/2u;&) (»)' '

From the Eqs. (9), (10), and (11) the matrix ele-
ments of the type M ~ and X ~ are expressed in

terms of two other functions X ~ and F ~ as de-
fined below:

rt

&,«(p p';z)=&. , «(p, p', z)(1-~.«)+ Z fi.„(p P"z)T. ' —
2

'" j'" &.,«(p" p' '}

(, )
g ((m«/m )p+p')g«(p+( m„ /)n)«p' }

z —P'/2 i&«- P"/2 g. (m. /m «u«)P '0'—

M «(kp;k'p', z) —g (k)g«(k')r (z —(m/2m, m )p')[(2v)'5(p-p')5 «+r«(z —(m/2m«m«)j) ')X,z(p, p', z)j

&(P or y}=ij,jk, ki; (12)

rt2 rr

«()i, )i', z)= W «()i, )i', z)(1 —0 «)+ ~ „()i,Pc";z)7„z F„(Tc",P;z), y4: a;0!»7»» )' 2~ )»«)» (2 )«

g.(z')g«(&)

2 r2

)» (»»)»'»', »)=;)» (»)» (k')(* —»— (»»)'»( — ')+ — )' (», i»'; ), ()»»;
2 p,@

2 r2

&, «(k&;k')i';z)=g (k)g (k')«r z 7«z — I' «(a, F;z), for acp, o(p or y)=ij, kl.
2Pg 2P0i
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In the above equations X ~ and Y ~ are the off-shell amplitudes for the scattering of a particle by a com-
posite system of two particles and the scattering of two particles in the presence of a pair of other parti-
cles interacting between themselves, respectively.

We can now factor out the k dependence explicitly from the functions 4' and yof Eqs. (8) and introduce the
functions Q and R as follows:

]~k"5 p3q=-b k/2P. , I,'/2p, ~/2~„„,
Q"'( )

&]ya, r

for

(n; ijk) = (1;123), (2; 234), (3; 341), (4; 412)

and

nb g'(g(k) .a-
(ki K~ s) = —

$ —ka/2 —va/2 sz/2 R (K, s)

for

(n; ijkl) = (1;1234), (2; 3412), (3;2341) .
Q and R then satisfy the following set of integral equations:

A~
ja ~

2Z - mb
+ 'z l~ +

mb
Q (Pi%) = Tag ~g —

2 X„» p, q+q;z, Q q+ q, q
&j.a, 3 my+ mb mg+ mb

a W] m WgZ„„P, 2 q q;, +X„,3 P, 2 q+q;,a+ b a+ b

(14)

xQ ' q+ q q +4Xxa i p — ' q+2mb+ ma 2m +mb

m +mb
p —

2 q+q '
a b

ma+ mb
2m +ma b

d '
b mb, , dq

q m+m qq (~wp'
2

Q*'(f, t()= '*.(*-,„K..... i, ,' ~+t('. ~
" t(+, ; t(', t(')

&a3, 4 b a b a

m b &I m b &I+ X2334 P'2m+m q+q'z2+X34 P 2
q+q;z,

b+ o b a

(15a)

a b b a

m, +mb m +mb
X334 P' 2 q+qz +X " P' 2 q+q'z2

b+ g b a

dx R~3b ~ a ~I dq
m. +m, q q (2w)'

p' p2 w 1

&34, i ~~3, 4

p' 2

Q"(p, q)=»- «- &» &, — &"(p, q)2 ~&a, 3

2 P

+f
+ v...,.(, is+ 1(';*.)()"(-~ — ' i', t('

2mb+ m, (2w j

(15b)

(15c)

(15d)

(15e)
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2 ~2 ~J.

(("(«,3)= «„(*,— „,— t("(«,s),2 &3~

K

Air ~ ~p 4 ~ pal + IBAD ~p ~p ccq
+&23 23», s+q;z, Q -s —

2
' q, qc+ rp a rp

(15f)

(15g)

The functions 3)", g", .and 6l'3 occurring in Eqs. (15c), (15d), and (15f) have their forms similar to the
right-hand sides of Eqs. (15b), (15a), and (15e), respectively, with necessary replacements of the sub-
scripts of the X 3's, ~ 3's, and 2('s as has been done for the M 3's, N, 3's, and 2('s in Eqs. (Bc), (Bd),
and (Bf) [see also the explanation given below Eqs. (8)].

The kernels of the integral Eqs. (15) are given by

~pp

s«sii(p, p «) —((ss(p, («, «)s J «i, «((« i '«) «(« —
s (««i (s 9 '«) 1,7T)

~pp2 ~ ~pp
~rp

Xr j, jk(kr)&Py P P ~ ~s j, jk(k&)&Py P P~~Tjk(kr) ~
2 jk(kr), kr(~ j)~P PP P~~ g2&y3 ~

~jk2 r(kr2 j)
~)«p s2I 2)sp ~pp

Uij, jj(j)j)(»«» s ) ij«t(j( « ' ) ij, ij(2j)+ ij, ij{2l)(

K
i j(kl) l j(kr},kr(r j) p & f2 13 '

2~kr(r j) 7t /

(16a)

(16b)

(17)

In Eqs. (16), (ijk) takes the values (123), (234),
(341), and (412) for the kernels occurring in Eqs.
(15a), (15b), (15c), and (15d), respectively. In
Eqs. (17) (ijkf) takes the values (1234), (3412),
and (2341) for the kernels occurring in Eqs. (15e),
(15f), and (15g), respectively.

