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The question of validity of the pairing-plus-quadrupole model to well-deformed nuclei is examined. The
calculated energy levels, B(E2) values, E2/M1 mixing ratios, and electromagnetic moments are compared
with the experimental values of '"Gd which is used as a test case. In particular, the structure of the second
excited K = 0 band and the K = 4 band are examined in terms of model wave functions. For the sake of
comparison and discussion, some results are also given for '"Gd.

NUCLEAR STRUCTURE ~56Gd—calculated level energies, B(E2) values, quadru-
pole moments, magnetic momerjts, E2 and Ml matrix elements, 6(E2/Ml), p~,
y~. ~54Gd—calculated B(E2) values. Comparison with experiment whenever

possible.

I. INTRODUCTION

The rotational model of Bohr and Mottelson'
provides an excellent starting point for analyzing
and studying nuclear spectra. However, the model
including small amplitude vibrations fails to ex-
plain the decay characteristics of low energy levels
in rare-earth nuclei (see, e.g., the review by
Hamilton' ). This is especially true for the P-
vibrational band. Furthermore, the second E '
= 0' vibrational bands observed in these nuclei
have characteristics different from those of the
first 0'- (or P-) vibrational bands which are not
understood in terms of the phenomenological mod-
els. A microscopic treatment of the problem is
considered necessary for gaining more insight in-
to the structure of these nuclei.

The pairing-plus-quadrupole model in the time-
dependent-Hartree-Bogolyubov picture developed
by Kumar and Baranger'~ has provided a deeper
understanding of the shape transitions from prolate
to oblate' and spherical to deformed4 around the
A = 150 and 200 regions. These studies have pro-
vided a detailed understanding of the decay char-
acteristics of the P-vibrational and y-vibrational
bands in the transitional nuclei of this region.

It was proposed to test the applicability of this
microscopic approach to somewhat more deformed
nuclei. The spectra of the Gd nuclei present a
good opportunity for such a test since these nuclei
span the region from nearly spherical to well-de-
formed nuclei. As one moves through the even-
even Gd nuclei, the P, y, and the second 0' bands
cross in energy. While the P and y bands cross
each other in '~Gd, the second 0' band also comes
down quite low in "Qd. Yet, the 0' barris mix

very little. ' Thus, these nuclei provide some of
the most interesting cases for testing the micro-
scopic theory mentioned above.

Some preliminary results of such a study were
presented earlier. ' Detailed results for "'Gd are
presented below along with some results for 'MGd.

Detailed results for "~Gd will be presented in a
subsequent publication.

The microscopic theory is reviewed briefly in
Sec. II. Our choice of theoretical parameters, the
calculated results, and comparison with experi-
ment are discussed in Sec. IG. Summary and con-
clusions are given in Sec. IV.

II. THEORY

A detailed account of the Kumar-Barmger meth-
od of treating the pairing-plus-quadrupole model
can be found in the recent review by Kumar. ' Sa-
lient points of the theory are repeated here briefly
for reference.

An ideal microscopic theory of collective motion
differs from a phenomenological collective model
in that the parameters of the collective Hamiltonian
are derived from a microscopic theory, instead of
being taken from experiment. The Kumar-Barang-
er theory is a semimicroscopic (or semiphenom-
enological) one since although the potential and
kinetic energies of collective motion are calculated
via some lengthy. integrals over the nucleon co-
ordinates, the calculated energies have to be re-
normalized via two parameters (see Sec. HI). How-
ever, the number of these parameters is much
smaller than that required in a purely phenomeno-
logical approach.

In the Kumar-Baranger theory, one starts from
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a spherical-shell model Hamiltonian (an oscillator
potential including l s and l' terms) and takes into
account the two most important residual-two-body
interactions coming from the long range quad-
rupole force and the short range pairing force.
Thus, the pairing-plus-quadrupole model Hamil-
tonian is written as

IIc = V(p, y) + 7,+ T„b, (2)

Hp p~ =H~+ Hq+Hp,

where H» is the spherical-shell Hamiltonian; H~
is a Q. Q interaction with J=2, T=O; and H is a
pair-pair interaction with J=0, T =1.

The eigenvalues of H», the spherical single-par-
ticle (s.p.) energies, are the input parameters of
the theory (same values are used for a certain
region except for an overall A-dependent factor}.
The calculation is bmited to the two outermost
oscillator shells, two for neutxons and two for
protons. Effects of the nuclear core are taken in-
to account via a renormalization method. ~

The PPQ Hamiltonian of Eq. (1) is solved via a
time-dependent-Hartree-Bogolyubov method. This
leads to three main steps of the calculation.

(i) A Nilsson transformation is performed from
the spherical s.p. basis to a deformed s.p. basis.
A quadrupole deformation potential depending on
the nuclear shape variables P and y is added to
H~, and the resulting Hamiltonian is diagonalized
in the spherical basis to obtain the level energies
g, and the eigenvectors (nfjm ~i}. Two calcula-
t' pe f d, f p t d f
neutrons, for each set of P and y.

