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We present and discuss here the results of a calculation of the real part of thepotential energy of a proton

within nuclear matter, making use of the realistic Reid soft-core nucleon-nucleon interaction, which we justify

in the intermediate-energy range. The problem of evaluating the volume of the real part of the proton-nucleus

optical-model potential as a function of incident energy is solved with the help of a number of techniques

previously developed in the literature of nuclear-matter theory. We find good agreement with results of

various phenomenological studies over an energy range of 100 to 1050 MeV incident proton energy for targets
' Ca and ' Pb, which we adopt as test cases. Furthermore, we consider a number of higher-order corrections

to our initial result; all of these have minimal effect in the energy regime we have considered except for the

third-order correction proposed by Rajaraman, as we demonstrate and discuss. Finally, we show that the

conventional approach to the nucleon-nucleus potential at medium energy, the so-called Rayleigh-Lax

potential, which makes use of a straightforward impulse approximation and an empirical nucleon-nucleon

scattering amplitude, is in gross disagreement both with phenomenological findings concerning the energy

dependence of the optical potential and with results of the present calculations. We make an effort to shed

some light on the physical reasons for the failure of the Rayleigh-Lax approach, as opposed to the success of

other approaches relying upon realistic nucleon-nucleon interactions or phase shifts rather than an empirical

medium-energy nucleon-nucleon T matrix.

NUCLEAH HKACTIONS 4 Ca(P, p), Ospb(p, p), E=100-1050 MeV; nuclear mat-
ter approach used to estimate volume of real part proton-nucleus optical model

potential, multiple-scattering formalism, numerical estimates of various higher-
order terms.

I. INTRODUCTION

The nucleon-nucleus interaction potential, how-

ever defined, is energy-dependent. Over the past
25 years, a vast lore has built up concerning the
empirical energy dependence of the local pheno-
menological nucleon-nucleus optical- model poten-
tial. This phenomenology now extends from a few

MeV, with some gaps, up to and beyond a GeV.
Over the years, there have been a number of ef-
forts to understand and explain the energy depen-
dence and magnitude, particularly of the real part
of the phenomenological optical potential.

Out of necessity, most early studies covered low
incident nucleon energy (~100 MeV) where the data
seem to show a linear dependence on energy. The
literature abounds in theoretical analyses of one
kind or another which successfully reproduce'this
empirical linear kinetic-enex gy dependence. Typi-
cal is the work of Sinha' who achieves good agree-
ment using a simplified nucleon-nucleon potent'. l
and a single-folding approach, with the exchange
term playing an important role in producing the
agreement. Such energy dependence is most con-
vincingly discussed in terms of the volume-inte-

gral per nucleon of the potential, because of the
well known geometry ambiguities which plague
low-energy phenomenological analyses. Various
authors have calculated such a volume integral
and have obtained an adequate reproduction of the
low-energy phenomenology P~

Interestingly, studies of the empirical optical
potential which have extended to 1 GeV and be-
yond' ' suggest a rough overall logarithmic energy
dependence of the volume of the real part of the
optical potential. Naive extrapolation of the low-
energy linear dependence indicates that the real
potential should go to zero at about 250 MeV.
However, recent analyses of data for incident en-
ergies between 180 and 560 MeV' and from 350 to
1150 MeV, unpublished work by the present
authors, and earlier incomplete studies by Van
Gers et al."' are all consistent in indicating a
zero which occurs near 500-600 MeV, the poten-
tial becoming increasingly repulsive thereafter.

Theoretical efforts to understand the logarith-
mic energy dependence, which has long been ex-
pected on the basis of simple dispersion-theoretic
arguments like those of Passatore' and of Gall and
Weigel, "have tended to give too much repulsion
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at medium energies, although adequately repro-
ducing the low-energy transition from linear to
logarithmic regimes.

A formal theory of the nucleon-nucleus optical
potential exists which gives what might be called
a "multiple-excitation series" for the nucleon-
nucleus interaction. ""2 Only the first term in
this series is generally used for calculations; in
momentum-transfer space this first term has the
approximate form v(q') x F(q'), where v'(q') is the
nucleon-nucleon T matrix in nuclear matter, and
F(q'} is the nuclear-matter distribution. In all
numerical applications known to us to date, the
further approximation is made of replacing v(q'}
by t(q'), the empirical free nucleon-nucleon scat-
tering T matrix. For short, following Boridy and
Feshbach, '2 me mill call the resulting potential the
Rayleigh-Lax potential, or sometimes the T-ma-
trix potential.

Calculations using the Bayleigh- Lax potential
again suffer from too much repulsion at medium
energies, and in addition give an energy depen-'
dence in obvious and serious disagreement with
phenomenology. One is thus left with the puzzle of
whether the discrepancy arises from the approxi-
mation v = t, as one would naively expect, or if
instead it is due to higher-order terms in the mul-
tiple-excitation series. In the present work, we
try to answer both of these questions, by avoiding
the use of an empirical nucleon-nucleon T matrix,
and also by investigating several types of higher-
order correction terms.

%'e base our calculations on the Beid soft-core
nucleon-nucleon potential" which me use at ener-
gies up to 1 GeV. Such use of this potential re-
quires careful justification, mhich is included in
Sec. III. Following the techniques of nuclear-mat-
ter theory, ""we are able to obtain an improved
estimate for the diagonal part of the nucleon-nu-
cleon scattering amplitude inside the nucleus by
taking into account certain many-body corrections
to the diagonal part of the so-called C operator
generally used in nuclear-matter calculations.

In Sec. II we briefly review the connection be-
tween the nucleon-nucleus optical potential and the
nucleon-nucleon interaction, as obtained in our
theoretical framework. In Sec. III, we present the
details of the evaluation of the matrix elements of
the Beid potential and summarize the results of
our calculations, in comparison with data and with
Rayleigh-Lax predictions, over the energy range
from IOO to 1050 MeV. In Sec. IV, we estimate
the size of certain higher-order corrections, and
examine the range of validity of certain approxi-
mations used in this and prior work. Our conclu-
sions and general suggestions for further work are
given in the concluding Sec. V.

II. THEORY

t = v+ v(1/e~}t .
Here, as usual, e"=E"—E-&

(4)

Our aim in this work is the study of corrections
to the conventional impulse approximation, v(q )
= t(q'), with the hope of obtaining an improved es-
timate for r(q'}. A number of calculations have
already made it clear that the second- and higher-
order terms in the multiple-excitation series,
with the impulse approximation retained, do not
provide the necessary corrections to the first-
order calculation to explain the observed energy
dependence. ""Hence, our first effort should be
to improve the first-order term and the impulse
approximation. In doing so, however, we will re-
tain a number of other approximations which are
quite familiar to workers in the field, and easy to
justify on the basis of numerical calculation and
comparison with available data. For the sake of
completeness and clarity, me will mention some
of these further approximations, although in the
literature it is customary to adopt them without
any comment whatsoever.

