Mass and beta decay of ⁵⁹Mn⁺

R. C. Pardo,* C. N. Davids,[‡] M. J. Murphy,[§] E. B. Norman,[§] and L. A. Parks^{||}

Physics Division, Argonne National Laboratory, Argonne, Illinois 60439

(Received 25 February 1977)

⁵⁹Mn was produced using the ⁴⁸Ca(¹³C, pn)⁵⁹Mn reaction at $E_{13_{\rm C}} = 26$ MeV. γ rays from the decay of ⁵⁹Mn were observed in singles and coincidence experiments using large Ge(Li) detectors after the targets were transferred to a shielded counting area by a multiple-target pneumatic transfer system. Assignment of γ rays to transitions in ⁵⁹Mn was confirmed by performing an ⁵⁸Fe($d, p\gamma$)⁵⁹Fe experiment. The half-life of ⁵⁹Mn was determined to be 4.6 ± 0.1 s. The results of this work limit the ground-state spin of ⁵⁹Mn to $5/2^-$ or $3/2^-$. Theoretical and systematic considerations favor $5/2^-$. The total β -decay energy, Q_{β} , was measured to be 5.2 ± 0.1 MeV, which corresponds to a mass excess of -55.5 ± 0.1 MeV.

RADIOACTIVITY ⁵⁹Mn: measured $T_{1/2}$, E_{γ} , I_{γ} , $\gamma - \gamma$ coin, E_{β} , $\beta - \gamma$ coin; deduced decay scheme, log*ft* limits, Q_{β} , g.s. J^{π} limit. Enriched targets, Ge(Li) detectors, plastic scintillator, multiple rabbit.

INTRODUCTION

The β decay of the new isotope ⁵⁹Mn has been observed following its production via the ⁴⁸Ca(¹³C,*pn*)-⁵⁹Mn reaction. The investigation of ⁵⁹Mn is part of a continuing program to study the decay properties of nuclei far from stability. These studies are useful for testing mass predictions and for establishing β -decay systematics, both of which are needed in nucleosynthesis calculations. ⁵⁹Mn is the third $T_z = \frac{9}{2}$ nuclide in the 1*f*-2*p* shell whose decay properties have been investigated in this program. A preliminary account of ⁵⁹Mn decay has appeared in Ref. 1. Studies of ⁵¹Sc (Ref. 2) and ⁵³Ti (Ref. 3) decay have been previously reported.

The β -decay studies also provide a γ -decay scheme for states in the daughter nucleus. This information is useful in helping to understand the nuclear structure of the daughter.

The level structure of the ⁵⁹Mn daughter, ⁵⁹Fe, has been studied by Sperduto and Buechner, ⁴ Lee and Schiffer, ⁵ and Klema, Lee, and Schiffer⁶ using the ⁵⁸Fe(d, p)⁵⁹Fe reaction. McLean *et al.*⁷ were able to assign spins and parities to many of the levels observed in ⁵⁹Fe using the ⁵⁷Fe(t, p)⁵⁹Fe and ⁵⁸Fe-(d, p)⁵⁹Fe reactions.

Sood⁸ attempted a Nilsson-model treatment of ⁵⁹Fe guided by the results obtained for ⁵⁷Fe in Ref. 9. McLean *et al.*⁷ suggested that a different set of Nilsson-model parameters without bandmixing was needed to explain the levels observed in ⁵⁹Fe.

In the present paper we have measured the γ singles and γ - γ coincidence spectra following the β decay of ⁵⁹Mn. The assignment of γ rays to the decay of ⁵⁹Mn is based on the observation of the same γ rays in a concurrent ⁵⁸F($d, p\gamma$)⁵⁹Fe experiment. In addition, the energies of these transitions correspond to the deexcitation of levels previously observed in ⁵⁹Fe.

The total β -decay energy Q_{β} has been determined in a β - γ coincidence experiment. The resulting mass excess is compared with a recent measurement by Kashy *et al.*¹⁰ and with various predictions.

