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Control of repulsive core regularization
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It is shown that when a potential V(r), which is local and repulsive for small r and singular at r = 0, is
truncated into a potential bounded by V(&) where e is small, the corresponding two-body binding energy
E(e) differs from the exact binding energy by less than (const) &([V(e)] '". A variational procedure is .

derived from this result.

NUCLEAR STRUCTURE Singular repulsion cutoff parameter is variational
parameter for modified Rayleigh-Ritz principle.

I. INTRODUCTION

The two-body potentials which are most often
used in molecular and nuclear physics contain
frequently, in addition to the usual centrifugal
barrier, a strong repulsion at short distances.
Such potentials, which are implicitly assumed to
be local in the repulsive inner region, are chosen
either as infinite hard-core potentials [ V(r) =+ ~
when 0&r&a] or as singular potentials which tend
faster towards + ~ than the centrifugal barrier
I (I + 1)r ' when r 0[m-ore explicitly, r'V(r)

y aa]

Powerful methods' ' have been developed for the
handling of the radial (two-body) Schrodinger equa-
tion containing such singular potentials. Several
among them consist in making a specific choice of
a family of regular potentials V, which depend on a
regularizing parameter E& 0 in such a way that V,
—V when &- 0. The solutions of the Schrodinger
equation for V, must then be shown to converge, '4
in some sense, to the solutions of the initial Schro-
dinger equation (that containing V) when &-0.

The purpose of the present paper is to estimate,
in a special case of broad interest, the behavior of
the two-body ground state binding energy E(e) cor-
responding to V, . It will be shown that E(e) can
become nearly constant when & becomes small with
respect to a typical range parameter of the prob-
lem. Physically, this amounts to proving that a
singular repulsive potential may be truncated into
a regular potential without inducing big changes in
binding energies.

The special case under consideration is defined
in Sec. II, where a few preliminary results are
also established. Then Sec. III is devoted to an
estimate of the behavior of E(e) as a function of

A short discussion and a very simple numerical
application are given in Sec. IV. Generalization

and improvement of our results are proposed in Sec.
V. A variational procedure is established in Sec.
VI and we conclude in Sec. VIL

II. DEFINITIONS AND PRELIMINARY RESULTS

The (real) potential considered here is assumed to
be local and positive in an "inner region" defined
by 0 &r & a, where ~ is the distance between the
two particles under consideration. The radial
Schrodinger equation reads, with proper units
(I'/2 ih = 1),

g "(r)+ [V(r) —E]((r) = — W(r, r') g(r')dr',

where P, g', V, and W are, respectively, the
radial wave function (multiplied by r, as usual),
its second derivative, the local part of the po-
tential (including the centrifugal barrier, if any),
and the nonlocal part of the potential. It is as-
sumed that W(r, r') =0 when r&a (and r'&a), in
order to restrict the Schrodinger equation to a
purely dhfferehhtial equation in the inner region.
Qnly that region will be considered in the follow-
ing, and the right-hand side of Eq. (1) will thus
be replaced by zero. It is further assumed that, in
the inner region, except for r= 0 where V(r) is
defined as diverging, the positive function V(r) is
finite and has a first derivative V'(r). There is no
need at the present stage to assume that V(r) is a
monotonically decreasing function of r in the whole
inner region, although this additional property is
fulfilled in many physical situations.

All the above assumptions, namely inner local-
ity, positivity, and existence of the first-order
derivative, are satisfied by most practical cases
in the literature. It is then useful to consider the
family of regular potentials V, defined by
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V, (r) = 8(e —r) V(c)+ 8(r &)V(r), (2)

where 0& & & a and the 8 function is the usual step
function [8(x)= 0 or 1 whether x& 0 or x&0, re-
spectively]. From Eq. (2) and Fig. 1 it is obvious
that, as an operator, V, converges towards V
when & -0. A straightforward differentiation of
Eq. (2) with respect to e defines the operator
dV, /dc by

v(~j (

It is now assumed that Eq. (1) has at least one
bound-state solution (normalized to 1) and that the
same holds for the regularized equation