In the Kerman-McManus-Thaler (KMT) multiple-
excitation approach, the first-order optical poten-
tial xs"'"

V.„=[@(W-I)/a](e,~r~ C,),
where 4, is the fully antisymmetric ground state
function of the target nucleus. The kinematic fac-
tor q and the "counting factor" (A —I)/A are fully
discussed in the literature"" and to save space
will usually be suppressed in subsequent equations.
The potential U„, is usually realized in momen-
tum-transfer space by assuming that the depen-
dence of 7 on the lab momentum of the struck nu-
cleon in the target is negligible. "'" The result is

~.„(q') = [n8 —I)/~]» (q')~(q') . (2)

The meaning of the various quantities in Eg. (2} is
obvious; p(q2) is the Fourier transform of the
matter density of the target-nucleus ground state
with respect to q =k- k', the center-of-momen-
tum system momentum transfer, and U„,(q') is
similarly the Fourier transform of the optical
potential. In general, of course, the microscopic
optica. l potential is considered nonlocal. But in
the medium-energy regime it has been repeatedly
shown"*'e'20 that the effects of nonlocality are in-
significant. %e follow Feshbach" and others" "
in using a local potential throughout.

The scattering amplitudes are directly related
to the operators v' and t given" by

7 = v+ v(8 /)er,
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—K„where E" is the energy of the incident nu-

cleon in the projectile-nucleus center-of-momen-
tum system plus i&; E is the projectile kinetic-
energy operator, H„ is the Hamiltonian of the tar-
get nucleon, and K, is the kinetic-energy operator
of the struck free nucleon. The nucleon-nucleon
interaction is v and 8 is an operator which selects
out the subspace of antisymmetric target-nuclear
states, thus allowing only physical target-nucleus
states as intermediate states in the "multiple-
excitation" series."'"

The operators t and v are related by the familiar
iterative series"

~ = f+ t(8,/e" - 1/e")v .
The impulse approximation that is the basis of
most applications of Eq. (2) amounts to keeping
only the first term in the series Eq. (5).

To avoid the impulse approximation, we turn
to the realm of nuclear matter, where it is con-
ventional, on the basis of the Goldstone many-body
formalism, '~ to write the effective two-body inter-
action within nuclear matter as

GN g + ~(q/eN) GN

where Q is the Pauli operator, a full-antisym-
metrization operator for aE/ nucleons in the sys-
tem, projecting all intermediate nucleon-nucleon
states onto a basis of unoccupied two-nucleon
states above the Fermi surface. In direct analogy
with Eq. (4), we define the effective two-body in-
teraction in free space as

G~ = u+ e(1/e~) G~,

so that G~ and G~ are related by"

GE GF Gt(q/ 8 1/ E)GÃ

%hat the accumulated lore of nuclear-matter the-
ory tells us is how G" in fact is related to G~ and

what the numerically important differences are.
If we can therefore relate G~ and G" to t and v,
respectively, we can apply nuclear-matter results
directly in order to answer the questions concern-
ing the impulse approximation that we have raised.

In this program, we must be guided by physical
and numerical considerations rather than empty
formal relations. If we are to use the nuclear-
matter approach, we are imagining the interaction
of the incident nucleon to take place with infinite
nuclear matter. At medium energies, say 1 GeV,
the wavelength of the incident nucleon is quite
small in comparison with the nuclear radius, par-
ticularly for the heavy nuclei we consider in this
work and it is relatively straightforward to apply
nuclear-matter results to the problem.

A direct comparison of Eqs. (4) and (7) gives for
the general off-shell matrix elements of the oper-

&kifik'&=&kiG~ik'& .
The connection between G~ and v is more subtle;
one needs to recall that at high incident momen-
tum there is a large separation in momentum

space between incident nucleon and target nucle-
ons, and thus the need to provide full antisym-
metrization of incident and target nucleons dimin-
ishes with increasing incident energy. Since our
local optical potential involves only on-shell ma-
trix elements, for medium energies and heavy
nuclei the differing subspaces projected out by 8
and Q will not invalidate the approximation

(10)

Equations (8), (9), and (10) are the basis of
what follows. A direct transposition of the tech-
niques of nuclear-matter theory, developed to
handle the corrections to the matrix elements of
G~ which will give us a good approximation to the

(unknown) matrix elements of G", can now be made

to the present problem if we restrict ourselves to
diagonal matrix elements —this restriction is not

necessary, but is made only for convenience since
here we are interested only in the volume integral
of the real potential, and this is given in terms of

U„,(q' =0) directly by inspection.
W'e therefore obtain, in lowest order in G~, an

expression equivalent to the usual Rayleigh-Lax
prescription for the nucleon-nucleus optical po-
tential' '2 volume integral

VX = [~(A —1)/X](Z&k,
~
G,",

~
k,&+X&k, ( G„)k,&),

(11)

and our aim herein is to study the energy depen-
dence of and certain higher order corrections to
this expression. %e can begin to apply the ideas
of nuclear-matter theory at once by noting

(12)

where P, is the plane-wa-ve state of the incident
nucleon, and by using the on-shell identity GP = vP

for $=P+e 'GQ. WeexplicitlyusetheReidsoft-
core potential for v, and construct its eigenstates

g, such that G p, = vg, . In this, we understand that

ko is the physical relative momentum of the inci-
dent and target nucleons, and appears as such in
G". We suppress the isospin dependence in Eq.
(11) for notational convenience in subsequent
equations, and introduce an overall factor c,- which
absorbs all the multiplicative factors in Eq. (11),
divided again by A. We now make the usual. partial
wave expansion for the plane wave Q, and the dis-
torted wave g„and obtain for the potential volume
integral per nucleon:
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00 00

V = e; Q 4w(2I, + 1) — j1,(k,r) v~(r)u~(k, r)r dr,
L"-0 0 0

where the radial part of g, is u~(k, r)/k, r and we
allow the interaction to be different in each rela-
tive angular momentum state. This expression is
valid for singlet states only. It may be generalized
for the triplet states if we average over the spin
magnetic quantum number M„ thus giving