The observed β -decay properties of ⁵⁹Mn allow restrictions to be placed on its ground-state spin and parity. A most probable spin is discussed in terms of theoretical expectations and systematics in this mass region. The observed γ -decay properties of levels in ⁵⁹Fe populated by the decay of ⁵⁹Mn are also discussed.

EXPERIMENTAL METHOD

A. Decay of ⁵⁹Mn: β -delayed experiments

Initially, a beam of 50-100 nA (electrical) of 40-MeV ¹³C⁴⁺ was allowed to bombard targets of enriched ⁴⁸Ca (96.8%) rolled foils 1.17 mg/cm² thick. Later runs were performed at a beam energy of 26 MeV. The calcium was placed on a 0.05-mm tantalum backing and a layer of gold, 100 $\mu g/cm^2$ thick, was flashed over the target to inhibit oxidation. During the initial survey experiments, a single target was sequentially bombarded in vacuum and pneumatically transferred to a remote counting station for observation by a Ge(Li) detector in close geometry perpendicular to the target. The apparatus used for this was a single-target pneumatic target-transfer system (rabbit). Control of bombardment, transfer of the target, and accumulation of data was accomplished by a quartz crystal sequence timer.

Data taken after this initial series of experiments

370

employed a new multiple-target transfer device, "multiple rabbit," described in detail by Parks *et* $al.^{11}$ The multiple rabbit is an extension of the pneumatic target-transfer system mentioned above. After each bombard-transfer-count cycle, the used target is replaced by another target. The assembly is capable of holding up to eight different targets. After all targets have been used, the initial target is moved into place, and the entire cycle is repeated. All spectra shown and all results quoted in this paper are derived from experiments

performed with this multiple rabbit system. Data from γ -ray singles and γ - γ coincidence experiments were taken with "15% efficient" Ge(Li) spectrometers. These detectors viewed the target through 1.3-cm thick polyethylene absorbers. An NE102 plastic scintillator coupled to an RCA8575 phototube was used to detect β^{-} particles in coincidence with decay γ rays. Energy and efficiency calibrations for the detectors were performed using standard γ -ray sources.

 γ -ray singles events were routed into six or eight 4096-channel time bins. Separate scaling of a pulser, gated by the busy signal from the analogto-digital converter, provided dead-time information.

 γ - γ coincidence data were event recorded on magnetic tape for subsequent off-line analysis. A coincidence resolving time of approximately 30 ns full width was used. Coincident γ -ray spectra of 2048 channels each were produced from events in one detector by setting windows in the other detector on γ -ray peaks of interest. These spectra were corrected for background-coincident events by subtracting spectra coincident with background regions just to the side of the γ ray of interest. The energy windows used were typically 3–4 keV full width.

B. γ transitions in ⁵⁹Fe

The only prior γ -ray study of transitions in ⁵⁹Fe was from the ⁵⁸Fe (n,γ) ⁵⁹Fe work by Bogdanov *et* $al.^{12}$ Even with this work, the most recent compilation¹³ quotes uncertainties in the energies of excited states of from 6 to 16 keV. Better energy assignments to these levels were necessary so that the interpretation of observed delayed transitions could be made with more confidence. The reaction ⁵⁸Fe($d, p\gamma$)⁵⁹Fe was used to study the γ ray transitions in ⁵⁹Fe. A 3.5-MeV deuteron beam of approximately 300 nA was provided by the Argonne National Laboratory Dynamitron accelerator. The target used was a $2.0 - \text{mg/cm}^2$ enriched (83.5%) ⁵⁸Fe foil. A natural Fe target was similarly bombarded in order to ensure that the γ rays observed were from reactions on ⁵⁸Fe. In-beam

 γ rays were detected at 90° with respect to the beam in close geometry using a 30-cm³ Ge(Li) detector. The resolution of this detector was 9.0 keV at 1332 keV. This detector was chosen because it was felt to be sufficient for our needs and would be less sensitive to further damage by the high neutron flux encountered in this experiment.