P"(r)+ [V (r) E(e)] g (r)

W r r' , r' dr'. 4
a

Since V, - V when&-0 and since Vis repulsive, then
both g, and E(c) are expected to converge"~ to
wards P and E, respectively, except maybe for
very pathological potentials. Such a convergence
will be admitted here and the point of interest will
rather be the behavior of E(e). Since the normali-
zation condition (g, ~g, ) =1 implies (g, ]dP, /de&
+ (dg, /de

~ g, &
= 0, it is trivial to show that

—
d, (~)-=—„, (4. (H. )4.&=(4. ( d,

' (4. &, (5)

where H, is the Hamiltonian from which Eq. (4) de-
rives. The purpose of the coming section is to
prove that the derivative of E(&) can be controlled
as a small number.

III. AN UPPER BOUND FOR THE REGULARIZATION
ERROR

From Eqs. (3) and (5) one obtains

( )=V'()I()dE

where

We are interested in finding an upper bound B(e)
to I(c). If the product

~
V'(e) ~B(e) can be inte-

grated, then E(e) is an approximation to E with at
most an error given by

V (~ ) ( B(~ ) d~i.

If V(r) is a monotonic function of r (and thus a
decreasing function), the left-hand side of inequal-
ity (8) can be written as E —E(e), without the ab-
solute value symbol.

FIG. 1. The regularized potential V, (r) (heavy line)
and the initial potential V(r) (thin line).

g, (r) =A sinh[k(e)r], (10)

where A is a suitable (and positive) normalization
factor and g, has been chosen as real and positive
near the origin. Furthermore, when E &r & a, it is
clear that the curvature of g, (r) serves to increase
g„because Eq. (4) reads

P~(r) = [V (r) E(a)] P (r), (4')

which means that g,"(r) and it, (r) have the same,
fixed (positive) sign in the whole inner region since
V, (r) and, a fortiori, , V, (r) —E(t), are positive.

The first-order derivative $1(r) is thus a mono-
tonically increasing function in the whole inner
region, which yields, when & &r & a,

g(r) & g(e) =Ak(e) cosh[k(e)e]

and

g, (r) &A(sinh[k(c)e ] + (r &)k(&) cosh[k(c-)c ]j .
(12)

The obvious meaning of Eq. (12) is that P, (r) is
larger, when e & r &a, than the linear extrapola-
tion which is provided by Eq. (10). These two
results, Eq. (10) and inequality (12), are closely
connected to the restriction of Eqs. (1) and (4) to
pure differential equations, and provide the basis
for the proof of an upper bound, which follows.
An illustration of the argument is given in Fig. 2.

Since P, (r) obviously extends beyond r = a, the
normalization condition for this wave function
gives

As will be shown below, the bound B(e) is ob-
tained from the fact that Eq. (4) is a pure dif-
ferential equation in the inner region. Indeed, when
0& r& e, one obtains from Eqs. (2) and (4)

g(r) =k'(c)g, (r), (9)

where k(e) = [V(e) —E(& ) ] ' '. Hence, when 0 & r & e,
the wave function is given by



16 CONTROL OF REPULSIVE CORE REGULARIZATION

6 a

{(,3(r) dr & P(r) dr+ $,3(r) dr

&A' sinh3[k(e)r] dr+
a

{s'nh[k(a)c] + (r —a)k(t) cosh[k(ala]]'dr) .

After explicitly performing the integrals which are
present in inequality (13}, one gets (19)

A &
1

3(&)+j(e) '

where

i(e) = [4k(e)] 'fsinh[2k(t)e] —2k(a)e)

and

(14)

(15)

where the constant C = —,
' (a- ]I) ' is a parameter

depending on the physical system under consider-
ation.

