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Experimental and theoretical cross sections are presented for the 'Li('He, 'He'He)'H and

Li('He, t 'He)'He reactions for the symmetric angle pairs 20'-20', 28.3'-28.3', and 35'-35'. The

theoretical cross sections are calculated in a three-body model where the trions (i.e., mass-3 nuclei) are

treated as elementary particles with 'Li being a 'He-'H bound state. The trion-trion interaction is

represented by S wave separable potentials with the breakup cross sections calculated with the three-body

Haftel-Ebenhoh code. the Coulomb interaction is taken into account by fitting the separable potential

parameters to the trion-trion scattering data and is included approximately in the breakup code. The

experimental cross sections are compared with both the plane-wave impulse approximation and the three-

body model predictions. The plane-wave impulse approximation predicts both the shapes and magnitudes

poorly (10 to 20 times experiment). Without Coulomb corrections the three-body model gives good agreement

with experiment for the shapes of the spectra with the magnitudes generally being about 40% of experiment

for Li('He, 'He'He)'H and about 80% for Li('He, t 'He)'He. The Coulomb corrections improve the

magnitudes predicted by the three-body model but not the shapes. It is observed that for these reactions S
wave separable potentials describe the breakup data much better than they do the two-body trion-trion

scattering data. This result should encourage further three-body treatment of these and similar reactions.

NUCLEAR REACTIONS Li(He, He He) H, Li(BHe, t He) He, E=45 MeV,
tractable Faddeev calculations o (E, 8&, 82), Coulomb corrections.

I. INTRODUCTION

The Faddeev equations have had great success
in predicting the experimental properties of the
three nucleon system. ' ' In particular, the three=
body treatment of nucleon induced deuteron break-
up, pioneered by Amado, ' has succeeded in pre-
dicting experimental cross sections in many re-
gions of phase space with very simple 1V-N inter-
actions. In recent years there has been much in-
terest in applying such three-body methods to
more complex nuclear reactions. '~ Here, of
course, one does not have three "elementary" par-
ticles as in the 3' case, but perhaps in the par-
ticular reactions under consideration' ' the par-
ticles can be approximated as three "elementary"
constituents, e.g., a particles and trions (mass-3
nuclei}. This approach might be a considerable
improvement over plane-wave and distorted-wave
theories (PWBA, DWBA, PWIA, and DWIA) which
are essentially two-body theories. Approximate
three-body theories for deuteron stripping and

pickup have been developed by Soper and Johnson,
Rawitscher and others'; and the six nucleon sys-
tem has been treated as a three-body problem: nu-
cleon-nucleon-n. ' The 'Li spectrum (and 'He

ground state) and the d-n elastic scattering cross
section and polarization have been predicted rea-
sonably well"' using the nucleon-n (s, &„p»„and
p, &,) and nucleon-nucleon ('S„'S,+'D, ) separable
interactions. These calculations are carried out

in the framework that the coupling to the 'He('H}-
'H channel is weak. Chuu, Hau, and Lin' have ap-
proximately taken into account the internal struc-
ture of the ot particle by representing it as a two-
state system. Shanley' and Charnormodic, Fayard,
and Lamot' simulate Coulomb effects by adding
Coulomb scattering amplitudes to pure nuclear am-
plitudes. The initial results of these first three-
body calculations have been encouraging. Much
work on three-body reaction theories" has ap-
peared in the literature but has yet to be tested in
calculations or experiment.

In the present paper we consider the reactions
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6Li('He, 'He'He)'H and 'Li( He, f 'He)'He and their
theoretical interpretation. Our model"" con-
siders this system as made up of three trions
(2'He and 'H). We use both a PWIA calculation
and a three-body calculation where the trions are
assumed to interact via S wave separable poten-
tials. These reactions are in many ways analogous
to the 'H(p, pp)n and 'H(p, pn)p reactions since the
mass ratios and the spins are the same. There-
fore, the existing Haftel modified Ebenhoh code,
with some straightforward modifications, can be
used. Since the deuteron breakup reaction has been
extensively studied, ' the comparison with the 'Li
breakup should be of interest.

There are a number of incentives for investi-
gating the theoretical and experimental aspects of
the reactions 'Li('He, 'He'He)'H and 'Li('He, t' He)-
'He. The 'Li+'He reactions have a number of
features that differ significantly from the p+ d re-
actions. It is clear that Coulomb effects can be
expected to be substantially more important in the
three trion than in the 'H(p, pp)n reaction. This
feature, in fact, has led to an attempt to incor-
porate a Coulomb interaction term in the computer
code used in this analysis in the anticipation of
gaining a better understanding of the importance of
Coulomb interaction in three-body problems.
Another important difference in these systems is
exemplified by the trion-trion angular distributions
compared with those for the nucleon-nucleon sys-
tems. Whereas the nucleon-nucleon interaction
below 10 MeV c.m. energy is predominantly S
wave, and even at higher energies one can simu-
late the almost isotropic angular distributions by
an S wave potential, this is certainly not true for
the trion-trion interaction. The trion-trion angu-
lar distributions have strong angular and energy
dependence. At low energies (E, & 5 MeV) the
anisotropy occurs due to the dominance of the
Coulomb interaction and for E„' &5 MeV higher
partial waves become important. The large dif-
ferences in binding energies can also be expected
to play a significant role. The deuteron is bound

by just 2.2 MeV, but the two trions in 'Li are
bound by 15.8 MeV. Thus, one expects in the 'Li
+'He reactions the quasifree scattering (QFS) en-
hancements to be considerably broader and the
short range aspects of the nuclear force to be con-
siderably more important than in the weakly bound
system. It should not be overlooked that trions are
not fundamental particles, but have their own com-
plex internal structure. Indeed, at all energies
nonelastic channels are open for the trion-trion
system and consequently the trion-trion interac-
tion should be represented by a complex potential.