(ii} A Bogolyubov-Valatin transformation is per
formed from the deformed s.p. basis to a deformed
quasiparticle basis. For each (P, » set, two BCS
calculations are performed to get the energy gaps
(n,) and the u and v factors for protons and «r
neutrons. Strengths of the pairing force, G~ and

6, are taken from previous fits to odd-even mass
differences. '~

The expectation value of H»z with respect to the
deformed-zero-quasiparticle state (often called a
BCS state) gives the potential energy of deforma-
tion, V(P, y).

A second order, time-dependent perturbation due
to the dynamics of co11ective nuclear motion gives
corrections to the energy calculated as described
above. These corrections are identified as the
kinetic energy of collective motion and the total
energy is expressed as a semiclassical, collective
Hamiltonian

T„,= ,'&—„(P,~)P '+ &,„PP~+5 &,„(P,»P '~'

Expressions for the three rotational moments of

inertia 8, and the three vibrational mass param-
eters 8», B~„, and B„„have been given previous-
ly. ' In addition to these six kinetic functions and

the potential function mentioned above, we calcu-
late microscopically the expectation values of six
operators needed for determining the electromag-
netic moments, transition probabilities, and the

mixing ratios. These six operators consist of one

monopole operator (r'), two quadrupole operators

(Q», Q», }, and three gyromsgnetic ratio operators

(z,}.
All 13 functions are computed for each point of a

P-y mesh consisting of 92 points.
(iii) The collective Schrodinger equation, de-

pending on the quantized form of the Hamiltonian
of Eqs. (2)-(4}, is solved via numerical methods'

in the basis

+.i~ = Q ~.rs(p»@~a«s ~»

where I is total angular momentum of the nucleus;
M and E are the projections of I on the lab-z axis
and intrinsic-z axis; a = 1, 2, . .. , denotes the first
second, . .. , level (in order of increasing energy)
with the same I; 4„~ is a symmetrized sum of the
D functions depending on the Euler angles P, 8,
and 4. Since the functions C ~» are known (they
can be viewed as generalized spherical harmonics),
the numerical method mentioned above yields the
"vibrational" wave functions 4 I~. Note that be-
cause of symmetry conditions, we have Z
=0, 2, ..., I for I=even and K=2, 4, . . ., (I 1) for-
I= odd.

III. CHOICE OF PARAMETERS AND RESULTS

A. Parameters

As pointed out above, since only two harmonic
oscillator shells are used for protons and neu-
trons, corrections have to be made for the nu-
clear core contributions. An improved method
of including these corrections, as discussed by
Kumar, ~ is employed here. All the calculated
kinetic functions are multiplied by an inertial re-
normalization factor I'~. The potential function
depends on one fitting parameter, the quadrupole
force strength X. These two parameters are de-
termined by fitting the experimental energies of
the lowest 2' and 4' states.

The two parameters are somewhat interdepen-
dent and are not determined uniquely. We make a
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compromise by first varying y so as to fit the
ratio E4/E„and then varying Fo so as to fit the
absolute values of the excitation energies. In so
doing, we obtained y=68A ' MeV, E~=2.3 for
'"Gd; and y=70A ' MeV', F~=2.4 for '~Gd. The
corresponding values were 70 and 2.8 for4 "'Sm.

The two-dimensional collective wave functions,
A zr of Eg. (5), are expanded' in a basis of ana-
lytic functions depending on two range parameters
b„and b, . These two range parameters are deter-
mined by minimizing the ground state energy.

The effective charge parameter is taken from a
previous fit to the known B(E2;0-2}value for
152sm

TABLE I. Level energies, P~, y~, quadrupole mo-
ments (QM), and magnetic moments (MM) for '56Gd.

Level
I

Energy (MeV)
Expt. Theo.

Present theory
QM MM

p~ &~ (e b) (p~)

0.0 0.0
0 ~ 089 0.087
0.288 0.283
0.585 0.569

g band

0.273
0.276
0.281
0.287

P band

12.9
12.8
12.4
12.1

0.0
-1.88
-2.42
—2.68

0.0
0.82
1.63
2.44

1.049 1.234
1.129 1.419
1.298 1.618

1.887

O.281 9.6 O. O O. O

0.301 9.2 —1.78 0.78
0301 103 -219 156

B. Level energies

Energies of the calculated levels (v=+ ) of "'Gd
are given in Table I. Grouping of the calculated
levels into the five bands is based on the largest
K component of the calculated wave functions, and
on the decay characteristics of the levels.

