
PHYSIf AL REVIE% C VOLUME 16, N UMBER 1 JU LY 1977
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The second-order pion-nucleus optical potential is expressed in momentum space in terms of the mN off-
shell t matrix and the NN correlation function. The dependence of the n. N t matrix on the total mN
momentum is determined within the framework of relativistic particle quantum mechanics. Numerical results
are presented for vr-'He scattering, It is found that the NN correlations tend to decrease the forward elastic
cross sections by a factor of about 1.5 at low energy, F. 60 MeV. At higher energies the main effect of
the NN correlations is to increase the differential cross section at large angles. The effect of NN
correlations on the total cross section and the pion wave function is also found to be important. A study of
the dependence of the calculated cross sections on the range parameters of the mN t matrix and of the NN
correlations suggests that the low-energy pion-nucleus scattering data cannot be adequately described by an
optical model constructed from the first- and second-order terms in an expansion in terms of the AN t
matrix.

NUCLKAB BEACTIONS Second-order x-nucleus optical potential studied in the
multiple-scattering theory.

I. INTRODUCTION

Recent studies of intermediate-energy pion-nu-
cleus seatteri. ng have indicated that an important
part of the pion-nucleus optical potential can be
constructed within the impulse approximation
from the mN t matrix. Within the framework of
multiple-scattering theory, ' this "scattering" part
of the optical potential can be expanded in powers
of the wN t matrix. The leading term U"' in this
expansion, the first-order optical potential, has
been found' to yield a satisfactory description of
forward-angle pion-nucleus elastic scattering at
pion energies above 120 MeV. Difficulties have
recently been encountered at lower pion ener-
gies" (E,~100 MeV).

To improve agreement with experiment at lower
energies and to obtain better pion wave functions
for other purposes, it is necessary to develop
more accurate methods"' for the calculation of
U"', and to investigate the influence of higher-
order contributions to the pion-nucleus optical
potential. If the multiple-scattering expansion
of the pion-nucleus optical potentia. l is valid, one
would expect higher-order terms to improve the
fit to experimental data at lower energies, without
spoiling the "good fit" already achieved by U"'
alone at higher energies (E,& 120 MeV). In this
paper we study the influence of the second-order
optical potential U'" on pion-nucleus elastic scat-
tering.

Another purpose of this study stems from con-

cern about future applications of pion-nucleus
optical potentials. The second-order optical po-
tential U'" describes the effects of two-nucleon
(NN) correlations on the motion of the pion inside
the nucleus. Effects of NN correlations on the
pion wave function are expected to be important
in determining pion-nucleus reactions such as
A(w', m )B and A(m, p)B whose predominant mecha-
nism involves two or more nucleons.

We will develop a method to calculate the pion-
nucleus second-order optical potential directly in
momentum space. Our approach is thus distinctly
different from that of Miller and Spencer, ' who
study the effect of U"' in coordinate space using
the equivalent local potential approach of Kujaw-
ski. Since it is quite feasible to study pion-nu--
cleus reactions directly in momentum space, 'o

our approach will not create any major obstacle
in practice to using our model for U"'+ O'". For
our quantitative discussions of the effect of NN
correlations, numerical results for m -'He scatter-
ing will be presented.

As is usual in calculations of the first-order
pion-nucleus optical potential, the impulse approx-
imation will be assumed. The degree of validity
of the impulse approximation is not precisely
known and is not discussed in this paper. Never-
theless, in view of the general success achieved
at E,& 120 MeV by the first-order pion-nucleus
optical potentials, the impulse approximation
must at least be a reasonable starting point. Also,
within the impulse approximation, the second-
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order optical potential has been derived by Fesh-
bach, Gal, and Hufner" from the multiple-scat-
tering formalism of Kerman, McManus, and
Thaler. ' In this paper, we follow Ref. 11 and
construct the second-order pion-nucleus optical
potential from the mN off-shell t matrix and the
NN correlation functions.

A basic ingredient in the calculation of U"' and
U'" is the mN off-shell t matrix for nonzero total
momentum Q. Phenomenological constructions of
the optical potential relate it to the ~N phase
shifts which determine the mN t matrix only for
Q=0, i.e. , in the vN c.m. frame. A procedure
must therefore be devised to relate these two dy-
namically different objects. To do this we follow
Heller, Bohannon, and Tabakin" and Lee and
Coester. " This method has been used by Lee' to
study the first-order w -4He optical potential and
will be reviewed briefly. We construct the de-
sired off-shell t matrix from a simple mN model
described in Ref. 6.