Our description of the 'Li ground state wave
function as 'H+'He clusters is certainly incom-

piete since other cluster configurations are pos-
sible and in particular 'Li is often described as a
bound system of an n particle and a neutron plus
proton' or as an o. -d cluster. Plattner et al."have
determined in a model independent way the 'Li-z-d
coupling constant from the n-d scattering. They
conclude that the overall a-d cluster probability in
'Li is between 30 and 60%. This value agrees with
those of Jain et al." and Noble. " The studies of
the reaction 'Li(y, f)'He suggest" that there is a
considerable fraction of the t+'He cluster con-
figuration in 'Li." Evidence for the t+'He cluster
configuration also comes from the analyses of the
reactions 'Li('He, n)'Li and "B('He, 'Li)'Be." The
QFS has been used to study the cluster structure
of 'Li. The measurements of the cross sections
for the reactions 'Li(n, nx)y with x=P, d, f, 'He,
and e have provided an indication that 'Li has
strong p, d, and a clustering, while the 'H-'He
cluster configuration is considerably weaker. "
The 'Li(p, p'He)'H reaction" has been investigated
at 100 and 156 MeV. It seems that the nucleus 'Li
reveals both n-d and 'H-'He cluster structure.
The explanation of this duality has been discussed
by Kurdyumov, Neudatchin, and Smirnov" and it
has been argued that the cluster structures n-d
and 'H-'He are not orthogonal, the respective re-
duced widths 8,' and 8„' are both large and 8,'=-,'8~'.
One hopes that the study of the reactions 'Li-
('He, 'He'He}'H and 'Li('He, t'He)'He using three-
body models will provide some information on the
cluster structure of 'Li.

The plane-wave impulse approximation has been
able to describe the salient features of the deuter-
on breakup. However, the comparison" between
the QFS processes 'H(p, pp)n and 'H(p, pn)p has
demonstrated its inadequacy and the need for the
Faddeev approach. Since the spin-isospin struc-
ture of 'Li+'He is the same as that of d+P, it is
expected that the comparison between 'Li-
('He, 'He'He)'H and 'Li('He, t'He)'He in the PWIA
and in the Amado model will lead to a better under-
standing of these reactions.

II. EXPERIMENTAL APPARATUS AND PROCEDURES

An analyzed 45 MeV helium-3 beam from the
Naval Research Laboratory cyclotron was focused
on a self-supporting 5.6-mg jcm' 'Li target. Ener-
gy correlation data were obtained with the target
in a 76-cm scattering chamber. Two silicon sur-
face-barrier detector telescopes and associated
electronics, including particle identification and
time coincidence event selection, in conjunction
with an on-line computer based data aquisition sys-
tem were used. All charged particle coincidence



M. I. HAF TE I. et al.

events were recorded on magnetic tape and the
trion-trion coincident events were selected for on-
line monitoring and analysis. The resolving time
of the system was approximately 60 nsec. Since
the particles of the beam and one or both detected
particles were the same, it was necessary to sub-
tract background events for the most forward angle
pair used. In all cases the off-line analysis agrees
with the on-line results.

The data were obtained at three symmetric angle
pairs: 20'-20', 35'-35', and 28.3'-28.3 . The
last angle pair was chosen because it contains that
portion of phase space for which one of the final
state particles has zero momentum in the labora-
tory system (QFS region). The upper portion of
the kinematic locus data was used for analysis;
thus, the spectator was in the target. The experi-
mental setup is described in greater detail in a
previously published paper. "

III. THEORY

code (changes in two-body binding energy and
changes in the single particle masses) are nec-
essary to apply it to trion induced 'Li breakup.
Our calculations represent the first attempt to
study three-body effects exactly in this reaction
albeit with an oversimplified model of the interac-
tion and of the ground state of 'Li. The possible
limitations to our approach are numerous. Trions
are not elementary particles; therefore, because
of inelasticities present in trion-trion scattering,
a complex potential is more appropriate than a
real potential. Also, the trion-trion cross sec-
tions are much less isotropic than corresponding

Acro-ss sections. At low energies (E,~ & 10
MeV) the anisotropy occurs due to the dominance
of the Coulomb interaction and, for E,~&10 MeV,
higher partial waves become important. These two

factors, which tend to decrease the validity of an
S -wave treatment, are more important than in the
previously studied nucleon induced deuteron break-
up cases.

To calculate cross sections for the 'Li-
('He, 'He'He)'H and 'Li('He, t'He)'He reactions
we employ a three-body approach based on the
Amado model. ' With the assumption that 'Li is
constituted of two "elementary" trions (a triton
and a 'He) we solve the three-body Faddeev equa-
tions for breakup with the two-body force being a
trion-trion S-wave real separable potential. The
potential chosen predicts the correct 'Li binding
energy as well as the energy of the lowest lying
state (0' resonance) in 'Be. For simplicity the
nuclear interaction is taken to be charge-indepen-
dent which seems justified due to the closeness of
the experimental binding energies of the lowest
lying 0' states in 'Be and 'Li (11.49 and 12.23 MeV
below their respective two-trion thresholds). In
addition to employing bound state energies, we al-
so used the low-energy experimental 'He-'H and
'He-'He scattering data in determining potential
parameters. The criterion for fits to the two-body
data will be discussed shortly. Once the potentials
are chosen, they provide the basic input for the
three-body —a slightly modified version of the
Haf tel-Ebenhoh code"—to calculate 'Li breakup
amplitudes and cross sections.