Comparison with experiment" shows that the
energy of the 6' state of the ground state band
(6 ) is reproduced within 2/o. The P- and y-vibra-

tional bandheads are higher by 0.18 and 0.38 MeV,
respectively. The y-band spread is given correct-
ly, but the P-band spread is slightly larger. En-
ergy of the second 0' vibrational bandhead, and
the bandspread, are higher by a factor of 2. The
K'=4' bandhead lies at about twice the experimen-
tal energy, but the band spread is reproduced cor-
rectly. It is, of course, possible that the experi-
mental second 0' and K'=4' bands are not of the
same origin as those calculated.

C. P, „y, „quadrupole and magnetic moments

Values of these four quantities include the ef-
fects of the dynamics of nuclear motion since they
are obtained by summing the matrix elements of
the appropriate operators over all points of the
P-y mesh.

Table I shows that while the P, values are re-
markable in their similarity (variation over dif-
ferent members of all five bands is &20%), the

y, values show much more variation (3' to 22 ).
Comparison with a similar calculation for'" '"Sm (Tables 1 and 2 of Ref. 4) shows that the
increase of P, with I becomes slower as one
moves towards the middle of the deformed region.
Thus, in the case of excitation from the g.s. to the
first 2' state, there is a 13%%d increase in P, in
'"Sm, 3% in '"Sm, but only 1% in "'Gd. The cor-
responding increase in P for excitation to the

Oo state is 13/o for '"Sm, 10% for '~Sm, and 3%
for "'Gd. These results provide concrete justifi-
cation for classifying "'Gd as a well-deformed
nucleus which is quite rigid against P vibrations
or centrifugal stretching.

A similarly reduced variation in y is ob-
served in "'Gd both with rotation (increase of I
within the same band} and with vibration. Effect
of the centrifugal term proportional to Is'/II, =K'/
y' in increasing the average value of y, , with K
is quite evident in Table I.

The spectroscopic quadrupole moments are
given in the rotational model by

0
2
4

i.154 1.531
1.248 1.606
1.355 1.762
1.507 1.874

1.168 2.275
1.258 2.586
1.462 2.833

1.511 2.989
1.623 3.095

y band

0.275
0.277
0.283
0.282

19.8
18.2
19.6
19.0

1.65
0.0

-1.17
-1.46

0.79
1.21
1.62
2.04

0' band

0.300 3.4 0.0 0.0
0.289 5.1 -1.68 0.79
0.323 8.2 —2.04 1.55

4+ band

0.282 22.4 2.66 1.57
0.301 18.7 0.02 1.98

3K 2 —I(I+ 1)Q'"= (I+ 1)(2I+3) Q (6)

where Q, is the intrinsic quadrupole moment.
Variations in the magnitudes and signs of the cal-
culated Q~ (see Table I) are given largely by Eq.
(6). But the deduced Q, values increase slightly
with spin for the g and y bands, and decrease by
about 5/o for the P and 0' bands. Our calculated
value for Q(2 ) is in reasonable agreement with
experiment" (see Table IO.

The spectroscopic magnetic moments are given
in the rotational model by

See Refs. 8 and 9.
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where g is the intrinsic gyromagnetic ratio, or the
g value. From Table I, one sees that the calcu-
lated g values show &5/g variation with rotation
(I) as well as vibration (different bands).

This variation as well as the absolute values of
the magnetic moments agrees well with experi-
ment' "for the 2', 4' members of the g band
(Table II}. In the case of the 4' member of the
K'=4' band, our value is smaller by a factor of
2. However, this disagreement is perhaps not
surprising in view of the fact that Weitsch and
Walter" called this state a two quasiparticle state
with the structure [411k]~[4130]~.

I
Z

00

2

0

- 0.4 -0.2 0 0.2 0.4
DEFORMATION

K=O

—
y K=O

EXPT. ~~ THEO.

156Gd

0.1 0.2 0.3 0.4

FIG. 1. Contour plot of the potential energy of Gd.
The lowest minimum occurs for a prolate shape (P=0.27
7=0').

D. Shape dependence of the potential function
and the mass parameters

Figure 1 gives a contour plot of the potential
function V(P, y), for "'Gd. The equipotential
curves have the (P —P,)' variation expected for a
well-deformed, axially symmetric nucleus of pro-
late shape at small values (P —P,). The asym-
metry in the curves is partly due to the y depen-
dence of V(P, y) and partly due to higher order
terms in (P —P0).

Plots of V(P, y) vs P for different fixed values of
y are shown in Fig. 2, where the calculated and the
experimental levels are also plotted. The lowest
potential minimum occurs for y= 0 (prolate) at
P = 0.27, and is 4.5 MeV deep relative to the
spherical maximum. Compare this with the value
1.2 and 3.1 MeV in "Sm and '"Sm, respectively.
The calculated ground state (g.s.) of "'Gd lies at
2.0 MeV above the potential minimum (i.e., the
energy of zero-point motion is 2 MeV), which is

FIG. 2. Plots of V (P, y= fixed) vs P and the energy
levels of Gd. Level energies are normalized to the
calculated ground state energy (shown with a dashed
line) which includes the energy of zero-point motion.
Note that the potential minima for P & 0 are not true
minima but saddle points, being maxima in the y direc-
tion.