Another basic ingredient of U"' is a model for
the NN correlations. We follow the procedure of
Feshbach, Gal, and Hufner" to construct the NN

correlations of 4He from a simple shell-model
wave function. The NN correlation function and
the density for 4He are both taken to be indepen-
dent of spin and isospin.

In Sec. II, the first- and second-order pion-nu-
cleus optical potentials are explicitly expressed
in terms of the mN t matrix and nuclear wave func-
tions. The method of constructing the rN t matrix
for nonzero total momentum is presented in Sec.
III. Section IV is devoted to a discussion of the
NN correlation function for 4He. In Sec. V, we
present in detail the numerical procedures in mo-
mentum space for the calculation of the pion-nu-
cleus T matrix from the optical potential U"'
+ U"'. Results for m-'He elastic scattering are
discussed in Sec. VI. In Sec. VII, we summarize
our results.

II. FIRST- AND SECOND-ORDER PION-NUCLEUS

OPTICAL POTENTIALS

panded in powers of a many-body operator 7(E)
for the scattering of a pion from a "bound" nu-
cleon. From the formal derivation of FGH, we
have, up to second order in ~,

U'"(E) = U..(E)

where

and

7(E)= v+ v . 7(E). (3)

Here, v denotes the vN potential,
l
4,}is an eigen-

state of the nuclear Hamiltonian H„with eigen-
value e, K, is the pion kinetic energy operator,
@ is the nuclear antisymmetrization operator,
and E is the pion-nucleus collision energy. The
goal is to introduce suitable approximations so
that Eq. (l) can be evaluated from the free pion-
nucleon scattering operator defined by

t((v}= v+ v . t((d),
1

(d -K -K~+ z5
(4)

which, since it does not contain the antisymme-
trizer g, is a much simpler operator than ~.
Next, we assume that the energy denominator
E —& -K, —U is independent of the nuclear
state a and take an average value E -K, -Z' —U, .
The closure relation then gives U'" in terms of
the operator tf(E) and the nuclear ground state
wave function. We have, for the first- and second-
order optical potentials,

where K~ is the nucleon kinetic energy operator
and & is a properly chosen ~N collision energy.

In the FGH approach, we first introduce a scat-
tering operator I', for the ith nucleon,

1
t', (E)= v, + v, . t', (E},

In this section, we construct the first- and
second-order pion-nucleus optical potentials in
momentum space, using the formalism of Fesh-
bach, Gal, and Hnfner (FGH)." The further ap-
proximations needed to permit numerical calcula-
tions will also be discussed.

The pion-nucleus optical potential can be ex-

poPt U(1)(E)+ P(2&(E)

where

and

(6)

(7)
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We now discuss the approximations involved in
the computation of Eqs. (6) and (7). First, it is
assumed that binding effects can be neglected, so
that

(6)

with a properly chosen mN collision energy (d,.
Here, t(&do) is the free vN scattering operator
defined by Eq. (4). The choice of &uo depends on
the details of the model used and has been dis-
cussed by many authors. We will indicate our
choice of ~, in the next section when we discuss
the calculation of the matrix elements of t(o&o} in
momentum space. Next, we observe (following
Landau and Thomas') that with the harmonic-os-
cillator ls single-particie wave function Q(P),
which is appropriate for the 'He ground state,
one can expx ess the first-order optical potential
in the form

&k
I

U" &(E)lk&

= (A —I)(k'c,
l
—g t,.(~,) Ikcg

i=1

x (k', p+ po —q I
t(&oo) I" p+ p

where k and k' are pion momenta in the pion-nu-

cleus c.m. frame,

po = -k/A+ q(A —1)/2A,

with q = k' —k, and Eoo(q) is the nuclear ground
state form factor. In deriving Eq. (9), care has
been taken to express the nucleon momentum of
the intrinisic nucleon wave functions (defined in
the nuclear c.m. frame) in terms of momenta de-
fined in the pion-nucleus c.m. frame. This is
necessary for 'He since the c.m. recoil of light
nuclei is important. The above folded first ord-er
potential is used in our calculations of U&".'2

To evaluate U"', we now use Eq. (9) to intro-
duce the "factorization" approximation which con-
sists of removing the t matrix from the integral
and evaluating it at p.= 0:

(10)

where E«(q) is the appropriate transition form
factor. Using the above generalized factorization
approximation, a straightforward derivation yields

= Eoo(q)(k', p, —q I
t(&do) I k, pg. (11)

We generalize Eq. (11) to any nuclear state
I
4 $:

A

(k c, l „—g t, (~,)lkeg

=F2.(q)&k' p. —ql «~.) I»pg

&k'
I
U'"(E)

I
k& = (A —1)' dk" dk'"&k', p,' —q'

I
t(o&o)

I
k",p',)

x C(k k, k'"-k}&k"l(E-e-tf, - Uo+t~) 'Ik"'& &k'" P. -pit(~.)l»Pg (i3)

where q=k"'-k, po= -k/A+q(A —1)/2A, q' =k'-k",
p,'= -k" /A+ q'(A —1)/2A, and

(14)

is the correlation function in momentum space."
It should be noted here that our form of U&2&(E),

Eq. (13), retains the explicit dependence of the
I, matrix on nucleon momentum and is therefore
different from that of FGH.

Equation (13) is still a complicated object. Fur-
ther simplification is possible on the assumption
that the average nuclear fluctuation from the
ground state is small during the propagation of the
pion; hence the average optical potential operator
U, is approximated by a constant value

U,
-=U, (E)=(k,

l
U"&(E)le, (16)

where ko is the incident momentum. Then the
propagator of Eq. (13) becomes diagonal in k
space":

(16}

&«'Io'*'&«&I«&=&« —O'f««O « « ll& &I«', «'. O—o'&« «. «", «&&«'', «-. —"«, I"l&—.&I««d

(k"
I
(E - e -If. U, + t~) '—

I

k"
&

=- 6-(k"-k")[z - e, —U, (E) —(t '+ h"')'"- (M '+ h"')'"+ ie] ',
where p, and M„are, respectively, the masses of the pion and the nucleus. Substituting Eq. (16) into Eq.
(13), we obtain

E g U (E) (t12+ hl«2)1/2 (M 2+ hll2)1 0+ t~
'
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Equation (17) is used in our numerical studies of
NN correlation effects on pion-nucleus elastic
scattering. In the next two sections, we will dis-
cuss the construction of the mN off-shell t matrix
and the NN correlation function.

III. nN OFF-SHELL t MATRIX

of the order of [Q/(M+ g)]' or higher should not
be important and are therefore neglected. Carry-
ing out appropriate boost transformations, the
relative momenta K and K' can be related to the
momentum variables Tc, %', and p. Keeping only
the lowest-order term in the nucleon momentum, "
we get

To calculate the optical potentials of Eqs. (9) and

(17}, we need to construct the vN off-shell t matrix
for nonzero total momentum. We follow Refs. 12
and 6 to construct this object using relativistic
particle quantum mechanics. " In this approach,
it is assumed that the vN off-shell t matrix t(Id, )
in the ~N c.m. frame has been constructed from a
model of the vN mass operator (i.e. , the Hamil-
tonian in the vN c.m. frame). Neglecting the spin-
dependent term, the matrix element of t(20) can
be written as

t(K, K, (do)

I

s

W k'

2W, k

where

W (k}=Qm+E,(k}]'—k'j' '

W, (k) = m+ E,(k) + W, (k),

a, (k) = 1+ 2E,(k)/W, (k)+ (p' —m')/W, '(k),

and

a2(k) = 2+ 2E,(k)/W, (k)+ 2m/W, (k).

(20)

(j + ,')P'I't~iz(tC-, tc, 90) P, (k" 71), (18)
I 1,j=1+1/2

where P' ' is the isospin projection operator, and
K and K' are relative momenta. In each eigen-
channel u(Ilj}, a simple separable form
t (8, z, &P,)=t (20}g (x'}g (x)/g '(t&o), withg, (e)
=de ~", is used. Here t (2,) is the on-energy-
shell t matrix determined from the CERN phase
shifts. " Our task is to express the desired ma-
trix element (k', p+ p, —q l

t(&o,) l
k, p+ pg in terms

of t(x', Tc, 2,). Following Ref. 12, it can be shown
that

«' p+po-qlt(~o)lk, p+pg

= [J(k',p+ p, —q, Tc }J(k'p+ p, „Tc)]' '

(t(&', &, (&'. -0')' )+G([Q/(M+ u)]')+ "},
(19)

where Q=k+p+p, and

[Er(k)+ EB(p}][Et(x)EN(x)]
[E,(7c)+ E„(Tc)][E,(k)E„+p]

In the energy region under consideration, terms

To complete the definition of the off-shell t ma-
trix, the mV collision energy eo must be defined.
As our model, "we assume for a total w V momen-
tum Q that

cu '= W '+Q',0 0

where Wo is an "invariant mass" determined by
the incident pion momentum %„ i.e.,

W 2= [E,(ka)+ E~(ko/A)]2 —[(A —1/A)ko]2.