The main advantage in our calculational technique
is that it provides an extremely close parallel to
the already widely used separable potential codes
used in the three-nucleon (3N) problem. As in the
deuteron breakup reaction there are three identical
spin & fermions with the target being a spin 1'
quasi-two-body bound state. As in the 3N problem,
the two-body short-range interaction at low ener-
gies is taken to be S wave. Moreover, only minor
modifications of the existing 3N Haftel-Ebenhoh

with the T matrix given by

(k
~
T;(E)

~

k' ) =g((k) g ((k')7((E),

where

(2)

1
7, (E) = ——+4 dog'(e)

(M/g2)E —q + iE

The index i here just indicates possible spin-iso-
spin quantum numbers. The T matrix elements of
Eq. (2) form the basic input for the Faddeev equa-
tions. The relation between the T matrix and the
Faddeev equations for three-body amplitudes ap-
pears extensively in the literature to which we
refer the reader. ' ' The T matrix is related to
two-body scattering phase shifts (5) through its
on-shell elements (k' = k"=ME/5') with

(k
~
T(k + ie) ~k) = — e'6' ' sin5(k),

I

where M is the trion mass.
Haftel et al.' have previously used the form

factor

A. Two-body potentials

In this section we describe the two-body poten-
tials used to represent the 'He-'He and 'He-'H in-
teraction. We then proceed to describe how Cou-
lomb effects are approximately incorporated in the
two-body potentials and three-body calculations.
In the Amado (separable potential) model of the
Faddeev equations, the matrix elements of the po-
tential are given in momentum space for S-wave
potentials by

(k
~
V; ~k' ) = —Aq g; (k)g((k')
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(4) f (8) e- 2isoei6
k (6)

in deuteron breakup studies. We adopt the same
form in this work. The Yamaguchi form factor
[g;(k) ~1/(k'+ P )] used in earlier work is just a
special case of this form factor with k„'= —P

Whereas the Yamaguchi form factor has proven
satisfactory in low energy N-N scattering, it fails
for trion-trion scattering. The reasons are as
follows: In the N-N system the low energy S-wave
scattering results and bound state energy are well
represented by two parameters in each spin-iso-
spin state —the scattering length (a) and effective
range (r,). The success of the effective range
formalism in connecting low-energy scattering
results with the bound state is intimately connected
with the fact that the N-N interaction supports a
barely bound deuteron in the triplet state and a
barely unbound virtual state in the singlet state.
Not surprisingly potentials with only two param-
eters (such as A. and P in the Yamaguchi potential)
can fit low-energy scattering and the bound state
energies. In the trion-trion system the two-body
bound states (or resonances) are comparatively
deeply bound (15.79 MeV below 'He+'H threshold
for the 1' ground state in 'Li, 12.23 MeV for the
first 0' state in 'Li, and 11.49 MeV below 'He
+'He threshold for the 0' ground state of 'Be). In
this case an effective range relation is not satis-
factory in connecting low-energy scattering with
the bound state. Therefore, we would not expect
a potential form with only two parameters (like a
Yamaguchi} to fit automatically the data and the
bound states. Our procedure described below for
fitting potentials to the data does not rely on the
validity of the effective range formula.

The criterion for choosing a potential was the
following: We deemed a potential (such as HS)
satisfactory if it (a) gave the correct binding en-
ergies of 'Li and 'Be, (b) gave an on-shell scat-
tering amplitude which, when the pure Coulomb
amplitude was added to it, yielded the 'He-'He and
He-'H 90' (c.m. ) cross sections in approximate

agreement with experiment. For the case where
both Coulomb and short-range interactions are in-
cluded, the two-body cross section for nonidentical
spinless particles is given by

(5)

TABLE I. Parameters and properties for the poten
tial HS.

Potential parameter Triplet Singlet ~

P 2 (fm-2)

P (fm ')
a (fm)
~0 (fm)

E~ (MeV)
(f ')'

ZZ' (fm-')

—2.50
1.800
1.698
0.902

15.793
1.0675
2.2797

-2.50
2.349
1.383
0.537

11.482
0.9 i 02
5.4675

In Eqs. (5) and (6) ii=Z, Z,e'M/2k'k, o, =argI'(1
+ iii), and E = 5'k'/M. In calculating nucleon-
nucleon or trion-trion cross sections Eq. (5) is
properly modified to take into account spin and
statistics.

Our goal was to find a g(k) such as to produce
(approximately) f~(90 ) as extracted from the
trion-trion data [Using Eqs. (5) and (6) modified
for proper spin and statistics] with g(k) related
to e"sin6/k through Eqs. (2) and (2). In other
words we have designed a short-range potential
that, when inserted alone in the Schrodinger equa-
tion gives the experimental (but Coulomb modified)
phase shifts. This differs from finding a potential
which substituted with the Coulomb forces into the
Schrodinger equation gives the experimental (but
Coulomb modified) phase shifts. Our separable T
matrix reproduces the correct T matrix on shell
while we have avoided the more complicated prob-
lem of incorporating Coulomb interference effects
in the construction of the (short range) T matrix.
Two-body Coulomb interference effects, however,
are implicitly included (at least on shell) since
our procedure fits the experimental data.