RESULTS

A. Decay of ⁵⁹Mn: γ rays and half-life

In the survey runs using the single rabbit, five γ rays of energies 287.0, 472.7, 570.5, 591.0, and 726.1 keV were observed to decay with a halflife of 4-5 s. These γ rays appeared to correspond to the deexcitation of levels seen by McLean *et al.*⁷ at energies of 287, 473, 574, 726, and 1162 keV. In addition, no nucleus was known to decay with γ rays of these energies and whose half-life was approximately 5 s.

The results of γ -ray energy measurements from the in-beam ⁵⁸Fe $(d, p\gamma)^{59}$ Fe experiment are compared with the decaying γ rays initially observed in Table I. The 591-keV γ ray is not observed in the (d, p) experiment because it is obscured by the 596-keV transition from the ⁷⁴Ge $(n, n')^{74}$ Ge reaction in the detector. The agreement between the inbeam γ -ray energies of the decaying γ rays is excellent. Therefore, the decaying γ rays observed are assigned to transitions in ⁵⁹Fe populated by the β decay of ⁵⁹Mn.

It was determined that the yield of ⁵⁹Mn relative to contaminant nuclei was maximized at 26 MeV and all subsequent data were accumulated at this bombarding energy. In order to measure the half-life of ⁵⁹Mn, singles γ -ray data were accumulated in eight time bins of 2 s each, after bombardment for 5 s. Figure 1 shows the data accumulated in the first two time bins summed together. The spectrum is displayed in square-root format so as to reduce the dynamic range.

The half-life of ⁵⁹Mn was determined using the composite decay curve for the γ rays of energies 287, 473, 571, 591, and 726 keV. The resulting half-life for ⁵⁹Mn is 4.6 ± 0.1 s.

TABLE I. Comparison of γ -ray energies observed in ${}^{58}\text{Fe}(d, p \gamma){}^{59}\text{Fe}$ and delayed γ rays in ${}^{48}\text{Ca} + {}^{13}\text{C}$.

$^{58}\mathrm{Fe}(d,p\gamma)^{59}\mathrm{Fe}$ (keV)	Delayed γ ray	Transition in ⁵⁹ Fe
287.3 ± 1.0	287.0 ± 0.3	$287 \rightarrow 0$
472 ± 3	472.8 ± 0.3	$473 \rightarrow 0$
570.9 ± 1.0	570.7 ± 0.3	$571 \rightarrow 0$
727.1 ± 1.0	726.3 ± 0.3	$726 \rightarrow 0$
1210.6 ± 1.0		$1211 \rightarrow 0$

FIG. 1. Spectrum of delayed events during the first 4-s of count cycle from the ${}^{48}Ca + {}^{13}C$ reaction at 26 MeV. The data are shown in square-root format.

B. Decay of ⁵⁹Mn: Levels populated in ⁵⁹Fe and weak γ-ray transitions

In order to verify the assumed assignments of γ -ray transitions, and to search for weak transitions, a γ - γ coincidence experiment was performed. Spectra obtained in coincidence with three of the γ rays mentioned above are shown in Fig. 2. They have been corrected for backgroundcoincident events. Two previously unassigned γ rays (439.6 and 874.7 keV) and, possibly a third (689 keV), were identified in the coincidence gates. The 689-keV transition, seen weakly in the 473keV gate, yielded an intensity relative to the 726keV γ ray (I_{726} = 100) in the singles data of 0.6 ± 0.5 . Also, setting a 473-keV gate in the second detector and looking at coincident events in the first yielded no coincident peaks. Therefore, this transition is considered only a possibility.

A careful search of the singles spectra revealed an additional decaying γ ray with an energy of 1162 keV which had a half-life consistent with that determined for ⁵⁹Mn. This γ ray was not observed in the coincidence experiments and is therefore assigned as a ground-state transition from the known 1162-keV level in ⁵⁹Fe.