To calculate the matrix elements of the optical
potential in each pion-nucleus partial wave, we
need the partial-wave decomposition of Eq. (19).
For simplicity, only the off-shell t matrix Eq. (19)
for p =0 will be presented. From Eq. (20), we
note that, as p =0, the magnitudes K', K and angle
K' K can be explicitly expressed in terms of k', k,
and angle k' ~ k. Keeping only the s- and p-wave
gN interaction, we can then write

t(Tc', v, ur, ) =QF, (k', k, (3,)P, (k" k),

where

t,(k', k, (Do) = G, (k', k, 80) —[A (k)B(k')k + B(k)A (k')k' ]
0

t 1 l'
+Q (2l'+ 1)

l

[A(k)A(k')+B(k)B(k')]G'(k', k, (30) .
0 o oj

The functions GI&(k', k, 8,) are determined by the relation
+1 2 1s

G',.(k', k, 8,) = P, (x} g (j + ,')P"' ' t, &(x', ~-, 8,) dx,+ -i —J=/ gl /2

I

(22)

(23)



SECOND-ORDER PION-N UCLEUS OPTICAL POTENTIAL

with x= 8"k. Other quantities in Eq. (22) are
given by

W(k) = ' a, (k) — a, (k) ,

W, (k) A —1B(k)= '
( ) ~ a, (k) .

(24)

With the expansion

[&(k', p,—q,lc')Z(k, p„~)]'~'=g J,(k', k)P, (k"k),
l

we obtain from Eqs. (21) and (25) the relation

po ql f(~0)
I » po) =g fg(k', k, W)P~(k' ~ k),

(26)

A three-dimensional integration is needed to ob-
tain t~', ~,(k', k, P, u&,). To save computation time,
the quantity f, ', (k', k, p, &u,) is evaluated using'2'3
the expansion

E = (m, '+ (a+ b)')'~'

(mo +a'+b' ' '

for energy variables. With this approximation and
our simple Gaussian form of t~z(d, a, 9,) we can
use Bacah algebra to obtain tI',g,(k', k,p, &oo). The
three-dimensional integration over the angles
between k, k', and p are therefore avoided. The
resulting complicated form of t~', ~,(k', k, p, &,) is
not relevant to the rest of our discussion and is
not presented here.

f, (k', k, w, )

= g (21.+1)
~

Z, (k', k)~, , (k', k, W).
l' f 1.)2

l 1' 000) '

(27)

Equation (26) is needed to calculate the second-
order optical potential Eq. (17).

To calculate the folded first-order potential, Eq.
(9), we have used a similar but more complicated
procedure to expand the desired matrix element
&"' p+po —qlt(~g)I" p+pa) tn terms of l.egendre
functions P, (k" k), P, (k p), and P, (k"P). We can
write, in general, for any off-shell model,

«'»+ p. —q l &(~.)11»+p.)

= P f'~ (k k P ~ }P (k ~ k)P (k j)P (5"P)
l~l ~f 3

IV. TWO-NUCLEON CORRELATION FUNCTION OF 4 He

p(r,', r2) = W(4/k, X)W(1/2b, r)

-Cw(4/O', X)W(1/2b', r)[1+@(r)], (30)

where X= , (F, + r', ), r =-r,' - r,', and W(y, X)
= (y/w}'~'e "x . The short-range correlation g(r)
is subject to the constraints that g(r) -0 as r
-~, g(0)= -1. A convenient parametrization is

g(r) e-«2i2&c2& (31)

We define E, as a correlation length that measures
the strength of the dynamical correlations due to
the RN interaction. The constant C in Eq. (30) is
found to be 1/[1 —(l,/k)'], which is determined by
the requirement that the one-body density is nor-
malized in the presence of g(r).