In the special case where V(r) is a monotonically
decreasing function of r, insertion of Eq. (19) into
Eq. (8) yields, for &=3i,

j(e) = (a —&) sinh'[k(q)g]

a 2

+ k(e) sinh[2k(E)e]
2

&E=3(a—r[) 3[V(q)] ' '.
IV. DISCUSSION

(20)

a g 3
+ k (6) cosh [k(E)&] .

3 (16)

Now, the quantity f(e) under study is, as defined
by Eq. (7), nothing but A3f(e). Therefore, Eq.
(14) yields

which provides the desired upper bound. Actually,
from Eqs. (15) and (16), it is trivial to simplify
inequa, lity (17) to

I(a)& 3 [k(e)(a —~)) '
& B(e) -=3 (a —c} '[V(c)] ' '. (18)

The final result is thus, provided 0 & & & g, where
g is any arbitrary positive number smaller than a
( 0&&t)a),

It will be noticed that the mathematical argument
which has been used in Secs. II and IQ is not re-
stricted to singular potentials. The basic in-
equality (19) holds whether V diverges faster than
r ' or not. Even when V is finite, inequality (19) is
valid. Furthermore, inequality (19) holds whether
one deals with s waves or higher partial waves (the
centrifugal barrier being included in V).

It will also be noticed that all bound states, and
not just the ground state, fulfill the properties
leading to inequality (19). This is because the
argument employed in Secs. II and III makes use
of simple properties of the differential equation,
Eqs. (4) or (4'), which make no difference between
ground state and excited bound states.

The result which has been obtained appears
therefore to be of rather general value. However,
it is really useful only when V(r) diverges fast
enough, as suggested by inequality (20). A brief
numerical estimate is in order. Typically for nu-
clear physics, in the case of a cluster model with
two heavy ions, one may consider parameter val-
ues as a = 2[7 = 6 fm, V(]7) = 400 Me V, it '/2 p=4 fm'
MeV, leading to 4E= 0.05 MeV, which is a grati-
fying accuracy. For lighter ions, however, typical
values such as a = 2g = 2 fm, V(]7) = 400 MeV,
0'/2 g = 10 fm' MeV, yield &E = 5 MeV, which is
not a sufficient accuracy for the regularization
procedure.

V. FURTHER DISCUSSION

FIG. 2. The areas defined by the square of $,(r) when
0 &r «and the square of the linear extrapolation of $,(r)
from r=~ when' &r&a add up to less than 1.

A first question to be raised is whether a smaller
upper bound than that given by inequalities (19) and

(20) can be found. It is known that a, singular re-
pulsive potential V(r) generates a wave function

g(r) which decreases near the origin as
exp(- [V(r)] ' 3j. Such an exponential decrease of
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the wave function indicates that inequality (20), al-
though fairly satisfactory since it contains
a[V(e)] ' ' decrease, might still be very weak and
could be improved towards a stronger (exponential?)
decrease. Indeed, a stronger decrease would
help in reducing the orders of magnitude of 4E
which were estimated at the end of the previous
section and it would thus allow a stronger cutoff
of the potential.

Since accurate numerical procedures are avail-
able for solving Eq. (4 ), it is interesting to use
them and obtain "exact numerical" values of
E —E(e). Just to give an example, we have con-
sidered a two-nucleon s-wave with a potential

H= T+ Vx~ (21)

and becomes, after regularization,
N N

H, =g T, + P V,(r;&}. (22}

The analog of Eq. (5) reads

d, (~)= g&tj,
I d, '(r&, ) Itj.), (23}

which, because of the symmetry of V, and the anti-
symmetry of P, in the particle coordinates, re-
duces to

1 exp( v/r)
r r „(.)=-'N(N-1)&s.