A weak γ ray at 1021.9 keV was also observed in the summed spectrum of the first four time bins. This γ ray could be the ground-state transition from the population of the known level at 1026 keV. The random summing of two 511-keV γ rays would be expected to contribute 20–30% of the observed intensity but this mechanism does not seem to explain the entire peak. The intensity of the observed 1022-keV γ ray would yield an observed β -decay branch of 0.4 ± 0.3 . This γ ray was not observed in coincidence in the β - γ experiments. Because there is no supporting evidence, the assignment of this γ ray to ⁵⁹Mn decay cannot be made.

The energies of the γ rays observed in ⁵⁹Mn and their relative intensities are summarized in Table II. The relative intensities quoted in Table II were obtained using the data of the first four time bins. Coincident summing corrections were applied where necessary. Because the 439-keV γ ray is a doublet in the singles γ -ray spectrum, its energy

FIG. 2. γ -ray spectra observed in coincidence with the 287-, 571-, and 591-keV γ rays from the decay of ⁵⁹Mn. The unlabeled peak at 511 keV in the 287-keV gate is due to incomplete Compton background subtraction.

TABLE II.	Energy and relative intensity of γ rays ob-
\ensuremath{served} in the	decay of ⁵⁹ Mn.

Energy (keV)	Relative intensity
287.0±0.3	12.9±1.0
440 ± 1	4.5 ± 1.3
472.8 ± 0.3	69.1 ± 5.0
570.7 ± 0.3	58.8 ± 4.2
591.1 ± 0.3	22.5 ± 1.8
689 ± 2 ^a	0.6 ± 0.5
726.3 ± 0.3	100
875.1 ± 0.7	6.7 ± 0.8
1161.7±0.7	1.7 ± 0.7

^aPossible transition, see text.

and relative intensity were obtained from the spectrum of events coincident with the 287-keV γ ray.

The resulting β -decay scheme for ⁵⁹Mn is shown in Fig. 3. The β feedings listed are taken directly from the observed γ -ray intensities and are calculated under the assumption of no ground-state branch. No corrections for internal conversion are made since the largest internal conversion coefficient is less than 0.003 if the observed transitions are *M*1. The log*ft* values listed assume no branch to the ground state and must be considered as lower limits. A Q_{β} value of 5200 keV has been used (see Sec. C below). The log*f* values are taken from the tables of Gove and Martin,¹⁴

<u>16</u>

FIG. 3. The β -decay scheme of ⁵⁹Mn. Only those levels participating in the decay of ⁵⁹Mn are shown. The J^{τ} assignments are taken from Ref. 7.

C. Mass of ⁵⁹Mn: β - γ coincidence

At about the same time this work was being performed, Kashy *et al.*¹⁰ reported the observation of ⁵⁹Mn using the ⁶⁴Ni(³He, ⁸B)⁵⁹Mn reaction. This group found the mass excess of ⁵⁹Mn to be -55.49 ± 0.03 MeV. Unfortunately, they were unable to resolve the ground state from a possible first-excited state in ⁵⁹Mn.

The total β -decay energy of ⁵⁹Mn has been measured using β - γ coincidence techniques. Data were cyclically accumulated for 10 s following a 5-s irradiation of the targets. The resulting γ -ray-gated β spectra for the strongest γ rays are shown in Fig. 4. These spectra have been corrected for background-coincident events.

The end-point energies of these β spectra were determined using the shape-fitting technique described by Davids *et al.*¹⁵ This method employs a standard β -ray spectrum with a known end-point energy which is then stretched horizontally and normalized to reproduce the unknown spectrum. The standard used for this measurement was derived from the β spectrum coincident with the 3084-keV γ ray from the decay of ⁴⁹Ca. The isotope ⁴⁹Ca was produced simultaneously with ⁵⁹Mn by the reaction ⁴⁸Ca(¹³C, ¹²C)⁴⁹Ca. The resulting spectrum shown in Fig. 5 is a pure β ⁻ spectrum with an end-point energy of 2184 ± 6 keV. The

FIG. 4. Spectra of events coincident with selected γ rays in the decay of ⁵⁹Mn. These spectra were observed using an NE102 plastic scintillator. The smooth curve is a fit to the data by a stretch-fitting technique assuming the decay scheme shown in the inset.

smooth curve was drawn through the data by hand, and was then used as the standard shape. The accuracy of the hand fit was checked by shape-fitting the original 49 Ca data with this standard.