Table I gives the potential parameters and prop-
erties for one such potential (labeled HS). The in-
formation contained in Table I parallels some of
the information in Table I of Ref. 4 for N-N poten-
tials. Since our trion interaction is taken to be
charge independent, the charge-dependence labels
(e.g., P-P and n-P in Table I of Ref. 4} do not ap-
pear and only singlet and triplet sets of param-
eters are necessary. Like potential HA2-8. 3 of
Ref. 4, the T matrix is of the form of Eq. (2),
which corresponds to p(E) = 1 in the formalism of

where

Z~Z2e M exp(2ia'0 —ill lnsin28)
48' k sin —'8

and for S-wave potentials

The singlet interaction is taken to be charge-indepen-
dent due to the closeness of the binding energies of the
lowest 0 states in. Li and Be.

For the triplet state this is the binding energy of Li
and for the singlet state this is the binding energy of ~Be.

This is the K parameter of Ebenhoh which the code
uses in favor of X.



M. I. HAFTE L et al. 16

80—

60—

40-
E

20-

40-

30-

20—
E

10-

I . I

4 8
I

12
I, I I

16 20 24

Ebenhoh code have roughly the same ratios with
respect to experimental cross sections as the
cross sections in Fig. 1 (dashed curves) have to
the experimental two-body cross sections.

With the Coulomb amplitude added to that of HS,
good fits are obtained in the 'He-'He system up to
about 12 MeV (lab) while in 'He-'H good fits occur
up to 20 MeV (lab) for 90 (c.m. ) cross sections.
Therefore we conclude that the potential HS pro-
vides a fairly accurate representation of the ha-
dronic S-wave trion-trion T matrix (at least on-
shell ). At this point we might speculate that if the
Coulomb interactions were included in the breakup
code the predicted cross sections for the QFS re-
gion would improve because of the importance of
the Coulomb force in the two-body interaction. As
discussed later, we actually find that the approxi-
mate inclusion of the Coulomb interaction does im-
prove the magnitudes of QFS cross sections, but
the improvement is not nearly as drastic as in the
two-trion scattering. Surprisingly, the pure HS
potential gives a remarkably good fit to the shapes
of the QFB spectrum; better than one might expect
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FIG. 1. Comparison of the experimental 90' c.m.
two-body scattering cross sections, for (a) 3He-3He and

(b) He- H with the cross section predictions of the HS3 3

model. The dashed curve is the HS model prediction,
while the solid curve has the Coulomb amplitude in-
cluded. Experimental data are those listed in Table II.
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Ref. 4. While other potentials could be designed
that give virtually identical fits to the two-body
data for E„b&3 MeV (but with different a and ro)
we only consider potential HS in this investigation.

Figures 1(a) and 1(b) illustrate the 'He-'He and
'He-'H two-body 90 (c.m. ) cross sections of the
separable model HS compared with experiment.
The solid curves represent fits when the Coulomb
amplitude is included while the dashed curves give
the cross sections predicted by just the pure S-
wave separable potential. Without the Coulomb in-
teraction the HS potential gives the 'He-'He 90
(c.m. ) cross sections of about 40%%d of the experi-
mental values in the region 6-20 MeV (lab). In
'He-'H the cross sections are about 70-80% of the
experimental values. Figures 2(a) and 2(b) show
the 'He-'He and 'He-'H angular distributions at
various energies. The fits are generally poor be-
cause of the neglect of higher partial waves and
(for HS without Coulomb) the Coulomb interaction.
Interestingly, we shall see later that the 'He-'He
and 'He-'H QFS cross sections predicted by the
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FIG. 2. Comparison of the experimental angular dis-
tributions for (a) the He-3He and (b) He-3H reactions
with the calculations using the HS model. The dashed
curve is the HS model prediction, while the solid curve
has the Coulomb amplitude included. Experimental data
are those listed in Table II and are connected here by a
solid line to aid the eye.
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on the basis of the fits of the HS potential to the
trion-trion elastic scattering data. In particular,
the experimental trion-trion elastic scattering
angular distributions are not adequately described
[ Figs. 2(a) and 2(b)] by the HS model either with
or without Coulomb interaction. The approximate
inclusion of the Coulomb interaction, however,
makes the QFS shapes somewhat worse.

Once the two-body T matrix is found for poten-
tial HS, we employ this as the basic input for the
Haftel modified version of the Ebenhoh code. From
the code breakup amplitudes are calculated as-
suming the full trion-trion potential to be the HS
potential. We then calculate cross sections both
with and without the Coulomb corrections.

B. Calculation of Coulomb effects in breakup

The Coulomb force plays a far greater role in
trion-trion scattering than in 1V-6' scattering. Pre-
sumably it will also be much more important in the
present 'Li breakup reaction than in p-d breakup.
Furthermore, since we have employed the Coulomb
amplitude in calculating cross sections for our po-
tential fits, consistency would require a similar
procedure iq the three-body calculation.

We consider three types of corrections to ap-
proximate the effect of the Coulomb fore. The
first two modify the phase and low energy behavior
of the Faddeev amplitudes calculated from the
code. These types of corrections have previously
been treated by Bruinsma et al. '4 A third correc-
tion, not previously considered in breakup reac-
tions, is to add the single scattering Coulomb am-
plitudes (Born terms) to the Faddeev amplitudes.
These amplitudes, which are taken suitably off
shell, reflect the anisotropy of the two-body cross
sections which is not reflected in the corrections
considered previously. '4

Consider the Faddeev amplitude T e(i) [we use
the notation of Eqs. (12) and (13) of Ref. 4) which
represents particles j and k (i C j &k) interacting
last. The first term of the multiple scattering
series (Born term) is composed of the half shell
two-body T matrix element and the bound state
wave function P~(p„), i.e.,

[ T(i)] „s, T„(Pg, P,'. ;PE + ic)fe(po&),

where p; is the final relative momentum of par-
ticles j and k and where i 4j& k+ i and

p, = c...(kq —k~)/2,

I 2
P4 ~ffk ~ ( qa+ 2 qi) &

vS

2 1~
poi= ~ua ~3 (2 qo+&4) ~

qo = —
2 E+co, q,- = —2E -P

T, (i)-exp(i[a;. (p, )+o,(p,')]}T,(i) .
We incorporate this phase change in our calcula-
tions.