00

x Q 4v(2I. +1)— j~+ „(k,r)v~ „(r)
s 0 0

xu~

„(kov)ader,

(14)

where u» is given in terms of the usual uL~t
wave functions for triplet states as follows. If we
compare the partial wave expansions of the total
wave function P, with no spin to that case where the
total spin of the two nucleons is 1 then the wave
function for the spin 1 system may be expanded as

1
po(r, S =1)= Q ~ ui„s Y~„

LNsNL 0

where

(15a)

", v,'(~)g—(I.uM ~S„~I.'uM}u, ,,(r}, (18)

where v~(x) = v~c(r)+K»vier(r), the central and tensor
parts of the nuclear force, 8» is the standard ten-
sox' opex'atox', and p. is t11e two-nucleon system re-
duced mass. Since the spin-orbit potential is
rathex small we have neglected it, thereby allow-
ing the fortunate simplifications resulting from
I.-S coupling. Note that for energies up to 1 GeV
we make a relativistic correction to the Schro-
dinger kinematics by using the exact relativistic
two-nucleon center-of-mbmentum (c.m.) system
wave number k, and interpreting p, to be the "re-

{15b)

Note the averaging over ML in the definition of
uL „.Using the plane wave for triplets we definej» ——jLX» since the radial part depends on the
orbital angular momentum only. The potential
vL „ is that which produces the eigenstate uL „.
The uL~ are found by solving the usual coupled
equations, the origin of the coupling being of
course the tensor force. Hence we solve24

d I.(I.+ 1) 2p
A +k,'- @, v~c(r) u~~(r)

duced energy, "' [i.e., p, = «,«, /(«, + «,), «, being
the relativistic c.m. energy of particle i in amu].
The method of solution of the coupled equations
and the boundary conditions of the wave functions
uL~ are fully discussed in the literature and mill
not be mentioned further. "

The iterative solution of Eg. (8} is of course

G" = G'+ G~(q/e" 1/ev-}a~+ ~ ~ ~ .
Vfe postpone discussion of the corrections due to
the second term in this expansion until Sec. Pf.
Also in Sec. IV we make estimates of corrections
due to motion of target nucleons, as well as re-
marks concerning the importance of three-body
correlations which have been shown to be signifi-
cant in calculations of the binding energy of nu-
clear matter. '""

Nuclear-matter studies have indicated that it is
the third order contribution in E«i. (1V) which is
most significant for high relative momenta, and it
is to a discussion of this correction we now turn.
Physically, the third-order terms account for the
possible particle-hole interactions involved in the
collision of the incident nucleon with a target nu-
cleon. The initial interaction of incident nucleon
and target nucleon produces an intermediate parti-
cle-hole state, with which the incident nucleon in-
teracts to return the two nucleons to their original
momentum- space conf igurations. There are two
distinct particle-hole interactions, the one in
which the incident nucleon in its intermediate state
scatters from the hole state, and the other in
which the particle and hole states annihilate to
produce a second particle-hole state. The first
of these interactions is "direct," the second "ex-
change. " The inclusion of these processes, as
studied by Hajaraman, "can be accomplished at
high relative energies by a relatively simple de-
vice. See Fig. 1.

Hajaraman29 used a central, spin-independent
potential and computed the general off-shell ma-
trix elements in order to estimate the contribu-
tions of the various possible particle-hole inter-
actions. He found that the important third-order
corrections can be properly included in a first-
order calculation by the device of neglecting the
nuclear interaction in the relative odd angular
momentum states, and increasing the statistical
weight of the relative even angular momentum
state interactions by a common factor of —, . De-
tails of this correction are discussed in Sec. III.

However, as pointed out by Sprung, Bhargava,
and Dahlblom, ' the Hajaraman correction is poor
fox' relative momenta of the order of k~, the Fermi
momentum; for the higher energies we consider,
the Bajaraman correction is accurate and as we
will see gives good agreement with such empirical
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I = I I
«wmmQ ~~ f~mmi ~~ «mneme +4 2

I+~ «~M«

32

Note finally that me have not attempted to replace
the systematic KMT "multiple-excitation" theory
of the optical potential by an aEtemate "G-matrix
theory. " Qur aim throughout is to use the numeri-
cal and theoretical knowledge of G~ and G~ ac-
cumulated in nuclear-matter studies in order to
guide us in improving the usual approximation to
the first term in the KMT multiple-excitation
SerieS ll, j.2, xv, j.8

(~) (b) (c) (d) (e) (f)
FIG. 1. Contributions to the single-particl. e potential

energy in nuclear matter after Hajaraman {Ref.29).
Diagrams {a}and {b) represent the simplest direct and

exchange processes. The hole-hole interaction {f),
marked here by {x), was neglected by Rajaraman. The
Rajaraman correction discussed in the text accounts
fox the processes represented by diagrams {c)through

{e), as indicated by the uppex curly bracket. Fox' details,
see Ref. 29.

results as are known; a lom-energy breakdown
mill also be apparent, as expected here.

It is also noteworthy that the Hajaraxnan correc-
tion mas tested only for central forces, and hence
is only approximately valid in our case since we
include tensor forces as mell. However, me shall
show in the next section that the influence of the
tensor force also is diminished at the higher rela-
tive momenta, so that again our approximations
remain good in the 400-1000 MeV range in mhich
me are mainly interested. A considerably more
ambitious and tedious approach along the present
lines would be required to connect smoothly to the
low-energy (5-50 MeV) phenomenology I

%'e need to emphasize here also the advantage of
the present approach as opposed to the more fa-
miliar Hayleigh- Lax-type calculation in which a
phenomenological nucleon-nucleon T matrix, f(q ),
is used in Eq. {2) in place of r(q'). One simply
has not the vaguest notion of hom to go about modi-
fying the empirical free matrix element t(q') in
the direction of the unknown r(q'} for nuclear mat-
ter. But by one further approximation, Eq. (10),
numerically as mell justified as the impulse ap-
proximation with which one is anyhow forced to be-
gin, one can turn to the decades of insight provided
by nuclear-mattex theory and finally begin to ap-
proach r{q') itself. The price one pays is the ne-
cessity to fall back upon an empirical nueleon-
nucleon potential, or set of phase shifts; this is
considerably trickier and more difficult than to
plug in some simple parametrization of t(q ) mind-
lessly and grind aw'ay. But as we shall see in See.
III, the simple parametri. zation does not moxk. To
get out more physics, one has to put in some more
physics.