This method of analysis allows one to include the effects of coincident γ rays and multiple β feedings which may contribute to the resulting coincident spectra. The solid curves shown in Fig. 4 are the results of fits to the data assuming the decay schemes shown in the insets.

Similar γ -ray-coincident β spectra from other radioactive species with well-known β end-point energies were also produced. These spectra were shape-fitted using the techniques described above. The results are shown in Fig. 6. The straight line

FIG. 5. Pure β spectrum coincident with the 3084-keV γ ray in the decay of ⁴⁹Ca. The smooth curve shown is hand drawn through the data. This curve is considered the "standard shape" of a single end-point β spectrum which is then used as described in the text to obtain the end-point energy of the β spectra from the decay of ⁵⁹Mn.

is a linear least-squares fit to the data. It is this fit to these internal calibrators which is used to obtain the β end-point energies of the transitions in ⁵⁹Mn. The values of the stretch parameter required to fit the various β spectra of ⁵⁹Mn are listed in Table III. This analysis yields a total β decay energy Q_{β} of 5.2±0.1 MeV. Using the value of the mass excess of ⁵⁹Fe from Wapstra and Bos,¹⁶ the resulting mass excess of ⁵⁹Mn is -55.5 ±0.1 MeV. This is in excellent agreement with the results of Kashy *et al.*¹⁰ who obtain a value of -55.49±0.03 MeV.

DISCUSSION

A. Ground-state spin of ⁵⁹Mn

The spins and parities of the states in 59 Fe observed in the decay of 59 Mn are known from the

FIG. 6. The results of the stretch-fitting technique applied to the γ -ray coincident β spectra from nuclei with well-known β end-point energy, produced simultaneously with ⁵⁹Mn. The straight line is a linear least-squares fit to the data shown. This fit is used as the calibration for the determination of the end-point energies of β -decay branches in ⁵⁹Mn.

work by McLean *et al.*⁷ From Fig. 3 it can be seen that the levels populated by β decay with a log *ft* less than 5.3 have spins and parities of $\frac{3}{2}^{-}$ or $\frac{5}{2}^{-}$. The β -decay branch to the ground state of ⁵⁹Fe cannot be observed with our techniques. It is possible to estimate the intensity of this branch, in the context of the Nilsson model, using the observed feeding of the $\frac{5}{2}^{-}$ 473-keV state. If this state is the second member of the ground-state $K = \frac{3}{2}^{-}$ rotational band (see discussion below and Fig. 7), the β -decay branch to the ground state is related to the branch to the 473-keV state by the ratio of the squares of Clebsch-Gordan coefficients. A

TABLE III. Stretch-fit results for ⁵⁹Mn.

	(keV)	χ^2_{ν}	Stretch factor	Fit region channels	γ ray (keV)	Nucleus
5273 ± 180	4676 ± 180	1.52	2.24 ± 0.04	5-71	473	⁵⁹ Mn
5350 ± 203	4654 ± 203	1.07	2.23 ± 0.06	10-70	571	⁵⁹ Mn
5145 ± 158	3858 ± 158	1.17	1.86 ± 0.05	17-59	591	⁵⁹ Mn
5226 ± 149	$4375\pm\!149$	1.40	2.10 ± 0.02	12-69	726	⁵⁹ Mn
;	4676 ± 180 4654 ± 203 3858 ± 158 4375 ± 149 Average $Q_{12} = 1$	1.52 1.07 1.17 1.40	$2.24 \pm 0.04 2.23 \pm 0.06 1.86 \pm 0.05 2.10 \pm 0.02$	5-71 10-70 17-59 12-69	473 571 591 726	⁵⁹ Mn ⁵⁹ Mn ⁵⁹ Mn ⁵⁹ Mn