I „,'(r,.) It.), (24)

with A = 2.8 MeV fm, B= 31.8 fm ', v = 0.7 fm ',
and 5'j2g= 41.54 MeVfm'. Besides being singu-
lar this potential is fairly realistic, since it has a
Yukawa-like tail taken from the one-pion-ex-
change potential. As shown by Table I, the dis-
crepancy E —E(c) does not exceed a few MeV or
tenths of an MeV for reasonable cutoff. This is
a much more gratifying order of magnitude than
that obtained at the end of the previous section.
Other numerical examples which have been tested
give similar accuracy.

A second question is whether a similar result
could be developed for nonlocal potentials. It is
clear that a potential function O(r, r') 'which would

be positive for r& a (and r' & a) and which would

have a small and finite nonlocality (g(r, r') = O if

I
r- r'

I
& X, where X «a), would preserve the

main properties of positivity which have been used
in Secs. II and III.

A final problem to be solved is whether a gen-
eralization of inequality (19) can be found for the
many-body problem with, say, N identical parti-
cles. The Hamiltonian is now, in a familiar no-

tation,

where only the contribution of one particle pair ap-
pears. One may conjecture that the matrix element
on the right-hand of Eq. (24) is again bounded by
the same upper bound as that shown by inequality
(19). A most likely conjecture is thus, with

0(E &g&a,

(~) &2 (a —n) ' 2N(N-1) IV'(~)I[V(e)] "'
(25)

A rigorous proof of this conjecture would demand
an. analysis of the properties of partial derivative
equations in a region of strongly repulsive po-
tentials. Only a physical, and intuitive, argument
is offered here: since the particles strongly repel
each other at short distances, the occurrence of
more than two particles in a narrow neighborhood
is statistically unlikely, and therefore one may
suspect that an approximation, which assumes that
the contribution to Eq. (23) of each pair is the same
as if the pair were independent, is likely to be
valid. If furthermore saturation properties hold
for Eq. (23), as they do for the total binding en-
ergy, the coefficient 2N(N- 1) in inequality (25)
might even be too large and might have to be re-
placed by a smaller (linear?} coefficient.

TABLE I. Discrepancy E—E(&) for the potential
chosen in Sec. V. The "exact" binding energy is E
=-2.22 MeV. There is only one bound state.

VI. VARIATIONAL PROCEDURE

V(e)
(MeV)

800
400
200
100

50

(fm)

0.372
0.405
0.435
0.459
0.476

E—E(e)
(MeV)

0.91
1.5
2.2
2.8
3.3

In this section, it is assumed that, when 0& r&g,
the potential V(r) is a monotonic decreasing
function of r. The operator H, [defined by Eq. (22)]
is then a decreasing function of &, and the eigen-
value E(e) corresponding to the ground state is
also a decreasing function of z. If Q is any trial
wave function for the ground state of the N-body
problem, a most traditional variational principle
reads
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(26}

E=sup, E(s}, 0&(.&ri, (2V}

&4'{E.i 4)

Since E(s}decreases when (. increases from 0
to q, the ground-state energy E for the initial
Hamiltonian defined by Eq. (21) is

q, does not seem to follow from a variational
principle. )

It is possible to transform Eq. (28) into a useful
variational principle, provided a counter term
FQ) is added to E(c). Let 34(e} be an upper bound
to the modulus of the derivative dE(a)/d(. and de-
fine

provided, of course, that convergence is assumed.
Insertion of Eq. (26) into Eq. (2V) readily gives

F(c) JM=(a') ck'.
0

(29)

&4 ~&. ~4)E=sup, inf
&

', 0&s &q, (28)
Since, under the condition of convergence of E(t)
towards E when E- 0, which was admitted above,
one may write

which clearly means that one must fA st minimize
with respect to the trial wave functions and then
maximize with respect to the regularization
parameter. As shown more explicitly in Fig. 3,
the double variational principle defined by Eq. (28)
is of little value, for it may lead to very poor upper
bounds of E. Qne might then suggest using Eq.
(26), rather than Eq. (28}, provided s is taken to be
any "reasonable" value p„ to be selected by a
suitable criterion which has yet to be defined. As
shown in Fig. 3, it is clear, however, that the
upper bound of E(g,} can be anything, and might
even be a lower bound of E. (When the cutoff is
nonmonotonic, there may exist a value z, which
gives the exact result, as for the separation dis-
tance method of Moszkowski and Scott.' But this