Combining the c.m. and dynamical correlations
and carrying out the Fourier transform, we obtain
the input function C(q', q} of the second-order opti-
cal potential:

For simplicity, we follow Feshbach et al."to
construct the two-nucleon correlation function of
'He from an assumed sheQ-model wave function.
Three ~8ferent correlations are obtained by using
the shell-model wave function to calculate C(q', q),
Eq. (14). First, since the nucleus is required to
recoil as a whole in defining the optical potential,
a correlation due to this kinematic restriction
will naturally exist. This correlation, called the
c.m. correlation, is expected to be small for
heavy nuclei, but must be considered in study-
ing &-'He scattering. Secondly, because of the
antisymmetri. Ration of nuclear wave functions,
Pauli correlations occur. Finally, the short-
range dynamical correlation due to the NN inter-
acti.on must be included.

Since detailed shell-model calculations of the
'He ground state are not available, the three cor-
relation functions are evaluated by the following
approximate procedure. It is assumed that the
c.m. and Pauli correlations can be evaluated from
the determi. nantal wave function for four nucleons
moving independently in 1s oscillator orbitals.
This wave function is expected to be the largest
component in the 'He ground state. For this wave
function the Pauli correlation vanishes. The deri-
vation of the c.m. correlation from the 1s oscil-
lator shell-model wave function is given in Ref.
11 and hence is omitted. To account for the short-
xange dynamical correlation, it is postulated that
the short-range part of the two-nucleon relative
wave function of the independent particle model
must be modified. This is equivalent to a modi-
fication of the intrinsic two-body density matrix
of the form
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3/2n i I ~w l -(]./gBv)(q+q') 2 -(y /8v) (q~')2 -(3/y6v) (q2+q'2)1e —e
v -(& /)6v)(q+q') -(]./8(v+7') )(q~')ev+y

l v
+ ~ -(1/K6v)(q+a') -(1/8v)(qm') -(1/I.6v)(q+j')2 -1/8(v47 )(q+')

v+y
(3/16v)q e-(j./l6v)q'2 -(1/16v)q e43/16v)q' 2e-(3/16v)(q +q' ) (32)

Here we have defined v = 1/b' and y= 1/l, ' [since
l, «b, the terms of order higher than (l, /b)' are
neglected].

The first step is to partial-wave decompose the
matrix elements of the optical potential. Using
the relation

V. CALCULATION METHOD IN MOMENTUM SPACE

From Eqs. (9) and (17), it can be seen that the
dependence of the pion-nucleus optical potential
U= U"'+ U'" on the momentum and energy vari-
ables is not simple. To calculate the pion-nu-
cleus T matrix from this nonlocal potential, a
relativistic Lippmann-Schwinger equation is
solved directly in momentum space. It is inter-
esting to note here that this method provides a
significantly different treatment of the nonlocali-
ties of U"' and U'" from what has been given in
the x-space study. " In this section we briefly
outline our calculation procedure.

dPPr kP P, P ~ k =~), P) k" k

(33)

P (q) =P P, (k', k)P, (0"5),
1g

we find from Eqs. (9) and (28) that

(34)

(k'~ U"'~k)= Q U"'(k', k) P, (k" k), (35)
L

where

and expanding the 'He form factor determined
from electron scattering, "

00

U"'(k' k)=(4v)'(A —1)p ' ~ ' " ' ' ' ' P, (k', k) p'dp~ p(p()~'t ' (k', k,p, ~,). (36)

The partial-wave decomposition of the matrix element of U'" is obtained by projecting out the angular
dependences of the correlation function C(q', q),

C(q', q) = g C. . . (k', k, k")P, (k" k)P, (k" k")P, (k"'k).
gy)2

2
3

For example, the leading term of C(q', q) can be given in the form

(37)

C (1,) (1/&6v)(k+k') 2 (1/Sv) (k'+k 2k")=e e

3kk'
[(2f + 1)(21 + 1)(21 + 1)( 1 ) (]f (I/z16v)(k +k lokkle ((/8-&)(k'+k -kk")-

k'k" kk"
(38)

where

I,(z) = e 'i)(z)

Substituting Eq. (37) and the off-shell f matrix for p = 0, Eq. (26), into Eq. (17) and using the relation Eq.
(33), we get

(k'~ U ' ~k)=Q U( (k' k) P,(k" k), (39)

where
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U"'(k', k)= g (4v)'(2I'+1)
~

'
(0 0 0) (0 0 0) 0

II I)2

0 Oj

tf, (k', k", &uo)Cr,i~i, (k', k, k")tr, (k",k, &uo)

Z U (E) (p2+ k 2)l/2 —(~ 2+ k 2)1 2+ ze
(40)

The resulting matrix element of the optical potential U, (k', k) = U,"'(k', k)+ U', "(k', k) is then substituted
into a relativistic Lippmann-Schwinger equation:

U, (k', k")T, (k",k, E)
(41)

which is then solved by matrix inversion. '" The
pion-nucleus differential cross sections are then
calculated from the T matrix.