FIG. 7. Comparison of the known levels in 59 Fe to the predictions of a simple Nilsson model without bandmixing. The J^{T} assignments are from Ref. 7.

ground-state branch of 51% is thus predicted for the β decay of ⁵⁹Mn. The log*ft* values quoted would therefore be increased by approximately 0.3 from those listed in Fig. 3 if this branch is assumed. From the rules deduced by Raman and Gove,¹⁷ these β transitions are definitely allowed. Therefore, in these β -decay branches *J* can change by 0 or ±1 with no change in parity. These observations restrict the spin of the ground state of ⁵⁹Mn to be either $\frac{3}{2}$ or $\frac{5}{2}$.

The $J^{\pi} = \frac{1}{2}^{-1}$ level at 287 keV is fed from higher energy states by the 439- and 875-keV γ rays. The data from this work are consistent with no β feeding to this level, but a small feeding with a log ft> 6.4 cannot be ruled out.

As discussed in the results section, the existence of a β -decay branch to the $J^{\pi} = \frac{7}{2}$, 1026-keV state in ⁵⁹Fe could not be confirmed. If this state is a member of the ground-state rotational band in ⁵⁹Fe, the same arguments as used above for the ground-state β -decay branch predict a total β -decay branch to the state of only 1.4%. This value is at or below the level of sensitivity achieved in this experiment. The observation of such a branch would have allowed a unique experimental determination of the ground-state spin of ⁵⁹Mn. The simple shell model would predict the groundstate spin of all odd-A isotopes of manganese to be $\frac{7}{2}$. In fact, ⁵³Mn is the only manganese isotope known to have a ground-state spin of $\frac{7}{2}$. Both ⁵⁵Mn and ⁵⁷Mn have ground-state spins of $\frac{5}{2}$, as does ⁵¹Mn. Ths isotopes ⁵¹Mn, ⁵⁵Mn, and ⁵⁷Mn have $J^{\pi} = \frac{7}{2}$ first-excited states while ⁵³Mn has a $\frac{5}{2}$ first-excited state. The first-excited state of these odd-A manganese isotopes are all at less than 400 keV in excitation. The second-excited state of these isotopes is around 1 MeV and is often a $\frac{3}{2}$ state. From the systematics of these odd-A manganese isotopes, the assignment of $\frac{5}{2}$ for the ground state of ⁵⁹Mn would be favored.

As will be discussed more fully below, the structure of ⁵⁹Fe may be understood with the aid of the Nilsson model for deformed nuclei. Sood and Hutchinson⁹ found the level structure of ⁵⁷Fe to be well reproduced using bandmixing in the Nilsson model. Both 57Fe and 59Fe are one neutron away from a ⁵⁸Fe core. Likewise, ⁵⁹Mn might be described by a single proton coupled to a ⁵⁸Fe deformed core. Specifically, the deformation parameter δ must take values in the range 0.1 to 0.14 to obtain agreement with the data. The positive nucléar quadrupole values in this region support a positive δ . The simple Nilsson model (without bandmixing) predicts the ground state of ⁵⁹Mn to be $\frac{5}{2}$. This prediction is independent of the exact value of δ so long as δ is positive. A $\frac{3}{2}$ ground state would be expected in this model only if δ were negative. Based on both the systematics of the manganese isotopes and the Nilsson model, the $\frac{5}{2}$ assignment for the ground state of ⁵⁹Mn is favored.

B. Levels in 59 Fe

Prior to the experimental work of McLean *et* al.,⁷ Sood⁸ attempted a theoretical description of the then known level structure of ⁵⁹Fe using the Nilsson-model description. Good agreement was obtained for the known levels using parameters in the Nilsson model which were not too different from the results Sood and Hutchinson⁹ fourd necessary to describe the level structure of ⁵⁷Fe. Sood noted that bandmixing due to Coriolis coupling did not seem to have a significant effect on the levels in ⁵⁹Fe.