+c„(-,'V„+—.'V„+-.'7,.+-', V„),

where V'=V/c, [see Eqs. (11)-(14)]and the sub-
scripts refer to singlet or triplet and even or odd

states. If me calculate V using the Hajaraman cor-
reetion2' me obtain:

(19)

To obtain the V quantities appearing in Eqs. (18)
and {19)we begin by solving the coupled equations
(16) of Sec. II for the u~z eigenstates, or the un-

coupled form of Eq. (16) (right-hand side equal to
zero) for singlet eigenstates u~. Using Eq. (15b)
me then construct the triplet eigenstates u~„.
From the asymptotic boundary conditions me then
obtain the usual C matrix [e"&F~+C~( ~Gf+F~),
where I'~ and G~ are the usual regular and irregu-
lar Coulomb functions]. Because all our matrix
elements [Eqs. (11) and (12)] are on shell and di-
agonal, w'e do not in fact need to compute such
overlap integrals as Eqs. (13) and (14), since they
are given in terms of the C matrix. Vfe have the
well-known result'2

C~ = (-2p/8') rdrj~(k, r)v~( )ru(k, r) (20)

and an analogous result for the triplet states. In
these calculations we have in fact neglected the
Coulomb interaction, since at 1 GeV the Sommer-
feld parameter n is of the order 3.0 ' for one pro-
ton incident upon another. %'e considered angular
momentum values up to I.=6 at 1 GeV in order to
test the convergence of the series involved in Eqs.
(13) and (14). The convergence is excellent even at

III. NUMERICAL RESULTS

The potentials as calculated in Eqs. {13}and (14)
are the interactions for tax"get protons or neutrons
with the incoming nucleon, for either singlet or
triplet spin states and for either even or odd rela-
tive angular momentum. If me consider protons
incident on a target nucleus with neutron (proton)
fraction c„(c&), then the full expression for the
volume of the real part of the proton-nucleus opti-
cal potential is given by"'"
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FIG. 2. (Upper) Experimental nucleon-nucleon phase
shift data for ~S, 3S, 3P, and 'D relative states following
Simmons (Bef. 33) and references therein. The solid
curves are polynomial fits to the lower-energy phase
shifts, which are indistinguishable from the predictions
of the Beid soft-core potential shown by the dashed
curves. (Lower) Proton-proton elastic scattering
angular distribution at 0.65 Ge7 incident laboratory
energy, with data from Befs. 33-37. The prediction
of the Beid soft-core nucleon-nucleon interaction is
shown as the solid curve. The dashed line is the ab-
solute prediction of the crude but generally used pa-
rametrization fEq. (23)] with parameters appropriate
to 0.65 Qeg from the tabulation of Qystricki and Lehar
(Bef. 37). The open circle at t (=q ) = 0 represents the
cross section resulting from adding the real part of the
forward scattering amplitude predicted by the Beid
soft-core potential to the imaginary part obtained from
the experimental total cross section via the optical
theorem.

I.=6 at 1 GeV, with higher relative angular mo-
menta contributing a pe"cent or so to V.

Since the Heid potential, which we use to con-
struct the C matrix, was developed for much lower
energies than j. GeV, one may well question the
advisability of using it at all in these calculations.
It is obvious that the precise nature of the repul-
sive core s more important near 1 GeV, and that
a full complex effective nucleon-nucleon interac-

tion is required in order to account for the flux
loss from the elastic channel resulting from meson
production, nucleon- resonance channels, etc. ,
which open in the upper part of the nucleon-nucleon
incident energy range. The Heid potential cer-
tainly does rather well at lower (s350 MeV} ener-
gies. We use it here, first of all, because of the
blunt fact that the current state of medium-energy
nucleon-nucleon phenomenology is insufficient
both experimentally and theoretically" ' to pro-
vide an all-encompassing energy-independent in-
teraction, either microscopic or phenomenologi-
cal.

Phase shift data are available for the dominant
'90, 'S„and 'D, nucleon-nucleon states as well as
the 'P, state for energies up to about 700 MeV."
Our calculations with the Heid potential reproduce
these experimental phase shifts throughout the
energy range where we have data, as seen in Fig.
2. In the lower portion of Fig. 2, we also show
for 0.65 GeV a comparison of the proton-proton
elastic scattering cross section, calculated using
the Heid potential, with the available data" "and
again we see good agreement in shape and mag-
nitude. Finally, we have checked that at least the
real part of the forward scattering amplitude
(which is all we need in the present work) as pre-
dicted by the Heid potential, even at 1 GeV, is
not inconsistent with phenomenology. "" Until
something better comes along, we see no basis for
ignoring the Reid and similar low-intermediate-
energy potentials in intermediate-energy applica-
tions.

The reader will have noticed that, since con-
tinuum boundary conditions were as usual imposed
on the eigenstates u~ and u~~, the right-hand sides

S
of E(ls. (13) and (14) are nontrivially complex,
although we are interested here only in the real
part of the nucleon-nucleus optical potential, and
have used a purely real nucleon-nucleon interac-
tion."

Therefore, we write [compare E(l. (13)]

(', , =(&w/(, )Ha f rdrj, (a,~),(rim, (a.r)),
0

(21)

and this is the quantity exhibited in Figs. 3 and 4,
for the singlet states, while the corresponding ex-
pression for the triplet states is

Vg g ~ = (2S+ 1) (4F/ko)

xHe rd~j I*. „&,r v~ ~
s

(22)

Figure 3 shows the '8, '9, 'P, and 'P contribu-
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FIG. 3. Contributions to the volume of the nucleon-nucleus optical potential from the 'S, 3$, 'P, and 3P states of the
nucleon-nucleon system, as a function of laboratory incident proton kinetic energy T&. The expressions used are Eqs.
(21) and (22) of the text. Note the important contribution of the 'P term even at 100 MeV, the greater attraction for the
$ term compared with the '$ (as a result of the tensor force), and the gradual convergence of the 'S- Sand 'P 'p terms

as T& approaches 1 GeV.
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FIG. 4. Same as Fig. 3, except that the contributions of the D, D, E, 3F, and 3Q nucleon-nucleon states are shown.
Note the convergence of D and D past 1 GeV. Note also that the partial waves 4 =3, 4 do not become significant in
terms of their contribution to p until an energy of 1.0-1.5 GeV is reached. Finally, note that this figure uses a differ-
ent scale than does Fig. 3.
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TABLE I. Spin and isospin state contributions to the real optical potential.