The second Coulomb effect shows up in the low-
energy behavior of the two-body force. For nor-
mal short-range interactions the two-body on-shell
amplitude is proportional to e"sin6/k, where 5 is
the phase shift and the phase shifts obey the effec-
tive range formula at low energy:

1kcot5=--+-, r k~.o (8)

Since the two-body forces inserted in the code are
S-wave short-range interactions, their predicted
phase shifts obey such a relation (at least at very
low energies). However, because of Coulomb in-
terference effects, the actual (Coulomb modified)
phase shifts 5' do not obey such a simple quadratic
relation but rather

k cot5' = ——+ ,' ~,k' —2k@(—k)k(q)
2vg(k) a

where k(q) = &PE „",1/[n(n + rP)] —ing —0.57722. . .
and a, and r„are experimental effective range pa-
rameters. Note, for example, that e"sin5/
k~ =, 0 for the Coulomb case while it goes to -a
for a short-range interaction. To incorporate this
low-energy behavior into the calculation (especial-
ly in the p-p FSI region) Bruinsma et al.~ multiply
T (i) ~by a factor

E,(p, ) = e" sin5'/e" sin5,

T.'(') -F.(p )T.'(') . (10)

Here 5' is the phase shift calculated according to
Eq. (9) while 5 is the phase shift calculated ac-
cording to Eq. (8). The potentials in Ref. 24 are
fitted to the experimental effective range param-

'+ 1 if ijk are cyclic,
~cga=

, —1 if ijk are not cyclic .
Here -I'~,'/M is the bound state energy, q, is
directed opposite the initial projectile momentum

(in the c.m. frame}, and q, is directed opposite to
k; (momentum of particle i). For on-shell scat-
tering (p, '=pp) the Coulomb force modifies the
phase of the two-body amplitude by a phase factor
e"'~'~~' where o,(p) = argr[ 1+ iq;(p)], p&(p)
= Z&Z~e'M/2K'p. Bruinsma et al.m have noted that
for half-off-shell scattering appropriate to Eq.
(7) the phase factor becomes exp {i[a;(p,)+o,(pf}]},
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eters and therefore they use a=a, and r, =r„. Of
course, one can question the wisdom of applying
this factor F,(p,} to the final amplitude rather
than in the input T matrix elements. The final
results, however, well reproduce the minima at
the p-p FSI.

With our potentials we directly fit amplitudes to
the data in a region beyond which the effective
range formula is valid (E,~~ 3 MeV}. In the region
considered our T matrices have the right energy
dependence, at least on shell. Nevertheless, the,
very low-energy limit is incorrect, since the ex-
perimental very low energy phase shifts would obey
a Coulomb modified effective range relation and
HS is, after all, a short range potential. Follow-
ing Bruinsma et al."we introduce in the code a
factor F,(p, ) as given in Eq. (10) with

cot5' j 1+ [1—p, (p&}][(E -E,)/Eo] for E ~ E, ,

t 1 for E&E, ,
(1la)

where E = I'p, '/M, E,= 1.5 MeV (the c.m. energy
at which we began our fit} and

p, (p) = 2, , ——,+ 2 r,'p' —2P(l(p)h(p)
27Tg( p) a

Te,(i) = —4Ae e(('("('(1—5„/2)R((P„P'()
.2 2

x [e-(n(na( +y (q 2)+( 1)0+1$ e (nina (

—I'.((q( ')] le(p, ) (13)

where o, and o(' correspond to o;(p,} and o( p'(},

respectively. The A~~ are the spin recoupling co-
efficients (see Table II of Ref. 5} and

t g 1 —e""''~2
R,(p, p') = —, , —e

x exp[i((' ln(4p,")+(q —q')

x ( v+i-ln(p( -P( )]~ p( &P(

ZZe2MI'.((q')= 2'2'.I. and q(+=(P(+P()'.
2g 2q2$ 2

The factors involving 5„. and (-1)"' (a=0 spin
triplet, v= 1 spin singlet} reflect the Pauli
principle where the two like particles (in our case
two 'He) are pair 1 (i.e., particles 2 and 3). The
expression for the cross section is similar to Eq.
(12) of Ref. 4 except now there is an additional am-
plitude T~., » the triplet p-p (i.e., 'He-'He) inter
action which in our model only has a Coulomb part.
The modification to Eq. (12) of Ref. 4 becomes

j.
x ——+2r p 2

a (lib)

d 0'

dQ, d02dE

x (p 2 pz2)((n-q'1 (12)

where g and g' are shorthand for (4(p;} and 'q, (p', )
and q~=(p( pt)2 In a form. more amenable to the
code our Coulomb correction amounts to adding a
term T (i)eto Te(i) of Eq. (10), with

In Eq. (lib) r, and a are the effective range pa-
rameters of the potential used, and ideally r 0 and
a' are the experimental values. Trion-trion ef-
fective range parameters are actually unknown but
we tried to extract them from the data as best we
could. Actually, for most of the region of phase
space examined, ff'p, '/M & E, and for all practical
purposes F,(p,}was always unity. Note that in
order to conform with the notation used in previous
references we use p and q as wave numbers (i.e.,
as "k").