The partial wave analysis of Eqs. (15) is carried
out in the next section.

IV. ANGULAR MOMENTUM ANALYSIS

Let us assume that the four particles being con-
sidered are in a state characterized by the quan-
tum numbers I. and M for the total orbital angular
momentum and its third component, respectively.

The spins of the particles are not taken into ac-
count at present. Therefore, for s-wave two-body
interactions, we can. write

I.=T,+T,=T„
where l~, l„and l, are the angular momenta cor-
responding to the angular variables of the momen-
tum vectors p, q, and s, respectively.

Each of the equations (15) depends on two mo-
mentum vectors and the functions therein can be
expanded" in terms of the spherical harmonics
associated with the directions of the momenta. By
this method the set of Eqs. (15) can be reduced to
the following set of equations for the partial wave
components of Q and R,

+(12«31) ( jj)P««P)1) j2j «jj)t ('l« I s I])Ql li J, (P «'W )

2$8rh, + Nl ~+fm, / (2m,.m, ))a. ,p pq

rp rjrj 0 tq fmr, / (2mr, +ms))q')j e

(+( 1 )1j2(P2Pj)Z «1) «X+(12 ~)23& j(PZ«»P1)) 1 t l l (q«q « iZ)(~(t j 1 j(P «(I )

q+(1/2)s' &p&r

«js(12 31)jj)(P P3 1)+jZl (I ))1) j (»
p I{I (X/2)s't

q+fm&/ (mal+mr, ))s'
+-- d8 dK

2mr) p ~&-fm&/(m~+m~))s t

I

{pc1]2«) 2p( jPPQ««1) X(12«23)j3(P«P4«10 12j (1«s )2)+I (» «s ) «(18a)
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~ (23s 23 «1 (P t P5 t 2) l l j ' j '( f t q t K3)@l s 1 s L(p
P Pq'Pq P q

2m +m. q+[m / (2ms+mb)]q' pf~p
+ ' ' P dq'

' '
dp

I q- [m / (2m +mb) iq' t

X(X(23s34«jg(pttP6t 2) +X(23t42«jp(ptP6t 2))f jPj jf j (Vst'I t 14)Qj j2ss(p tq )

q+( / ) '
ds'

0 I q- (1/2)s' I

m+m q+ [me/ (ms+mb) 1s'
+ ' ' ds' dK

a 0 fq-[me/ (ms+mb) js'I

x[xt,„s,{P,t„)ztzs), {P,P;, z,)]q", , '(q, z', s,)2 '(z' s')I ((q)t)

p2 - p2
@jg«jqz(ptq) 2 34 3 23 2 Zl l I(pt f) t2 &34, 1 2 I"23,4

p2 p'
(), , (p, q)=q „(z,— z„z,—t q", , (p, q),

&41,2 2 ~12,3

1b 1 K ~ 2m + s+ [2m+ / (2mfl+mb) ]q
ply I

2Ã 2ll 34 - e )P)3 04m
) s-[2m+/ (2m+mb)3q'( 8

(18c)

(18d)

«(C j&«(s&f , )j'),C'. j,,(p', q')
P q P q

2m + m s+[2mb/ (2mb+ms))q2 ~g p

)P)4 0 js-[2mb/ (2mb+m )1q'J
P q &2

~12s 12( t 2) z3) 1'l' ( tq t 12)@jsjsdp t I )
P q Pq

(18e)

K I(2 t ~1

)P'(s, z)= „(z,— z„z,— q)"(z, z),
2&34

(18f)

(«C)

s++[(mff+mb)/(2mb+m ))q, p g
g (K, SJ=~ T23 Z7—2«1„2(m +m, ) ~, , ] -(&2 . , «y&,„, ,&,.[

s
q a

23(j(t z taj)K3js 1 ~ ( tq t 1 3)9js ls J, (P t f )

2m + s+[(ms+m b)/(2ms+m b)3q' p&~&

2(m, +m, ) fs-[(m +mb )/(2m +mb )3q I

Kg ~ js (st'I t 1 4)Qj ~ g ~ J, (P t f )
q p q

(18g)

Expressions for &2«' », 4«jj' j ~, and 0(j~ in Eqs. (18c), (18d), and (18f) can be obtained from those of

Q'j3«,z„gt'j, z and ft113.in Eqs. (18b), (18a), and (18e) respectively, by changing the subscripts of the par-
tial wave components X&„[j» 's, 't«&~«j«'s, and zj's according to the earlier prescription, given below Eqs. (15).