E&~ (MeV) 100 200 300 550 720 1040 1500

Vse (MeV fm )
~te (MeVfm )

V„(MeV fm3)

Vt, (MeV fm3)

-324
—199

267
36 cL

-240
—82.3
384
—3.53

-188
—3.09

325
54~

-66.8 —22.5
114 142
248 160
129 148

14.0 61.2
152 164
37.4 -53.9

143 92.4

~Interpolated from other calculated values.

tions as labeled in the drawing. Figure 4 has the
corresponding results for the 'D, 'D, 'F, 'F, and
'G states. The remaining states we considered,
'G, 'H, 'H, 'I, and 'I, are too small to distinguish
from the zero line and are omitted from the draw-
ings for clarity. Note the differing scale in the
two figures. We see clearly that the dominant
even partial wave at the lower energies is of
course the $ wave, with the D wave becoming sig-
nificant by 1 GeV. The P wave dominates the odd-
relative-state forces throughout the energy range
considered, with the L = 3 states not becoming sig-
nificant until about 1.5 to 2 GeV. We also observe
the influence of the tensor force in splitting the
singlet and triplet contributions to be weakened as
we approach 1 GeV, as mentioned in Sec. II.

In Table I we give the values of the real parts of
the overlap integrals for the singlet-even, triplet-
even, singlet-odd, and triplet-odd relative states
for selected incident nucleon laboratory energies.
These are the V quantities of Eqs. (21)-(22).

To give a general idea of the phenomenological
trend of the energy dependence of the real optical
potential volume integral, we have obtained the
volumes of a number of tabulated optical model
potentials from a variety of sources' '"'~'"
mainly for the cases p+ Ca and p+ Pb over a
range of energies from 30 to 1040 MeV. The re-
sults of van Qers"' indicate that for the heavier
nuclei, the real optical potential volume is roughly
independent of target mass number A, which is
also borne out by our calculations, and we have
therefore included in the figures recent data ob-
tained for p+ "0 and p+ ~Zr, which was communi-
cated to us privately' ' after our calculations
were completed, and serve to fill in some wide
gaps in the p+ "Ca and p+~'Pb data.

In Fig. 5 we see the available data for the real
part of the optical potential volume for p+ Ca,
with a few p+ "0points added' near 500 MeV,
compared with our predictions. The solid curve
represents the calculation using the Rajaraman
correction, as in Eq. (19), whereas the dashed
curve gives the result of using an impulse pre-
scription, Eq. (18). The p+4oCa points are mainly
from the tabulation of Percy and Percy" for the

lower energies. The 1 GeV point comes from
previous phenomenological and microscopic analy-
ses of the Saclay P+~'Ca data."'"

The crosshatched region in Fig. 5 gives the pre-
diction of the conventional Rayleigh-Lax potential
determined from the free-space parametrized
nucleon-nucleon T matrix which is almost invar-
iably used in medium-energy calculations. This
parametrization is

t(q2) = (ik,or/4m)(1 —in) exp(-Pq'/2), (23)

where q is the usual four-momentum transfer, o ~
is the total nucleon-nucleon cross section at the
appropriate energy, and J3 is obtained by fitting the
forward slope of the experimental nucleon-nucleon
angular distribution at the appropriate energy. '~'"
Note that the magnitude of the experimental cross
section is not reproduced by this parametrization,
since the remaining parameter z is fixed inde-
pendently, from rather delicate and uncertain
Coulomb-nuclear interference analyses near q' = 0.
An entirely typical result is shown by the dashed
line in the lower part of Fig. 2.

Use of such a T matrix within the Rayleigh-Lax
approach" "'"amounts to use of a Gaussian ef-
fective nucleon-nucleon interaction; the parametri-
zation, Eq. (23), is clearly limited by the accuracy
with which the various parameters, particularly
z and P, are known. The width of the shaded re-
gion in Figs. 5 and 6 is a reflection of the experi-
mental uncertainty in the parameters, particularly
o." In looking at Figs. 5 and 6 it is worth recall-
ing that the Rayleigh-Lax potential has an energy-
dependent geometry through the parameter P in
Eq. (23), which has an extremely strong energy de-
pendence in the range 300-1000 MeV." This
strong energy dependence, and associated experi-
mental uncertainties, might account in some mea-
sure for the drastic difference between the Ray-
leigh-Lax or T-matrix prediction and the obvious
empirical trend. However, for whatever reason,
it remains clear that the Rayleigh-Lax potential,
which has almost invariably been used in medium-
energy proton-nucleus scattering and reaction cal-
culations, is in hopeless disagreement with pheno-
menology, the zero in the real potential occurring
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FIG. 5. The quantity U [Eqs. (18) and (19)], usually called J/A, as a function of incident laboratory proton kinetic
energy for the target nucleus Ca. The solid curve is the calculation using only even states [Eq. (19)] with statistical
weight unity; the similar dashed curve is the full calculation using both odd and even states [Eq. (18)]. The trend of
the predictions of the Rayleigh-Lax or T matrix potential is given by the shaded region, while the data points were
taken from the literature of the phenomenological optical potential for p+ Ca elastic scattering. It is seen that, as
expected, the solid curve (which includes the Rajaraman correction) gives a good account of the data at medium ener-
gies. The failure of the usual potential constructed from the parametrization of t(q2) ("T matrix") is also apparent.
Data obtained by Schwaller et al. (Ref. 7) for p+ 0 are included near 500 MeV, to define the zero of J/& more clearly.

nearer 700 than 500 MeV, and there being too much
repulsion predicted at higher energies.

We observe that the even-state Rajaraman-cor-
rected calculation gives good agreement with phe-
nomenology in the medium-energy range, although
it gives increasingly too weak a potential at the
low-energy end of the scale. Note, in both Figs.
5 and 6, that we have denoted U, the volume inte-
gral, of the real part of the proton-nucleus optical
potential by its more familiar if clumsier symbol
of J/A, widely used in the low-energy literature.

Figure 6 shows the results for "'Pb. As in
Fig. 5, the solid curve represents the even-state-
only calculation with &~ enhancement, as per Ra-
jaraman, while the dashed curve included both
even and odd contributions. The crosshatched re-
gion is again the T-matrix prediction, and the
phenomenological results were taken from the
literature. ' "'~ '~ As in Fig. 5, we have supple-

mented the "'Pb data with more recent data for
"Zr, in the energy region 100-200 MeV. '

Qur calculations were not extended below about
100 MeV, since the approximations we have made
are justified orQy at the higher energies. For ex-
ample, we have assumed that the incident proton
is well localized within the finite nucleus, so that
it may be treated in much the same way as a nu-
cleon within infinite nuclear matter. This assump-
tion clearly becomes increasingly realistic as the
incident proton energy increases, and the wave-
length of the proton decreases in proportion to the
nuclear radius. Also the value of k„ the relative
nucleon-nucleon system momentum, which is
needed in constructing v~ and u~ [Eq. (16)] is taken
to be the same for all target nucleons, and again
this approximation breaks down as the incident
nucleon energy approaches the nuclear Fermi
kinetic energy per nucleon of about 30 MeV. Finally,
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FIG. 6. The meaning of all symbols is the same as in Fig. 5, except that the solid data points are for p+ Pb phe-
nomenology. We have also included some data for P+ +Zr between 80 and 180 MeV, as provided by Schwandt et al.
(Ref. 41), which show well the approximate A. independence of J/A. previously noted by van Oers et al. (Ref. 5) in com-
parison with the Pb data and our calculations. Again, the solid curve (which includes the Rajaraman correction) is
in best agreement with the data, and the failure of the "T-matrix" approach is equally obvious.

the second-order term in Eq. (17) becomes more
important at lower energies, as shown in Sec. IV.