Finally we- added the single scattering Coulomb
terms into the breakup amplitudes. Following
Bajzer's derivation" of the on-shell Coulomb am-
plitude, but extending it to half-off-energy shell
scattering, we arrive at the result"

I'(1+ i rl), ~,(„„.) (4pp)'~ Z, Z~e'M
I'(1 —iq') q q

= (IM» I'+ IM» I'+ IMo I'}x(kinematic factors),

+ T,„~'~'(2}—T,„~'~'(3)],

Of course, here p stands for 'He and n for 'H.
This equation differs from Eq. (12) of Ref. 4 in that
the p-p pair is i= 1 (in Ref. 4 it is i = 3) and the
presence of the Coulomb 0=0 spin triplet p-p
terms. "

In summary we have included the Coulomb force
in a quasi-two-body fashion. We include modifica-
tions of the phase and low-energy behavior of the
strong interaction Faddeev amplitudes as we would
modify half-off-energy shell two-body amplitudes.
We have also added the half-off-energy shell Cou-
lomb amplitude relevant for the single scattering
term in the multiple scattering series. To include
it in all multiple scatterings would require a meth-
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od to integrate the Coulomb interaction in the Fad-
deev equations such as the method of Alt et al.""
Alt et al."have recently applied this method to
p-d elastic scattering but not as yet to breakup.
To apply it to breakup is a more complicated pro-
cedure and could not be easily included in the cur-
rently available breakup codes.

C. Plane-wave impulse approximation

The plane-wave impulse approximation (PWIA)
used in this work is described in detail in Ref.
23. The cross section for the reactions 'Li-
('He, 'He, 'He)'H or 'Li('He, f'He)'He is given by

0'

dg dfl dE
= free I

FT
I

3 4 3

The quantity o„„is the trion-trion free elastic
scattering cross section calculated on shell in the
post collision energy approximation. The square
of the Fourier transform of the 'Li wave function

is
I
FT I'. The nucleus 'Li is described as com-

posed of two clusters 'He and 'H. The wave func-
tion used is given by

e gr e ~r

where P = 1.202 fm ' and the quantity g is related to
the 'He-'H binding energy in 'Li. The kinematic
factor is KF. The 'He-'He and 'He-'H elastic scat-
tering data used in the PWIA analysis are sum-
marized in Table II.

IV. RESULTS

The predictions of our' three models: (I) three-
body separable potential (HS), (2) three-body
separable potential modified by the Coulomb in-
teraction as described in Sec. III (HS+ C), and (3)
PWIA are shown in Figs. 3(a) and 3(b) for the
kinematic conditions of the trion-trion QFS (28.3'-
28.3'). Due to the large trion-trion binding energy

TABLE II. Summary of the He-3He and He-3H elastic scattering data used in the PWIA

analyses.

Reaction
Energy (c.m. )

(MeV)
Angle (c.m. )

(deg) References

He( He, He) He

H(He, He) H

2.95
3.95
4.96
5.96
4.54
5.54
6.94
7.95
8.95

10.0
2.24
2.5
3.1

3.2
3.5

0
4.5
5.0
5.2
7.2
9.2

10.0
10.7
13 ~ 8
16 ~ 2

40'-90'
35'-90'
30'-90'
31'-90'
30'-90'
30'-90'
30 -90'
30'-90'
30'-90'
25'-90'
40'-140'
40'-140'
40'-140'
50'-150'
40'-140'
40 —140'
40'-140'
40'-140'
30'-150'
30'-150'
54'-125'
30 -126'
30'-126
31'-175'
50'-170'

Tombrello and Bacher

Ivanovich and Young

Bacher et al. '

Jenkin et al.
Ivanovich et al.

Bacher et al. ~

Batten et al.

T. A. Tombrello and A. D. Bacher, Phys. Rev. 130, 1108 (1963).
M. Ivanovich, P. G. Young, and G. G. Ohlsen, Nucl. Phys. A 110, 441 (1968).

'A. D. Bacher, R. J. Spiger, and T. A. Tombrello, Nucl. Phys. A 119, 481 (1968).
J. A. Jenkin, W. D. Harrison, and R. E. Brown, Phys. Rev. C 1, 1622 (1970).

~ M. Ivanovich, P. G. Young, and G. G. Ohlsen, Nucl. Phys. A 110, 441 (1968).
~ A. D. Bacher, R. J. Spiger, and T. A. Tombrello, Nucl. Phys. A 119, 481 (1968).
g R. J. Batten, D. L. Clough, J. B.A. England, R. G. Harris, and D. H. Worledge,

Nucl. Phys. A 151, 56 (1970).
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FIG. 3. This figure shows the three model predic-
tions. The curve labeled HS+C and HS represent the
separable potential three-body predictions with and
without the Coulomb interaction, respectively. The
PWIA prediction is also shown along with the Fourier
transform (FT) and free cross section (Tf~, associated
with it. In addition the bottom two dotted curves show
the HS model cross sections when only L = 0 and L «1
are included (L is the Li-trion relative orbital angular
momentum).

the square of the Fourier transform of the 'Li
cluster wave function ('H+'He) is essentially flat
as a function of E„ the energy of the detected 'He,
though the momentum transfer changes from 0.04
fm ' at 14 MeV to 0.45 fm ' at 22 and 6 MeV. Con-
sequently, the E3 dependence of the PWIA cross
section is mainly determined by the free trion-
trion cross section. We have used the free cross
section in the post collision energy prescription.
The two-body c.m. energy decreases from about
8 MeV to 6.5 MeV at the minimum momentum
transfer and then increases again while the c.m.