The results of McLean *et al.*⁷ produced certain discrepancies with Sood's results. In particular, Sood fails to account for the two $\frac{3}{2}$ levels at 571 and 726 keV. McLean *et al.*⁷ suggested that a different set of Nilsson-model parameters might better describe the ⁵⁹Fe nucleus without invoking bandmixing. The results of such a calculation using the method of Nilsson¹⁸ are compared with

TABLE IV. Comparison with predictions of the mass excess and Q_8 for ⁵⁹Mn.

Source	Mass excess (MeV)	Q _β (MeV)
This work Kashy <i>et al.</i> ^a MSMME ^b Myers [°] GHT ^d SH ^e LZ ^f BLM ^g JGK ^h	$\begin{array}{c} -55.5 \pm 0.1 \\ -55.49 \pm 0.03 \\ -55.35 \\ -55.23 \\ -56.40 \\ -55.6 \\ -56.08 \\ -53.5 \\ -55.94 \end{array}$	5.2 ± 0.1 (5.31) 4.80 (5.43) 4.16 (4.26) 4.4 (5.1) 4.33 (4.58) 4.3 (7.2) 4.61 (4.72)
Comay and Kelson ⁱ WBG ⁱ	-56.12 -55.67	4.52 (4.54) (5.00)

^a E. Kashy *et al.*, Ref. 10.

^bC. N. Davids, Ref. 19. Mass of ⁵⁹Fe not cited.

^cW. D. Myers, Ref. 16.

^dH. V. Groote, E. R. Hilf, and K. Takahashi, Ref. 16.

^e P. A. Seeger and W. H. Howard, Ref. 16.

^fS. Liran and N. Zeldes, Ref. 16.

^gM. Beiner, R. J. Lombard, and D. Mas, Ref. 16.

^hJ. Jänecke, Ref. 16.

ⁱ E. Comay and I. Kelson, Ref. 16.

¹A. H. Wapstra, K. Bos, and N. B. Gove, Ref. 20.

experiment in Fig. 7.

Comparing Fig. 7 with Fig. 3, one sees that only the 473-keV transition is an intraband transition. All other transitions are deexcitations by interband transitions in this model. Since E2 rates should be enhanced in intraband transitions, one would expect the second member $(J^{\pi} = \frac{3}{2}^{m})$ of the $K = \frac{1}{2}^{m}$ rotational band to have a transition to the $K = \frac{1}{2}^{m}$ bandhead. The 726-keV level is observed to have a transition to the 287-keV level, while no transition to this state is observed from the 571keV state. This would suggest that the 726-keV

*Present address: Cyclotron Laboratory, Department of Physics, Michigan State University, East Lansing, Michigan 48824.

†Work performed under the auspices of the USERDA, Division of Physical Research.

- ‡Alfred P. Sloan Foundation Fellow.
- Thesis student at Argonne from the University of Chicago.
- Present address: Department of Physics, The Florida State University, Tallahassee, Florida 32306.
- ¹C. N. Davids, E. B. Norman, R. C. Pardo, and L. A. Parks, Bull. Am. Phys. Soc. <u>20</u>, 1164 (1975); in Proceedings of the Third International Conference on Nuclei Far From Stability, Cargèse, Corsica, 1976 (unpublished), CERN 76-13, p. 590.
- ²C. N. Davids, S. L. Tabor, E. B. Norman, R. C. Pardo, and L. A. Parks, Phys. Rev. C 14, 160 (1976).
- ³L. A. Parks, C. N. Davids, and R. C. Pardo, Phys. Rev. C 15, 730 (1977).

level is the $\frac{3}{2}^{-}$ member of the $K = \frac{1}{2}^{-}$ rotational band. These considerations do not agree with those of McLean *et al.*⁷ who based their assignment of the 571-keV level to the $K = \frac{1}{2}^{-}$ rotational band on the relation between observed and predicted spectroscopic factors. It may well be that a certain amount of bandmixing has occurred in these levels to account for the transitions observed.