VI. RESULTS AND DISCUSSION

In this section, we first study the effect of the
NN correlations on m-'He scattering by comparing
the elastic cross sections calculated from U"' and
U"'+ U'". We then discuss possible ways to re-
solve the difficulties" encountered in fitting the
low-energy w-nucleus elastic data.

In the calculation of U"', the nuclear form fac-
tor Eoo(q) is assumed to be the charge form fac-
tor determined by electron scattering. " The os-
cillator parameter needed to calculate the folding
integration of Eq. (9) and the NN correlation func-
tion Eq. (32) is taken to be k = 1.32 fm. The v-'He
second-order optical potential then depends on
two range parameters —the short-range NN cor-
relation length I„defined by Eq. (31), and the
range parameter p of the mN off-shell t matrix.
Consistent with the present knowledge of NN cor-
relations, we assume that l, must be of the order
of the radius of the repulsive core of NN interac-
tions. Hence, the range of values considered for
l, will be 0.2 fm & l, & 0.8 fm. The parameter p
of the mN off-shell t matrix is related to the range
of mN interaction. In a simple isobar model, "the
mN interaction in the P33 channel can be fitted with
the choice p = 0.2 fm'. Hence, acceptable values
of p probably lie in the region 0.1 fm'~ p —0.4
fm'.

The effects of NN correlation on the &-4He elas-
tic differential cross sections, do/dQ, are dis-
played in Figs. 1(a) and 1(b). The solid and dashed
curves, respectively, are calculated from U"'
+ U"' and U"', with parameters P~=0.2 fm' and

I, = 0.4 fm. In Fig. 1(a), both U"' and U'" are
calculated using the factorization approximation
[Eq. (11) and Eq. (12)]. This consistent compari-
son reveals, at least qualitatively, the importance
of the effect of U'" relative to U"'. In Fig. 1(b),
we also attempt to compare our theoretical predic-
tions with the experimental data. '"" In this re-

gard, the folded U"', Eq. (9), is used in the cal-
culation in order to partially take into account the
important effect of Fermi motion. The results
shown in Fig. 1(b) will motivate our later discus-
sion about improving the fit to the dataatlowen-
ergies by phenomenologicaQy adjusting the pa-
rameters l, and Po of U"'.

We see from Fig. 1 that the effects of NN corre-
lations on doldQ at low and high energy are dif-
ferent. At E, = 60 MeV, both the forward and back-
ward differential cross sections are strongly in-
fluenced by the NN correlation. Except at angles
near 100', the NN correlations tend to decrease
the cross section at E= 60 MeV by a factor of
about 1.5. As the pion energy increases, the
qualitative influence of the NN correlations rapidly
changes. At E, 110 MeV, the NN correlations
tend to significantly increase the backward cross
section by factors of 3 to 8, but increase the for-
ward cross section only slightly. Considering
the available low-energy data, the significant de-
crease of the forward cross section strongly in-
dicates that the NN correlations should be included
in all optical potentials for low-energy pion-nu-
cleus scattering. Since the effects of NN correla-
tions become more asymmetric in angles for high
energies, measurements of large angle cross
sections at higher energies will yield quantitative
information on the NN correlation length l, .

The total and total elastic cross sections as
functions of pion energy are also relevant quanti-
ties in assessing m -nucleus optical potentials. We
therefore show in Fig. 2 the effects of NN corre-
lations on o, and o,g

The main effect of NN cor-
relations is to decrease both cross sections at low
energies, and to increase them at higher energies.
The resonant shape of o, accordingly becomes more
pronounced. The peak position of o„is also shifted
from-70 MeVto-110MeV. Thus the effects of the
NN correlation should be taken into account in any
serious attempt to study total cross sections.