In the present work, we have emphasized the
energy dependence of the volume of the real part
of the optical potential, because most authorities
are agreed that this quantity is determined, rela-
tively unambiguously, by phenomenological analy-
ses. We have tried to show that, while the ap-
proach sketched here gives a good account of phe-
nomenology in the medium-energy range insofar as
it is known, by contrast the usual parametriza-
tion of t(q') [Eq. (23)] is in gross disagreement both
with phenomenology and with our present results.

The reader will appreciate, from Sec. II, that
the present approach can be used as in the usual
application of the Rayleigh-Lax potential"'" to
give the full magnitudes and geometries of the
real and imaginary parts of the nucleon-nucleus
optical model potential. In a subsequent paper,
we will present a full analysis of the available
medium-energy nucleon-nucleus elastic scattering
data, using the approach we have discussed here."

IV. ESTIMATES OF HIGHER-ORDER CORRECTIONS

In this section we will briefly give estimates of
several higher-order corrections, these being:
the second-order term in Eq. (17); the effect of
three-body correlations; and effects due to motion
of target nucleons. Furthermore, we will discuss
the breakdown of the Rajaraman approximation
and mention other improvements which could be
made in the calculations of Sec. III.

The second-order correction to the potential
U"' is given by

7f"'=&/, iO '(Q/8"-1/8 )G" iy, ), (24a)

which may be written out more fully as

U' '=— d k'i(@'iG i@ )iif2 (2m)' 0

Q(k') 1

(24b)
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where k,' =2p, (K,&/i3' and k„' =2p( H-„&/K', K, and

H„have been introduced in Sec. II and k' is the
relative momentum of the two nucleons in the in-
termediate state

I
Q'&. In order to obtain a rough

estimate of the size of this correction factor we
let P-=P, and let each v~=v„, some average L
independent effective potential. Hence

v„(r)(j,[(k, —k')r]

+j,[(k, + k'}r])r 'dr,

where only even angular momentum states are
considered and we have used the fact that

(25}

We adjust the strength of v (r) so that when k' =k,
we have

(2f)

If we take an exponential form for v„(r), then the
integral in E(1. (24b) can be carried out analyti-
cally. Further we assume Q(k') =0 if k'&kr and

Q(k') = 1 if k' ~ kz where kz =1.36 fm ', the Fermi
momentum. Using (K,& =28 MeV and (-H„)=22
MeV we find U"' to be fairly small, varying from
about +10 MeVfm' at 100 MeV to about +8 MeV fm'
at 1.04 GeV. Thus the second-order correction is
seen to be quite small, as is the case in similar
nuclear- matter calculations. '~ "

The literature of nuclear-matter calculations
has been concerned for the last 10 years with es-
timating three-body correlation effects upon the
predicted binding energy and saturation density of
nuclear matter. '"' These "three-body graphs"
constitute additional intermediate interactions be-
tween the incident nucleon and target nucleons,
and certainly make additional contributions to the
nucleon-nucleus optical potential. However,
Bethe" has shown that the contributions of all
such three-body graphs to the single-nucleon po-
tential, identified as the real part of the nucleon-
nucleus optical potential, when summed to all or-
ders of the interaction, may be expressed in terms
of a matrix element involving the two-nucleon ef-
fective interaction, the propagator Q/e, and a
three-body state function. If we assume that the
two target nucleons involved have small momenta
as compared with the incoming nucleon, and take
the on-shell values for the two-nucleon operators
7' describing the effective two-nucleon interaction,

g (2L+1)j ~(k'r)j z(kor)
even
L~0

,'(j,[-(k, —k')r]+j, [(k,+k')r]) . (26}

we may follow Ref. 27 in writing

U"'(3-body) =Q,p; f rr, (r)F, (r)d'r .
$

(28)

U ' (3-body) = [p„+p~]F,V/2 (29)

and amounts to about +10% of the first-order real
potential. This gives a value of about +5 MeVfm'
at 1 GeV incident proton energy, and about -20
MeVfm' at 100 MeV. This is, of course, a rough
estimate but it serves to show that this correction
is also rather small.

Next, using the Fermi gas model for the target
nucleus, we estimate the correction due to the mo-
tion of target nucleons. If we assume the nucleons
inside the nucleus have randomly oriented veloci-
ties, and speeds which are uniformly distributed
between 0 and the Fermi velocity V& = kkz/m, then
for a fixed incident proton velocity the relative
momentum between the incoming proton and each
target nucleon covers a range of values as deter-
mined by V~. Hence, the optical potential for a
given incident lab kinetic energy T~ should be a
weighted average of the integral ((t)

I
v

I g& as calcu-

Here the sum is over i =P,n, r~, (r) is the local
two-body proton-nucleon effective interaction given
as the Fourier transform of r(q') as in E(l. (10),
and the function F,(r) is the "suppression factor"
of Bethe,"which has been calculated for the Reid
hard-core potential by Dahlblom" and is found to
be roughly equal to 1.3 fm' for all x, when aver-
aged over singlet and triplet states. We take it
here as a constant. The quantities p, are estimates
of the proton and neutron matter densities within
the nucleus. We have taken p~ = p„=0.088 fm ' for
"Ca, and have used p~=0.064 fm ' and p„=0.093
fm ' for "Pb. In both cases, the proton density
is obtained by unfolding the proton charge form
factor from the nuclear charge distribution as de-
termined from electron scattering measurements. ~
For the neutron density, we have used the predic-
tions of the density-matrix-expansion variant of
Hartree-Fock theory, as presented by Negele and
Vautherin, ' and as embodied in the program writ-
ten by Negele. " Further details are given in an-
other paper by Ray and Coker" which deals with
full optical-model analyses of elastic scattering of
nucleons from nuclei at 1 GeV, using a microscopic
potential constructed along lines developed from
the present work.