p,"s and «j"s occurring in the set of Zqs. (18) can be expressed as follows:

4m, (m, + m, )

m, (2m6+ m,),2 2m, (m, +m3)2 2 2(m, +m3)2

,
m3(2m, +m3) m6(2m, +m3)' (2m, +md(2m3+m, )
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4m, „4m, (m, + m,), m, + m,

(m, +mb)' „2m,(m, +mb)'
mb(2m, +mb) mb(2m, +mb)'

2m, +mb pr~ ma+mf, ~ ma+mf

m+m s''
2m++ mob

- z/z
q/2

"
m, (2mb+ m, ) „2m,m» 2mb

pp6p7, p,', z,', and v,'can be obtained by the replacement m, ™,in the expressions for p'„p'„p3p4

The functions If f f f. J f f and K', ,', ,', are defined by the expressions

I" ' (q q' g )=(4w)' '(2l'+1) ' 'P (-1)"" ""'(l Lp, —peal 0)

x (lb L g', —P
~
l,' lL' —g) Yf (3;,0) Y( '„'(3,', 0) Yg.„„.(8;,0),

't f '(q', s ', i),.) = (4w) (2L + 1) ' ~' Q (- 1) '& "(lg g, p ~
l, 0) Y*, „(p, , 0) Y~ (p,', 0),

&I,'~ )(s~, q', 1,)= (4w)(2l,'+ 1) ' g (- 1)'b ~ (lbL p, ', 0 ~l', p, ') Y,,~.(o';, 0) Y&.„,(v&', 0),

where
1 "'2m, + mf, ,~ mf,

[mb/(2m, + mb)] q+ q'1,
{[mb'/(2m, + mb)']q'+ q" + [2mb /(2m, + mb)] qq' r,)'~b

q + [m,/(2m, + m, )]q' g,cos3~ =
{q'+ [m '/(2m, +mb)'] q'b+ [2mb/(2m, +mb)]qq'g J' '

1 2m ™bu gb 2 mb pb

qq' 2mb 2(2mb+ m, )
E', = cosO, =

[m, /(2m, + mb)] q+ q' 1b

{[m,b/(2m, + mb)']q'+q" + [2m, /(2m, +mb)]qq' g,j' '

q+ [m,/(2m, + m, )]q'1,
{q'+ [mb'/(2mb+ m, )']q'b+ [2mb/(2mb+ m, )]qq' g,) b~b

1
1)i= cospi= i [—K +ps +q ]

—[2m, /(2m, + m, )]q+ s'q,
{[4m,'/(2m, + mb)']q'+s" —[4m, /(2m, gamb)]qs' tj~]' b

—[(m, +mb}/(2m, + mb)]q+ s' p,
{[(m,+mb) /(2m, +mb) ]q +s"—[2(m, +mb)/(2m, +mb)]qs'0, )'~'

t 1
h

1 ma™aI ra m i2=—coso' —S j-sq' 4m, 2m + m~

{s+[2m, /(2m, + m, )]q'1,}cosa,' =
{s'+ [4m '/(2m, +m )']q"+[4m, /(2m, +mb)]sq'1, )' '

—= coso =, {[(2mb+m,)/2(m +mb)](p" s') [(m, +mb)/2(2mb+m, )]q"),1



H. ROY-CHOUDHURY, V. P. GAUTANI, AND D. P. SURAL l6

-fs+ [(m,+m~)/(2m~+ m, )]q'1 j
(s + [(m, +m~)'/(2m~+ m, )']q"+ [2(m, +m~)/(2m~+ m, )]sq' 1 ]'~'

By the mutual replacement of m, and ~, in the
above expressions for cos(9„COSB» COSB,') cos8„
COS'3~ ) COS32 ) Cosp~ ) Cosp~ ) Cosp~ ) Cosp~ ) COS01

cosgg cos03, cosa,', one can get the corresponding
expressions for cos93 cos33 cos3 cos84 cos94,
COS34) COS p3) COSp3 ) COS]84) COS p4) COSO'2 ) COSO'2

coso4, coso,', respectively.

V. DISCUSSION

The infinite set of coupled integral equations (18)
in two variables are the relevant equations for
investigating the bound states of a four-particle
system consisting of two distinct pairs of identical
particles. For a system consisting of nucleons and

hyperons, we have short range forces to deal with

I

and it will be sufficient to consider a finite number
of equations from this set. Since we are consider-
ing s wave interaction between any two particles,
we note, in particular, that for a four-body state
with L = 0, contributions can come from states
with l~ and L, equal. In this case, it will not be a
bad approximation to consider the Eqs. (18) with

l~=l, =0 only. Even then, we have to solve a set
of seven coupled integral equations in two vari-
ables while in case of four identical particles"
the corresponding number of equations is two.
In practice, therefore, one has to make some
further approximations for the three-particle
amplitudes. In a future work we shall use one
such approximation to our Eqs. (18) for studying
the bound states of some physical systems.
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