2.5 MeV below the spherical barrier and 1.6 MeV
below the oblate barrier (a saddle point, being a
local minimum in P and a maximum in y).

Of the calculated five bands, four lie below the
spherical energy, further demonstrating '"Gd to
be a well-deformed nucleus. The calculated en-
ergies agree quite well with experiment except
for the discrepancies noted above.

The P and y dependences of the mass parameters
[Bz~,Bz» and B» of Eq. (4)] and the moments of
inertia [8„8„and8, of Eq. (3)] are quite dif-
ferent from those of V. They affect the collective
motion in many important ways. For example, a
sharp maximum in the mass parameters can pro-
duce a local wave function maximum even in P and

y regions where no potential minimum exists. The
nucleus can lower its total energy not only via its
potential energy but also via its kinetic energy.
For the sake of abbreviation, we give only the con-
tour plot of BB&(p, y} in Fig. 3 (see Ref. 7 for more
complete plots). But for the sake of discussion,
we give below the main features of the P and y
variations of all three mass parameters.

The three mass parameters depend on P and y
quite differently. While B„„varies slowly, the
function B@,varies by a factor of 5. Although the
variation in B~~ is small for P & Po (y& 30 ), a steep
minimum occurs at P =0.3, y= 0 and the maximum
value is obtained for an oblate (y=60 ) shape. As
regards B~„, it is small near the prolate, oblate
edges (since the symmetry conditions make it
vanish along these edges'). But BB„becomes as
large as &» and B„„aty-30 and p&p, .
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0.1 0.2 0.3 0.4 O.S~=o 0.1 0.2 0.3 0.4 Osl=o

FIG. 3. Contour plot of the P-vibrational mass pa-
rameter of sad. This mass parameter is not simply a
constant, independent of p and y, as assumed in most
theories of collective motion.

FIG. 4. Contour plot of the ground state wave function
of ~MGd. Although the maximum occurs near the poten-
tial minimum, the wave function is spread over a sub-
stantial portion of the P-y plane.

E. K-P-7 dependence of the wave functions

The p and y dependences of the vibrational part
A 1~ of the nuclear wave function, defined in Eq.
(5), are best seen in plots in the P-y plane. For
the sake of brevity, such plots are given only for
the five bandheads in Figs. 4-8.

l. g band(K" =0')

The wave function AMQ for the 0~ state has a
maximum on the prolate edge with slight asym-
metry (see Fig. 4). The small value of the wave
function at the far edge (P =0.5) of the P-y triangle
illustrates the convergence obtained in the present
numerical solution of the collective Hamiltonian.
The plot of the 2~, K=0 wave function A»0 (not
shown) is similar to the A,«plot. The A», com-
ponent contributes less than 5%%uo to the normaliza-
tion of the wave function.

to AgQQ and AgQQ respectively. Contribution of the
K= 2 component to the 2' states is 20 and 10/g, re-
spectively.

3. y band and K"= 4' band

The plot for A», (Fig. 7), the K=2 component of
the y bandhead, shows that the wave function lies
off the prolate edge because of y vibrations. The
K=0 component of this state is only 14%. The 3„
and 5„state wave functions are quite similar to
the 2„2 wave function (A,»), and also to the 4'

2. P band and second K w = 0' band

The p and y dependences of the A,~ and A3QQ wave
functions (Figs. 5 and 5) for the 0' states are quite
different, both being different from the g.s. There
is a node close to the equilibrium deformation in

A2QQ There are two nodes in A3QQ Comparison
with a similarly deformed nucleus, '~Sm (Ref. 13),
shows that there is an admixture of prolate, oblate,
and spherical shapes in the third 0+ state as ob-
served in the m band of '~Sm, but there is more
asymmetry in the present case. The A„, and A„,
wave functions of the 2~ and 2, states are similar

0.1 0.2 0.3 0.4 0.S" O

FIG. 5. Contour plot of the P-bandhead wave function
of ~SGd. As expected for a n& =1 wave function, there
is a node near the potential minimum.
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0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

FIG. 6. Contour plot of the 0'-bandhead wave function
of Gd. As expected for a n& = 2 wave function, there
are two nodes along the prolate edge.

FIG. 8. Contour plot of the K=4 component of the 4'-
bandhead wave function of SGd. The K= 2 maximum,
not shown here, is 20% of the maximum shown here.

and 5' states of the K=4 band (see Fig. 8 for the
bandhead). Note that the K= 2 maximum is only
20%%up of the K=4 maximum of the K = 4 bandhead
wave function.