With F, =1.3 fm' we see that the three-body cor-
rection is directly proportional to the volume of
the two-body effective interaction, which is nothing
but r(q' =0), and under the approximations stated
in Sec. II may be approximately expressed in terms
of the volume of the first-order potential U, cal-
culated in Sec. III. The result is
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lated in Secs. II and III over this range of relative
velocities.

%e first consider a nonrelativistic expression
where the incident velocity is given as

V~ =(2T~/
m~)'~', m~ being the proton rest, mass. The real
optical potential when averaged over the allowed
range of relative velocities is

p(v...)V(iv...))dv... , (30)

Vrei'duel ~ (31)

The potential V(~ V„,~) in Eg. (30) is just the first-
order potential calculated in Secs. II and III.

For the higher energies, we must use a rela-
tivistic treatment, which can be simplified if we
neglect transverse relative velocities as compared
with the relative longitudinal velocity of the two
nucleons. The incident proton velocity is given by
V& = c(l —1/y')'~' where y = (T~+ m~c')/m&c'. Thus
the optical potential corresponding to an incident
proton velocity of V~, when averaged over the ap-
propriate range of relative velocities, ls

' p(v'...)U(iv,'., i)dv'„, , (32)

where '+V~ = (avf —V~)/(I+ V&V~/c') and the prob-
ability P(V'„,) is

where P(v,z) is the probability of the incident pro-
ton and target nucleon having the relative velocity
V~( Rnd ls glvell by

mentum, of the order of the Fermi momentum.
But Sprung et al. ,

"conclude that the Bajaraman
approximation is valid for a momentum greater
than about twice jm|„, the Fermi momentum. Thus
the solid even-state-only curves in Figs. 5 and 6
should apply for incident proton energies of 150
MeV or more. Below this limit, the various me-
dium-energy approximations made in this and
other comparable studies render our results un-
reliable.

An improvement which could be made at the low-
er energies is the inclusion of an exchange poten-
tial, although according to Sinha"" and Scheer-
baum" this cox rection amounts to only a few per-
cent of the real optical potential at 100 MeV, and
is quite negligible at 1 QeV. Also, one could if
necessary adopt a nuclear phenomenology given
entirely in terms of nucleon-nucleon phase shifts,
as determined phenomenologically, once more ac-
curate nucleon-nucleon data become available in
the energy range 600 MeV to 1 GeV.

To summarize, then, we have found that the sum
of the second-order, three-body-correlation, and
Fermi-motion correction terms discussed in this
section amount approximately to -30 MeV fm' at
100 MeV and +12 MeV fm' at 1 GeV incident proton
energy. As can be seen in Figs. 5 and 6, these
small corrections would tend to improve the gen-
eral agreement between our predicted trend for U

and phenomenological expectations. As is also
seen, however, these corrections are too small to
have a significant effect on our original predic-
tions.

V. CONCLUSIONS3, (v,'., + v,)'P(V', )dV'„, =4V, V~' —
(1 P' V ~/~)2

1 —V~~/c

(1 + VI V /P)2 rel (33)

In this expression V,'„denotes the relative longi-
tudinal velocity of the two nucleons in the direction
of the incident proton and in its rest frame.

Using the V(~V, ~) as calculated in Eg. (19) and

with k~ =1.36 fm ' we obtain corrections to the
optical potential of -20 MeV fm' at 100 MeV inci-
dent proton energy, -5.0 MeV fm' at 300 MeV, and

finally about -1.0 MeVfm' at T~ =1 GeV. Thus we
see that the approximation K& = 0 in Eq. (7) is ade-
quate for incident proton energies greater than
about 300 MeV, but that at lower energies, as one
would naively expect, this approximation leads to
significant errors.

The correction of Bajaraman for the tlllrd-ol-
der terms in Eq. (IV), as we mentioned in Sec. II,
has been shown to fail at low incident relative mo-

In this paper, we have made use of the basic
physical input of the Beid soft-core nucleon-nu-
cleon interaction as well as certain techniques
borrowed from the theory of infinite nuclear mat-
ter, in order to estimate the energy dependence of
the volume per nucleon of the real part of the nu-
cleon-nucleus optical-model potential U (or Z/A).
%'e have shown that U calculated as described
herein agrees well with the trend of the empirical
optical-model phenomenology from 100 to 1050
MeV incident proton energy for target nuclei as
diverse as 'Ca and 'Pb

The more usual Bayleigh-Lax or T-matrix ap-
proach to the medium-energy nucleon-nucleus po-
tential yields results which disagree markedly
with the phenomenological, roughly logarithmic,
energy dependence'~ of the nucleon-nucleus inter-
action. Since the G-matrix approach, as de-
scribed here, permits the estimation of a number
of corrections to the usual first-order term in the
potential, we have made a study of various higher-
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order corrections. Qf these corrections, the
most important by far at medium energies turns
out to be the Rajaraman" version of inclusion of
the effects of the third-order terms in the "im-
pulse" expansion, Eq. (1'I}, for G" (or r} in terms
of G~ (or t). By contrast, as in nuclear-matter
calculations, '~ "the second-order terms are rela-
tively unimportant at high relative momentum, as
are exchange and certain correlation effects
(three body).

This puts us in a position to say something about
why the T-matrix approach, which is overwhelm-
ingly the most often used in various medium-en-
ergy nuclear reaction and scattering studies, fails
as it does. First, the parametrization of the nu-

cleon-nucleon scattering amplitude represented
by Eq. (23) is extraordinarily crude, and a glance
at the available nucleon-nucleon angular distribu-
tion data shows that it is in general valid only for
very small momentum transfer, q' =0.4 (GeV/c)'
or less, while for certain specific energies in the
medium-energy range it seems completely inval-
id."" While these facts tend to make one suspi-
cious of tabulated values for the parameter P, it
is equally apparent by inspection that the isospin-
averaged parameters 2(n»+ o~—„) behave as a func-
tion of energy in a way quite inconsistent with nu-
cleon-nucleus phenomenology, having a zero at
about 650 MeV whereas nucleon-nucleus pheno-
menology requires it to be at about 500 MeV, ' '
and having an energy dependence which (like that
of P) is much too extreme to be adopted uncriti-
cally."

The T-matrix approach has the great advantage

of being completely straightforward, which prob-
ably explains its overwhelming popularity and its
continual uncritical use. Because of its very
straightforwardness, one sees almost by inspec-
tion" that it predicts an incorrect energy depen-
dence for the nucleon-nucleus potential —an energy
dependence which cannot be avoided within the ap-
proach because of this very straightforwardness.