angle decreases from 115 to 65' (90 being at
the minimum momentum transfer). The 'He+ 'He
free cross section has to be symmetric with re-
spect to 90', while the 'He+'H cross section is not
symmetric around 90 . The strong variation of the
free 'He+'H cross section as E, increases causes
the PWIA cross section peak to shift by about 5
MeV. The prediction of the cross section using the
HS potential peaks close to the minimum momen-
tum transfer and the shape of the curve is nar-
rower than the shape of the square of the Fourier
transform. This shape is partly due to the de-
crease of the c.m. energy of the two trions under-
going QFS, which results in the increase in the
trion-trion cross section and partly to the strong
interferences describing the absorption inside the
'Li nucleus. Indeed, using a cutoff radius of 3 fm
the square of the Fourier transform produces a
shape comparable to the HS results. However,
for the 20'-20' angle pair the transferred mo-
mentum changes very little in the region of in-
terest and thus the shape of the Fourier transform
is not materially changed by a cutoff radius even
though the magnitude is decreased. The need for
some absorption is shown in the data for the 35-
35' angle pair where the two-body c.m. energy is
constant throughout the spectrum.

Figures 3(a) and 3(b) also show the cross sec-
tions for the HS potential retaining only L =0 and
L = 1 Faddeev amplitudes (L is the 'Li-trion, 'Be-
trion, or 'Li*-trion relative orbital angular mo-
mentum). Similarly to the nucleon induced deuter-
on breakup one can see that the L =0 contributions
to the QFS cross sections are small (1-2 jp).'
Note, however, a significant increase occurs in
the cross section for ('He, t' He) when L = 1 is in-
cluded which does not occur for ('He, 'He'He}.

The cross sections predicted by the separable HS
potential model modified by the Coulomb interac-
tion are also shown in Figs. 3(a) and 3(b). The
inclusion of the Coulomb modification increases
the ('He, 'He'He} cross section by about 25-100 /o.

The effect becomes larger for conditions away
from QF scattering, which can be understood by
noting that 83ge3ge is 90' at the QFS and decreases
away from QFS and, of course, in our Coulomb
modified model the 'He+'He cross section in-
creases when ~3„,3„,decreases. For the reaction
('He, f'He) the inclusion of the Coulomb modifica-
tion produces a much smaller effect up to E3
= 15 MeV (8,s„,= 90 }and only for larger E, (cor-
responding to 8, s„,= 90'-60 ) does the effect be-
come larger. It is worthwhile to point out that
while the Coulomb interaction significantly changes
the trion-trion cross section (see Figs. 1 and 2},
its effect on the breakup is much smaller. It looks
as if the influence of the longer-range part of the
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FIG. 4. Breakup amplitudes in various spin and angular
momentum states. The labels 1, 2, and 3 indicate,
respectively, the spectator particle plus two-body sub-
systems: He+(t He)triplet~ He+(t He)sin let~ and H

+ ( He He), '
gf 1 and in an analogous way for the p+d

system. For the He+ Li system the assumed charge
independence makes 2 and 3 identical. Here p& is the
relative momentum in the two-body subsystem.

interaction is suppressed in the three-body break-
up process.

Figure 4 shows the breakup amplitude in various
spin and angular momentum states and compares
the results for the reaction 'Li+'He at E, =14.21
MeV (corresponding to E,.„,=45 MeV) to those for
the reaction d+p at E„=13.11 MeV (correspon-
ding to E„,= 23 MeV). In this figure pz is the rela-
tive momentum of the two-body subsystem (re-
ferred as d, d* or 'Li, 'Li*, respectively), here

3 +,~ —Q. S is the total spin. The 'Li-trion
amplitudes are considerably less p& dependent than
d-p amplitudes. The higher orbital angular mo-
mentum amplitudes are smaller for the 'Li-trion
than for the d-p system, reflecting the larger
binding energy of the two trions in 'Li than of two
nucleons in d. The relative contribution of the I-
=0, S=-,' amplitudes is larger for the 'Li-trion
system than for the d-P system. Since these ampli-
tudes are more sensitive to changes in the short-
range particle-particle interaction, ' one can expect
that the 'Li+'He-'He+'He+'H cross sections in
certain regions of the phase space are quite sensi-
tive to the short range trion-trion interaction. "

The experimental data will now be compared with
the theory. In all of the experimental results the
data points have been projected from the kinematic

locus onto the 'He axis. Figures 5-7 represent the
results of the 'Li('He, t'He)'He reaction at 83a,

83H —20 ', 28.3 ', and 35, respectively, while
Figs. 8-10 show the results for 'Li('He, 'He'He)'H

at ~3He = ~3«, = 20, 28.3, and 35 ', respectively.
The solid, dot-dashed, and dashed curves are

the results of the HS, HS+ C, and PWIA models.
The superiority of the Faddeev type models is im-
mediately obvious. Both HS and HS+C models
reproduce reasonably well the absolute cross sec-
tion, while the PWIA requires normalization con-
stants of N= 0.06 and 1V =0.03 for the reactions

0.3—

= 28.3'
He H

X
N

C)
E

rr)
IJJ

~b C*

0.2—

O. I

9 15
( MeV)

&He

17 21

FIG. 6. Same as Fig. 5 for 83H, =8& =28.3 . This is
the quasifree scattering angle pair.