F. B(E2) values

l. Absolute B(E2)values

Recent Coulomb excitation experiments of
Hamilton ef al."'4 give absolute B(E2) values for
excitation from the g.s. to 2, and to three other 2'
excited states. These are compared with the pres-

ent theory in Table III. Riedinger, Johnson, and
Hamilton" noted that the Coulomb excitation values
of Yoshizawa et al."for B(E2;0-2„)in '"Sm and
'~Gd needed correction for the P-y bandmixing
which would raise their values. A similar correc-
tion in "8Qd raises their B(E2;0-2„)from 0.06
to 0.12 and brings it in agreement with the value
obtained by Hamilton et al.'~ This new value is in
excellent agreement with our theory which takes
into account the bandmixing.

The B(E2) values for exciting the states 2„, 2~,
2p and 4, are reduced" '""' compared to the
B(E2;0, -2,) value by I, 2, 3, and 5 orders of
magnitude, respectively. These order of magni-
tude reductions are reproduced remarkably well
by the present theory (Table III).

Rud, Nielsen, and Wilsky" deduced the
B(E2; P-g) values from their electron conversion
measurements of p~(EO/E2), combined with the
B(E2;0 -2 ) values from Coulomb excitation.

TABLE II. Spectroscopic quadrupole and magnetic mo-
ments for '5~Gd.

Expt. Theo.

0.1 0.2 0.3 0.4

FIG. 7. Contour plot of the K= 2 component of the y-
bandhead wave function of Gd. The K= 0 component,
not shown here, contributes 14% to the normalization of
the wave function.

Q(2~) (e b)
p(2, ) (p„)

p(4g) (pp)

P(44) (JLf&)

See Ref. 10.
See Ref. 11.

-1.88
0.82

1.63

1.6

' See Ref. 12.

-2.40 + 0.25
0.772 +0.008
1.48 ~0.20 b

1 32 ~0 36c
3.12 +0.20
3.14 +0.40'
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TABLE III. Absolute B(E2) values in e b for Gd

Trans ition Expt. Theo.

Og 28
0 2s r
Og 2p

2g 44

4g 44

2g 4g
4~

4.57 +0.05
0.013 +0.004
0.120 +0.004

&0.008
(1.6 x 10-') b

(4.8 x 10-') b

2.32 +0.04'
2.13+0.05'

4.35
0.020
0 ~ 143
0.002
6.0x10 5

2.6 x 10
2.30
2.11

See Ref. 14.
See Ref. 17.

c See Ref. 18.

Their values along with the data from Coulomb ex-
citation experiments"" are compared with the
present theory in Table IV. Calculated values for
'~od are taken from Ref. 21. For this nucleus, the
agreement is good except for the 4~ -2, transition.
For '"Qd, values from the present theory are gen-
erally larger.

2. B(E2)branching ratios

The B(E2) branching ratios for the transitions
from the P and y vibrational bands to the g band in
zseQd and ~Qd are compared with experimenters,

22wv

in Table V. The agreement is reasonably good for
'~Gd except for the 4~ -2, /4~ -4, ratio. There is
fair agreement in '"Qd for several transitions but
there is substantial disagreement in others. Some
of the B(E2) values, e.g., those for the 4~ -4 and

4~ -2~ transitions are quite sensitive to the re-
normalization parameters of the calculation. This
problem will be discussed further in Sec. IV.

Table V also gives the B(E2) branching ratios

for transitions from the second 0' vibrational
band to the g band for "'Qd. Again, while the
agreement with experiment is good for some tran-
sitions, it is quite bad for others.

The nature of an excited 0' state is often in-
terpreted in terms of the ratio~

R = 8(E2; 0"-2„)/B (E2; 0' ' -2g) . (8}

If the 0" state is interpreted as a P-vibrational
state, then one gets R = 0. If the 0" state is in-
terpreted as a 2y phonon state, then R = ~. The
calculated B(E2}values give R(O~}= 0.28 and R(O,}
= 17, while the ratio B(E2;00- 2„)/B(E2; 00 2~)
equals 0.44.

Unfortunately, the P, y, and 0' bands are too
close in energy to experimentally observe transi-
tions between them. However, the calculated R
values indicate that the main component of the cal-
culated 0' bandhead is not 2y photon in character.
On the basis of large M1 components from a simi-
lar band in '"Sm, a two quasiparticle state mixing
is considered a possibility. ' An explanation of this
band in terms of a mixed prolate plus oblate plus
spherical m band has been discussed previously in
Sec. IIIE.

The B(E2) branching ratios for transitions from
the K =4 band are given in Table VI. The experi-
mental values '"'" are compared with the present
theory, as well as with the rotation-vibration mod-
el' (assuming the band to be a pure K=4 band).
The experimental values reported here have
been corrected for the large M1 admixtures
reported by Hamilton et al. ' for the 54- 44,
54-5„, 44-4„, and 4~-4 transitions. They have
not been corrected for the M3 admixtures re-
ported by Uluer et al."for some of these transi-
tions. The MS admixtures are less than 0.5%.