We thus venture to make two conclusions on the
basis of the present work. First, the parametri-
zation [Eq. (23)] of t(q') is not to be trusted in gen-
eral in the medium-energy range, and in careful
work one should have recourse to other parametri-
zations, to phase shifts, or to effective nucleon-
nucleon interactions of one kind or another, in or-
der to obtain t(q'). Second, as we have seen, the
Rajaraman-type corrections to the impulse approx-
imation cause a sizable difference between t(q')
and v(q') throughout the medium-energy range.

The advantage of the type of approach sketched
out here is therefore twofold; first, it allows one
to make corrections of the Rajaraman type in a
transparent way, and second, it shows one way
to avoid the overused parametrizations of t(q')—
an alternate way is shown, for instance in the work
of Lambert and Feshbach. " Our aims in this work
have been relatively modest. We hope, however,
that our success indicates the value of further at-
tempts to marry the knowledge gained in nuclear-
matter studies to the pressing problems of medi-
um-energy nuclear physics.

The authors wish to thank Professor E. F. Redish
for useful conversations and suggestions.

*Research supported in part under contract with the
United States Energy Research and Development Ad-
ministration.

B. Sinha, Phys. Rep. 20, 1 (1975), and references
therein.

N. Azziz, Nucl. Phys. A147, 401 (1970).
J. R. Rook, Nucl. Phys. A222, 596 (1974).

4J. P. Jeukenne, A. Lejeune, and C. Mahaux, Phys.
Rev. C 10, 1391 (1974).

W. T. H. van Oers and H. Haw, Phys. Lett. 45B, 227
(1973).

6W. T. H. van Oers, H. Haw, and N. E. Davidson, Phys.
Rev. C 10, 307 (1974).

7P. Schwaller, B. Favier, D. F. Measday, M. Pepin,
P. U. Renberg, and C. Serre, CERN Report No. CERN
72-13, Geneva, 1972 (unpublished); D. F. Measday
(private communication).

B. C. Clark, L. G. Arnold, R. L. Mercer, and D. G.
Ravenhall, Bull. Am. Phys. Soc. 20, 1192 (1975) and
private communication.

G. Passatore, Nucl. Phys. A248, 509 (1975).
H. Gall and M. K. Weigel, Z. Phys. A276, 45 (1976).

'~A. K. Kerman, H. McManus, and R. M. Thaler, Ann.

Phys. (N. Y.) 8, 551 (1959).
' H. Feshbach, A. Gal, and J. Hufner, Ann. Phys. (N. Y.)

66, 20 (1971); E. Boridy and H. Feshbach, Phys. Lett.
50B, 433 (1974).
R. V. Reid, Ann. Phys. (N. Y.) 50, 411 (1968).

~4K. A. Brueckner and J. L. Gammel, Phys. Rev. 109,
1023 (1958); H. A. Bethe and J. Goldstone, Proc. R.
Soc. A238, 551 (1957); S. A. Moszkowski and B. L.
Scott, Ann. Phys. (N. Y.) 11, 65 (1960).

5H. A. Bethe, B. H. Brandow, and A. G. Petschek,
Phys. Rev. 129, 225 (1963).

~6H. A. Bethe, Annu. Rev. Nucl. Sci. 21, 93 (1971).
E. Lambert and H. Feshbach, Ann. Phys. (N. Y.) 76,
80 (1973).

' J. J. Ullo and H. Feshbach, Ann. Phys. (N. Y.) 82, 156
(1974).

'GF. Percy and B. Buck, Nucl. Phys. 32, 353 (1962).
K. A. Brueckner, J. L. Gammel, and H. Weitzner,
Phys. Rev. 110, 431 (1958).

'G. W. Greenlees, G. J. Pyle, and Y. C. Tang, Phys.
Rev. 171, 1115 (1968).
J. W. Negele, Phys. Rev. C 1, 1260 (1970).
E. Kujawski and J. P. Vary, Phys. Rev. C 12, 1271



16 "NUCLEAR MATTER" APPROACH TO THE ENERGY. . .

(1975).
24R. R. Roy and B. P. Nigam, Nuclear Physics (Wiley,

New York, 1967), p. 576.
L. Ray and W. R. Coker (unpublished).
T. Tamura, Rev. Mod. Phys. 37, 679 (1965).
R. Rajaraman and H. A. Bethe, Rev. Mod. Phys. 39,
745 (1967); H. A. Bethe, Phys. Rev. 138, B804 (1965);
158, 941 (1967).
T. K. Dahlblom, Acta Acad. Aboensis 29B, No. 6
(1969); Nordita Report No. 315, 1968 (unpublished).

2 R. Rajaraman, Phys. Rev. 129, 265 (1963).
D. W. L. Sprung, P. C. Bhargava, and T. K. Dahlblom,
Phys. Lett. 21, 538 (1966).

'G. L. Thomas, B. C. Sinha, and F. Duggan, Nucl.
Phys. A203, 305 (1973).
T. Wu and T. Ohmura, Quantum Theory of Scattering
(Prentice-Hall, Englewood Cliffs, New Jersey, 1962).

3J. E. Simmons, in High Energy Physics and Nuclear
Structure, edited by D. E. Nagle et al. (AIP, New York,
1975), p. 103.

34R. H. Bassel and C. Wilkin, Phys. Rev. 174, 1179
(1968).

3~0. Benary, L. R. Price, and G. Alexander, Lawrence-
Berkeley Laboratory Report No. UCRL-20000NN,
1970 (unpublished) .
T. A. Murray, L. Riddiford, G. H. Grayer, T. W.
Jones, and Y. Tanimura, Nuovo Cimento 49A, 261
(1967).
J. Bystricki, F. Lehar, and Z. Janout, Saclay-Aout
Report No. CEA-N-1547, 1972 (unpublished); see also
G. Igo, in High Energy Physics and Nuclear Structure
(see Ref. 33), p. 70; G. Igo (private communication).
D. W. Rule, Ph. D. dissertation, University of Connecti-
cut, Storrs, 1975 (unpublished).

3~P. C. Tandy, E. F. Redish, and D. Boll', Phys. Rev.
Lett. 35, 921 (1975).
C. M. Percy and F. G. Percy, At. Data Nucl. Data
Tables 13, 293 (1974).
P. Schwandt (private communication).

4 C. W. DeJager, H. DeVries, and C. DeVries, At. Data
Nucl. Data Tables 14, 479 (1974).
J. W. Negele and D. Vautherin, Phys. Rev. C 5, 1472
(1972); J. W. Negele (private communication).
R. R. Scheerbaum, Phys. Rev. C 7, 2166 (1973).