C. Mass of ⁵⁹Mn

The values obtained for the ⁵⁹Mn mass excess from this work and that of Kashy *et al.*¹⁰ are compared with various mass predictions in Table IV. The measured Q_{β} is also compared with the values predicted with a given model. The Q_{β} values not enclosed in parentheses use the mass excess of ⁵⁹Fe from the compilation of Wapstra and Bos.¹⁶ The Q_{β} values in parentheses use the ⁵⁹Fe mass excess internally predicted.

The comparisons in Table IV show a rather wide scatter in the predicted values for the mass excess of ⁵⁹Mn. The modified shell-model mass equation (MSMME) results of Davids,¹⁹ the droplet model of Myers,¹⁶ and the droplet model plus shell correction prediction of Seeger and Howard¹⁶ show the best agreement in the mass excess values.

Note added in proof: Recent in-beam γ -ray results of E. K. Warburton *et al.* (private communication) tend to favor a spin assignment of $\frac{5}{2}^{-}$ for the 571-keV state in ⁵⁹Fe. This assignment does not affect any conclusions in the present work.

ACKNOWLEDGMENTS

The authors would like to thank G. E. Thomas for producing the enriched ⁴⁸Ca foil targets used. Informative discussions with D. Kurath and S. L. Tabor are gratefully acknowledged.

- ⁴A. Sperduto and W. W. Buechner, Phys. Rev. <u>134</u>, B142 (1964).
- ⁵L. L. Lee, Jr., and J. P. Schiffer, Phys. Rev. <u>154</u>, 1097 (1967).
- ⁶E. D. Klema, L. L. Lee, Jr., and J. P. Schiffer, Phys. Rev. 161, 1134 (1967).
- ⁷K. C. McLean, S. M. Dagliesh, S. S. Ipson, and
- G. Brown, Nucl. Phys. A191, 417 (1972).
- ⁸P. C. Sood, Phys. Rev. <u>179</u>, 1100 (1969).
- ⁹P. C. Sood and D. A. Hutchinson, Nucl. Phys. <u>A96</u>, 159 (1967).
- ¹⁰E. Kashy, W. Benenson, D. Mueller, H. Nann, and L. Robinson, Bull. Am. Phys. Soc. <u>20</u>, 1164 (1975); Phys. Rev. C 14, 1773 (1976).
- ¹¹L. A. Parks, C. N. Davids, B. G. Nardi, and J. N. Worthington, Bull. Am. Phys. Soc. <u>21</u>, 633 (1976); Nucl. Instrum. Methods (to be published).
- ¹²A. P. Bogdanov, V. A. Knat'Ko, A. V. Soroka, and
- V. N. Tadéush, Yad. Fiz. 14, 909 (1971) [Sov. J. Nucl.

Phys. 14, 509 (1972)].

- ¹³H. J. Kim, At. Data Nucl. Data Tables <u>17</u>, 485 (1976).
- ¹⁴N. B. Gove and M. J. Martin, Nucl. Data Tables <u>10</u>, 205 (1971).
- ¹⁵C. N. Davids, D. R. Goosman, D. E. Alburger, A. Gallman, G. Guillaume, D. H. Wilkinson, and W. A. Lanford, Phys. Rev. C 9, 216 (1974).
- ¹⁶S. Maripuu, Ed., At. Data Nucl. Data Tables <u>17</u>, 477
- (1976), 1975 Mass Excess Predictions.
- ¹⁷S. Raman and N. B. Gove, Phys. Rev. C 1, 1995 (1973). ¹⁸S. G. Nilsson, K. Dan. Vidensk. Selsk. Mat.-Fys.
- Medd. 29, No. 16 (1955).
- ¹⁹C. N. Davids, Phys. Rev. C <u>13</u>, 887 (1976).
 ²⁰A. H. Wapstra, K. Bos, and N. B. Gove, 1974 Supplement to the Atomic Mass Adjustment (private communication).