TABLE IV. B(E2) values for P-band to g-band transitions in 10 e b for '+'56Gd.

Transition
i f
P g

Expt.
156Gd

Rud
et al. Hagemann" Theo.

154Gd

Expt.
Rud Riedinger

et a$. et a$. '
Theo.

0 2

2 0
2 2
2 4
4 2
4 4
4 6

2.9(4)

0.20(4)
i.05(13)
1.15(23)
0.31(10)
0.9(3)
0.6 (3)

15

0.20
1.22
1.29

11.5

0.40
3.20
6 ~ 79
0.15
4. 1

5.1

21(3)

0.48 (4)
4.0(2)

11.9(S)
0.35(S)
3.O(6)

11.9 (25)

23
(or 32)"

0.48
4.0

12.0

22.0

0.37
3.30
8.66
0.60
3.37

See Ref. 19. B(E2) values obtained from p~(EO/E2) by assuming p(EO) =constant and by
taking B(E2;0~ 2&) from Coulomb excitation (Refs. b and c).

"G. B. Hagemann, values tabulated in Ref. a.' See Ref. 20.
This depends on the. choice of E2 matrix elements for P y transitions.
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I; If/If

156Gd

Expt. Theo.
Gd

Expt b Theo.

P band —g band

O/2

4/2
2 0/4
4 2/4
4 6/4

4 2/6

0.185+0.019
1.36 +0.10
0.137 +0.016
0.19 +0.07'
34
o.e5 ~0.26'
O.05'
0.55+ 0.22

0.12
2.1

0.05
0.04
1.25

0.03

0.121 + 0.04 O. 1 1
2.75 +0.08 2.61
0.044 +0.004 0.043
0.086 + 0.003 0.18
2.38 y0.08 ~

y band —g band

O/2

4/2
2 0/4
3 2/4
4 2/4
4 e/4
4 6/2
5 4/6

0.67 +0.03
0.086 +0.017
7.9 +1.6
1.52 +0.08
0.152 +O.013
o.ov'
0.43
0.71+O. O9'
1.35 +0.15

0.64
0.20
3.22
1.38
0.40
0.66
1.6
0.82

0.458 + 0.010 0.56
0.144 +0.005 0.089
3.2 +0.4 6.3
0.984 +0.026 0.70
0.139+0.007 0.316
0.27 +0.04

2p/2g 1.0 +0.02

Second 0' band g band

1.47

O/2

4/2
2 0/4
4 2/4
4 e/4
4 2/6

0.223+ 0.025
3.35 +0.27
0.070 +0.007
0.10 +0.03
1.6 +0.5
0.06 +0.02

0.44
1.82
0.24
1.2
1.9
0.6

TABLE V. The B(E2) branching ratios for '5 ' Gd. TABLE VI. B(E2) branching ratios for transitions
from the K =4'band in ' Gd. R-V denotes rotation-
vibration model.

Transitions
I,/I;

E
0 eV)

B(E2) ratio
Theo. R-V

Expt. (Present) Model +

44 2g/4g'
6,'/2',

e,/4,
3/2„
4„/2„
4„/s„
4q/2q

54 3 /4

1422/1222
926/1422
926/1222
263/357
155/357
155/263
213/381

375/267

3„/5„ 375/116
4y/5„ 267/116

0.23(1)c

2.72 (14)
0.62(2) '
2.os(is)
1.46(25)'
o.vi (14)'
0.24 {40)

0.09(30)~

0.20 (6)
0.04(12)~

O.44(88) ~

1.3

1.13
0.41
0.36
0.59

0.33

0.27
0.84

0.34
0.25
0.09
0.56

McMillan et al, Ref. 24.
Using relations given in Ref. 1 for a pure K=4 to K=O

transition.
Taking the 1222 keV transition to be 81% E2, as de-

termined from the internal-conversion coefficient experi-
ment (Ref. 8).

Values determined from the y-ray intensity ratios.
The 155, 116, and 213 keV transitions are taken to be
18.7%, 4.5%, and 19.4% E2, respectively, as determined
from the internal-conversion coefficient experiment
(Ref. 8).

eUsing y-ray intensity ratios from Ref. 27 for the 267
and 375 keV transitions, and assuming that the placement
of the later transition is correct.

Kluk et al. , Ref. 22, values based on coincidence
work.

Weighted average of the values measured by Riedinger
et al. (Ref. 15) and by Meyer, Ref. 23.

McMillan et al. , Ref. 24.
"The error in this ratio is corrected here as discussed

in Ref. 25.
Backlin et al. , (n, y) work, Ref. 26.
Siddiqi et al, , Ref. 27.