+HP ii

(30)

the very definition of M(e) as an upper bound of
-(dE/d&)(&) yields

E ~& E(t)+F(t ) . (31)

Furthermore, F(a} vanishes when &-0, and Eq.
(31) can be written as

E=inf, [E(e)+F(e)], 0«&q.
Insertion of Eq. (26) into Eq. (32) yields

(32)

E=inf, ~ (~'~) +F(a), 0&a&g, (33)

which means that one must minimize twice: (i)
with respect to the trial function, and (ii) with re-
spect to the regularization parameter. Both mini-
mizations can be dealt with in an arbitrary order,
which is an important advantage of Eq. (33) with
respect to Eq. (28).

As illustrated by Fig. 4, the variational principle

Co?
~Ha+ii
+F(a}

FIG. 3. The lower curve is the plot of the ground-state
energy E(&) of the Hamiltonian &,. The upper curve is
what can be obtained at best from the minimization of
(&,) with respect to trial functions Q which, in practice,
span only a very limited subspace of the Hilbert space.
The trajectory with single arrows is that suggested
ideally by Eq. (28). The trajectory with double arrows
shows how, in practice, a minimization with respect to
Q might give an unexpected lower bound to the exact en-
ergy and how it becomes meaningless to maximize with
respect to ~.

FIG. 4. The lower and upper curves show the result of
an ideal and practical minimization, respectively, of
+~) +E(&) with respect to Q. Then minimization with
respect to E gives as ideal and practical termination
points, respectively, the values E and Eo which are
close to each other and satisfy E &Eo. An optimal cutoff
parameter &0 is thus defined, while it had to be guessed
in Fig. 3.
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defined by Eq. (33) is much more convenient than
that defined by Eq. (28). However, the value e,
for which the minimum is reached does not necess-
arily define an obvious best "effective" interaction
V, , since it is the sum of the expectation value

0
(H, ) and the counter term F(e ) which has been
minimized. Nonetheless, the value &0 is likely
to define a reasonable effective interaction. Sim-
ilarly, the wave function P, for which the minimum
is reached might be a tolerable approximation to
the exact ground state.

If the conjecture of inequality (25) is verified,
Eq. (33) becomes

[(0 IH, I P)

(34)

Qne may also conjecture that a reasonable counter
term is obtained by multiplying by —,

'
N(N 1) the

"exact numerical" two-body counter term, such as
that shown in Table I for the potential considered
in Sec. V. If there are several bound states, there
will be as many two-body counter terms, and one
might select the largest one.

VII. CONCLUSION

t

The main result of this paper is the possibility
of having a variational principle with regularized
Hamiltonians H, derived from an initially singular,
local interaction V which is repulsive at short
distances. Such a result has been achieved through

the introduction of an additive term F(e) which
(over)compensates for the shift of the binding en-

ergy due to the regularization of potential.
An estimate of the counter term has been rigor-

ously derived in the case of the two-body problem.
It leads to a reasonable conjecture for the case of
the N-body problem.

While most of the literature of singular potentials
deals with two-body scattering and some of the
literature with two-body bound states, there seems
to be only few papers in which the study of N-body
bound states generated by singular potentials is
undertaken along the same mathematical lines as
those used for the two-body problem. It is well
known' that the influence of a singular potential on
the behavior of phase-shifts at high energies is
very strong. As suggested by the present work,
and especially the fast decrease of [V(a)] '~' when
e- 0 in inequalities (19) and (25), the binding en-
ergies may be less affected, and the problem of
bound states with a repulsive singular potential
seems to be reducible to the one with a regular
(truncated) potential, at the cost of a small error
only.
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