I, I, I, I, I

7 I I 15 19 23
E~ (MeV)
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FIG. 5. Comparison of the Li( He, t3He) He experi-.
mental data with theoretical calculations for 83He 83„
=20 . The curves labeled HS+ C (dashed-dotted) and HS

(solid)are the HS model three-body cross section cal-
culations with and without Coulomb interaction, respec-
tively. The curve labeled FT (dotted) represents the
square of the Fourier transform associated with the
PWIA model. The PWIA calculation (dashed) is normal-
ized by N= 0.06.
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('He, t' He) and ('He, 'He'He), respectively. Actual-
ly, at the QFS condition the HS model underesti-
mates the experimental cross section by 20%, and
the HS+ C model by about 10-20 /p for both reac-
tions. The ratio of the normalization factors re-
quired in the PWIA for ('He, t' He) and ('He, 'He'He)
reactions is two and this is the same trend ob-
served in the d(p, pn)p vs d(p, pp)n cross sections.
It again demonstrates the same inadequacy of the
PWIA, and the explanation is in terms of Faddeev
type models which properly take the spin and iso-
spin into account. One can state that these simple
three-body models predict the ratio of the cross
sections better than the individual absolute values.

Not only the absolute magnitudes but even the
shapes of the spectra are better predicted by the
Amado model calculations. In particular for the
('He, t' He) reaction the PWIA does not give good
agreement with the data. This is because the PWIA
cross section is here dominated by the free trion-
trion cross sections. However, the fluctuations of
this free cross section are not reflected in the ex-

83 = e3 =20'
He He

perimental breakup data. The generally smooth be-
havior of the spectra may be associated with the
strong binding of the trions in the 'Li and there-
fore the peripheral nature of the process is no
longer dominant. Also, since the 'Li binding en-
ergy is 15 MeV, the interaction is considerably
off shell which could change the PWIA results.
Since the half-off-shell cross sections have not
yet been calculated we do not consider them. Our
present theoretical results differ from those in
Ref. 12 in two respects: (i) the use of the Haftel
form factor" instead of the Yamaguchi form fac-
tor and (ii) the singlet interaction is assumed to be
charge independent and related to the bound state
of the two trions (Ref. 12 uses the negative scat-
tering length). An error in the second part of the
Ebenhoh code as applied to this reaction has been
found and corrected.

Our Coulomb modification of the HS model pro-
vides only an estimate of the total effect of the Cou-
lomb force. For better results, the Coulomb in-
teraction should be correctly included in the
Faddeev treatment. Therefore, one should not at-
tach too much meaning to the comparison of the
HS+C model with the data. The ratio of the ex-
perimental vs HS and HS+C cross sections are

0.4
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TABLE III. Ratio of the experimental vs the calculated cross sections at the minimum
momentum transfer.

93= 84

( He, t He)
HS

( He, t He)
HS+ C

(He, He He)
HS

(He, He He)
HS+ C

20'
28.3'
35'

i.7
i.3
i.3

i.4
i.2

i.2

3.7
i.3
2.0

3.3
i.i
i.5

shown in Table III. The experimental cross sec-
tions are larger than the calculated cross sections
typically by 10-50 /o. The notable exceptions occur
at the 20 -20 data where the experimental cross
sections are 1.7 to 4 times larger than the Amado
model prediction. It should be noted that the 20
20 data also require larger normalization con-
stants in the PWIA model. It seems that the HS
+ C model provides a somewhat better agreement
with the absolute experimental cross section and a
somewhat worse fit to the shape of the spectra than
the HS model.

V. CONCLUSIONS

As a first attempt of applying the Faddeev equa-
tions to the 'Li+'He breakup into three trions we
find the results encouraging. The three-body mod-
el using the S-wave separable potential HS gives a
surprisingly good fit to the 'Li('He, 'He'He)'H and
'Li('He, t'He)'He data in the region close to the
symmetric QFS. The model predicts the absolute
cross sections within 20-40 /p except for the for-
ward angle pair (20'-20 ). Also, the model cor-
rectly predicts the shape of the spectra. The
spectra predicted by the model are narrower than
the square of the Fourier transform of the 'Li
cluster wave function ('H+'He) partly due to strong
interference effects describing the absorption in-
side the 'Li nucleus and partly due to the variation
of the energy of two trions undergoing QFS. The
reaction 'He(P, 2P)'H is one QF process that has
been studied experimentally and in the framework
of the three-body Faddeev model. At an incident
energy of 100 MeV the experimental cross section
at ~, = 84 = 36.7 is about 3 times smaller than the
three-body model prediction. "

The approximate inclusion of the Coulomb inter-
action in the three-body problem increases the
calculated cross section reducing somewhat the
discrepancy with the data. However, this Coulomb

effect in the breakup cross section is much smaller
than in the two-body trion-trion cross section sug-
gesting that the influence of the longer-range part
of the particle-particle interaction is suppressed
in the three-body breakup process.

The PWIA does not describe correctly either the
absolute cross section or the shape of experimental
spectra. In particular, just as in the nucleon in-
duced deuteron breakup, it is unable to explain the
experimentally measured ratio of the QFS pro-
cesses 'Li('He, 'He'He)'H vs 'Li('He, f 'He)'He.

The fits of our admittedly simple three-body
theory to the data are much better than we would
have ever guessed before actually doing the cal-
culations. In this respect two points should be
especially noted. 1. Spectra shapes are well pre-
dicted even though they cover an angular range
over which the fits to the relevant two-body angular
distributions are poor. 2. The theory predicts the
correct absolute cross section approximately,
which indicates that, in the part of the phase space
studied (QFS of 'He-'He and 'He-'H), the 'Li
cluster structure as-'He+'H predominates; this
we feel cannot be quite correct. Hitherto unex-
plored elements of three-body reaction theories,
such as possible suppression of higher two-body
partial waves, the role of spectroscopic factors"
and of the suppressed 'Li-n+d channel, would be
very helpful in understanding our results. Further
experimental studies of the 'Li('He, 'He'He)'H and
'Li('He, f'He)'He reactions and of other channels
('Li('He, xy)z) are currently being undertaken at
this laboratory.
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