G. E2, M1 transition matrix elements

These matrix elements are obtained in the pres-
ent theory by first calculating the expectation
values of the appropriate operators in a micro-
scopic (deformed-quasiparticle) basis and then
averaging the expectation values over all relevant
shapes of the nucleus. Details of the method of
calculation can be found in Ref. 7. For the
reader's convenience, we note that

M P) ( 1)sr -
AM „,(X

These matrix elements, especially their signs. ,
are of interest for the analysis of Coulomb excita-
tion data for B(E2) values and quadrupole moments,
and of the directional correlation experiments for
the mixing ratios 6(E2/M1).

&(~;r-s) = (2I„+1)-'M„,2(~) . (10)

Only the nondiagonal matrix elements are given
in Tables VG and VIII since the diagonal matrix
elements can be deduced from the quadrupole and
magnetic moments given in Table I via'

Q (I)= —(16vI(2I —1)/ [5(I+ 1)(2I+ 1)(2I+ 3)]]'~2M~~(E2),

(I)=(4'/[3(I+, 1)(21+1)]]' 'M~~(M1) . (12)
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TABLE VII. Calculated E2 matrix elements between
states of spin I„and I~ in the different bands in '56Gd,

M„~(E2)= (s (( i SR (E2) [( r) in e b.

2 0 -2.09 -2.03 -1.91
4 2 -3 ~ 39 -3.38 -2.10 -3.00
6 4 -4.35
3 2 3.17
4 3 2.93
5 3 -2.97
5 4 2.86

I„ I~ p g 0' g - 0' —p y —g 7—p 0'

0 2 -0.34 —0.04
2 4 —058 -0 10
2 2 0.40 0.07
2 0 -0.14 —0.05
3 4
3 2
2 3
4 3
4 6 -0.68 -0.10
4 4 0 61 0 07
4 2 -0.11 0.08
5 6
5 4
4 5

0.77
0.85

—0.60
0.16

-0.94
0.38

-0.21
-0.47
-0.38
-0.47
-0.55

-0.46
-0.57
-0.36
-0.66
-0.60

0.12
0.93

-0.18
1.06

-0.28

-0 ~ 79
0.57

0.16
-0.38
—0.05

-0.14
0.17

—0.06
0.004

0.44

l. E2 matrix elements

These are given in Table VII. Note that within a
rotational band, the matrix elements for intraband
transitions are of approximately the same magni-
tude. In addition to the major K components of the
wave functions mentioned above, we have employed
this constancy of E2 matrix elements in grouping
the various states into rotational bands built on
different intrinsic or vibrational states.

The interband transition matrix elements are in
general smaller by an order of magnitude. Thus,
the corresponding B(E2) values are smaller by
two orders of magnitude. All this agrees with the
rotational model of Bohr and Mottelson. ' How-
ever, note that the matrix elements connecting the
z and P bands are just as large, or even larger [the
calculated 3„-4~ matrix element is the largest in-
terband matrix element (m.e.) in the table], as
those connecting y and g or P and g. Such large y
and P matrix elements have not been measured in
is6Gd yet, but they have been measured for i5~Sm

(see the discussion in Ref. 4). These matrix ele-
ments give us the warning that even in a nucleus
like "'Gd, which is quite deformed, our grouping
of nuclear states into g, P, y, .. . bands should
not be taken too seriously.

The E2 matrix elements for the decay of the 0'
band shed some interesting light on the nature of

this band. While the 0' -g theoretical matrix ele-
ments are small compared to either P -g or y-g,
as we might expect for a 4n~ = 2 or a &n„=2 tran-
sition, most of the O' -P and 0 -y m.e. are large
compared to 0' -g by a factor of 2 or more. Since
the O' -P ones are larger, we may call the 0' band
an n8 = 2 band with substantial mixing of n„= 2 pho-
nons. Again we note the experimental second 0
band may not be the second 0' band we have cal-
culated.

A detailed comparison of the magnitudes and
signs of our calculated E2 matrix elements with
those needed for Coulomb excitation analysis has
recently been made by Ronningen et al.' A re-
markable agreement is obtained.

2. Ml matrix elements

These are given in Table VDI. The calculated
M1 matrix elements for y-g transitions are some-
what weaker than those for P-g transitions. Note
that as in the case of the E2 m.e., the 511 m.e. for
y- P transitions are substantial. Matrix elements
for the y-y transitions are of the same order as
P-g and y-g. Such y-P and y-y m.e. are for-
bidden in the first order band-mixing theory (see,
e.g., Ref. 7). However, it must be noted that all
the M1 transition matrix elements are reduced
compared to the diagonal M 1 m.e. [which may be
deduced from Table I and Eq. (12)] by two or more
orders of magnitude (note the factor of 10 ' in the
units in Table VIII).

The M1 transition matrix elements for the decay
of the 0' band show some interesting features.
Those for 0'-g are of the same order as P-g or
y-g. Those for O'-P are larger than either P-g
or y-g. These matrix elements suggest that mem-
bers of the 0' band involve mixing of not only 2P
and 2y phonons (as deduced from E2 matrix ele-
ments) but also of many other P and z phonons.

3. Mixing ratios 5(E2/Ml)

The mixing ratio is defined a,s"
5(E2/Ml)= [I'(E2)/I'(Ml)]' 2

= —0.835(E„ in MeV)

x [M„,(E2) in eb]/[M (Ml) in )i„],
(13)

where I"(E2) is the y-ray decay width for E2 transi-
tions. Some of our calculated values (taking E„
from experiment) are given in Table IX. Others
can be obtained by combining Eq. (13) with the E2
and M1 matrix elements of Tables VII and VIII.
Comparison with the experimental values"" given
in Table IX shows that the calculated values are in
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TABLE VGI. Calculated Mi matrix elements for ' Gd,

I„ I, y-g P-g 0' g 'Y-P 0' P Y-0

2 2 -1 02 -1 67
4 4 3.73 -4.52
3 2 —0.93
3 4 —1.01
5 4 -1.94
5 6 -2 27

1.76
3.59

0.28 5.32
3.45 12.15

-0.57
1.27

-1.23

-0.09
-2.95

0.78 -3.1 1

0.29 3.85
1.82 4.90

general too large. As regards the sign, two of the
values agree in sign while two disagree. Nothing
is known about the systematics of the 5 value for
20-2 transitions, but the experimental sign for
5(E2/Ml; 2~ -2 ) disagrees with the systematics
for all other nuclei of the region. This system-
atics" (for 13 cases) shows that the signs of 5

values are opposite for P-g and y-g transitions.
In any case, it is clear that the agreement of

theoretical and experimental 6 values for "'Gd is
not as good at all as that obtained previously for
the Os region"" and the Sm region. ' This problem
is discussed further in Sec. IV. Table IX also
shows that in terms of the % E2 transition prob-
ability, the main discrepancy in the calculated
values occurs for the 2, -2g transition.

IV. SUMMARY AND CONCLUSIONS

The pairing-plus-quadrupole model of Kumar and
Baranger""' is used for calculating microscopi-
cally the collective spectrum of '"Gd. Discussion
is given of the general features of the potential en-
ergy of deformation, rotational moments of iner-
tia, vibrational mass parameters, energy levels,
and electromagnetic moments of '"Gd. Some re-
sults from a similar calculation for "~Gd are also
given. We summarize below the main results and
conclusions of this study.

1. Energy level spacings for the g, P, y, 0',
and 4' bands are reproduced well. However, the
calculated I3, y, 0', and 4' bandheads are shifted
upwards by 0.2, 0.4, 1.1, and 1.5 MeV, respective-
ly.
2. The spectroscopic quadrupole moment of the
first 2' state and the magnetic moments of the
first 2' and 4' states are reproduced well.
3. The present calculation reproduces remarkably
well the absolute B(E2) values for the excitation of
various bandheads, although the experimental
values for the different bands vary by five orders
of magnitude.
4. Agreement with the B(E2) values for interband
transitions not involving the ground state is in gen-
eral not so good.
5. The calculated 5(E2/Ml} values agree with the
sign of the experimental values in two cases but
disagree in two other cases. The calculated mag-
nitudes are too large by factors ranging from 2 to
10.

Our main conclusion is that the dynamic, micro-
scopic method of Kumar and Baranger can be used
for well-deformed nuclei. We know of no other
available method which provides such a wealth of
predictions with so few parameters.

Discrepancies with the B(E2}values and the E2/
M1 mixing ratios noted above, and the study of the
two renormalization parameters of the theory, sug-
gest that the main problem with the present theory
lies with the shell model type of division of the nu-
cleus into an inert core and a cloud of valence nu-
cleons. Recently" the dynamic theory of Kumar
and Baranger has been combined with the Nilsson
Model, as modified by Strutinsky, where a com-
plete configuration space is employed and the re-
normalization parameters are removed.

One of us (J.B.G.) is thaxdcful to Professor L. S.
Kothari for his encourangement and for the use of
facilities at the University of Delhi.

TABLE IX. Theoretical and experimental E2 and Mi mixing ratios for ' Gd.

Transition
E

(Mev)
a(E2iMi)

Theo. Expt. Theo.
%E2

Expt.

2Q 2

4~ 4g
2 2r

g
3 4r g
4 ~4
2o 2g
4 ~4

1.040
1.010
1.065
1.159
0.960
1.067
1.169
1.174

20.8
11.3

—41.0
—57.5
-37.3

13.7
-3.9
-1.9

-5.9~ 8
+1.4 a

—18 +3
—10.0+ 0.6 b

c
0 38 o. o6

99.8
99.2
99.9

100.0
99 ~ 9
99.5
93 ~ 8
78.3

97.2"'1.9

99.7 (1)
99.0(i)

12 6+4'6
-2.8

~Hamilton et al. , Ref. 5.
Hamilton (unpublished) and Ref. 31.
Uluer et al. , Ref. 29, report this transition to be predominantly E2.
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