The pion elastic scattering wave functions gen-
erated from the optical potential are essential in
the study of pion-nucleus reactions. It is there-
fore important to see the effects of NN correla-
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FIG. 1. The ~ - He elastic differential cross sections calculated from U + U (solid curves) and U (dashed
curves) are compared. The data are from Hefs. (16) and (17). The chosen range parameters of the optical potential
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FIG. 2. The m -48e total and total elastic cross sec-
tions calculated from U +U (solid curves) and U

{dashed curves) are compared. The chosen range pa-
rameters of the optical potential are /~= 0.2 fm and

c =0.4 fm.

tions on the pion wave functions generated from
our optical model. In Fig. 3, we compare the
p-wave pion-nucleus wave function calculated at
8 = 60 and 220 MeV from U"' and U" '+ U'". It is
clear that low-energy pion wave functions are
strongly modified by the NN correlations. There-
fore, the cross sections for reactions involving
low-energy pions are likely to be sensitive to the
NN correlations. At higher energies, the effect
of NN correlations on pion wave functions be-
comes much smaller but is apparently not negli-
gible.

The cross sections shown in Fig. 1 do not fit the
data very well. In particular, the calculated for-
ward cross sections at low energies, E,= 60, 110
MeV, are much too high. These results were ob-
tained using somewhat arbitrary values of p and
l, . It is interesting to see the extent to which the
fit to the experimental data can be improved if
these two range parameters are varied.

The dependence of cross sections on /, is studied
by comparing cross sections calculated using vari-
ous values of l, ranging from 0.2 fm to 0.8 fm,
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FIG. 3, The p-wave ~ 4He radial wave functions
+ f = f(&) calculated from U + U (solid curves) and U
(dashed curves) are compared. The chosen range pa-
rameters of the optical potentials are p~ = 0.2 fm and
le=0.4 fm.

while p is fixed at 0.2 fm'. The differential cross
sections for l, = 0.2 fm and 0.6 fm are compared
in Fig. 4. We see that a large value of l, gives a
better fit to the small-angle cross sections at 60
MeV. However, even in a purely phenomenologi-
cal calculation, the values of l, chosen should be
subject to the condition that a reasonable fit to
the data at higher energies is maintained. At

E,~ 180 MeV, we see that a larger value of l,

yields a shallower second minimum in the cross
sections at ~= 110'. As l, is increased beyond
0.7 fm, we find that the second minimum at E,
= 180 MeV is completely washed out. That is in-
consistent with the data (see Fig. 1). The second
minimum of de/dD at E„=220 MeV (260 MeV) disap-
pears as l, exceeds 0.8 fm (0.95 fm). Hence, the
higher-energy data clearly indicate that l, should
not exceed 0.7 fm. This result is also consistent
with our remark that the value of l, must be of the
order of the repulsive-core radius of the NN in-
teraction. Thus, although the inclusion of NN cor-
relations tends to yield a better fit to the low-en-
ergy data, the present model treatment does not
succeed in resolving the discrepancy completely.

We now investigate the possibility of improving
the fit to the data by varying the range parameter
p of the rN interaction. In Fig. 5, we compare
the cross sections calculated from U"'+ U'" using
P

'= 0.2 fm' (dashed curve) and P = 0.35 fm' (solid
curve). The value of l, is fixed at 0.4 fm. We see
that a larger p, (corresponding to a longer vN
interaction range) yields a smaller forward cross
section at low energy, E,=60 MeV. At higher
energies, the cross sections are less sensitive to
the off-shell behavior of the mN t matrix. This
result indicates that a larger p can drastically
improve the fit to the low-energy data, but still
maintain the quality of the fit to the data at higher
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fm for all calculations in this figure.

FIG. 5. The 7( He elastic differential cross sections
calculated from U + U 2 by using P~=0.35 fm (solid
curves) and P~ = 0.2 fm (dashed curves) are compared.
The other range parameter lc is fixed to be 0.4 fm for
all calculations in this figure.
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energies E,~ 180 MeV. However, unless p is
changed to a value (-1.2 fm') much larger than the
value 0.2 fm' obtained from the simple isobar
model, "the forward cross section at E,= 60 MeV
cannot be reduced to a value close to data. Fur-
thermore, we also find that, with such a large
value of p, the large angle cross section is rough-
ly a factor of 10 smaller than the data. We con-
clude that the difficulties encountered in fitting
the low-energy data cannot be resolved by simple
adjustments in p . From the above study of the
dependence of do/dQ on the range parameters l,
and p, it is clear that other improvements of the
pion-nucleus optical potential are necessary to
resolve the difficulties at low pion energies.

VII. CONCLUSIONS

We have given a method in momentum space for
the calculation of the second-order pion-nucleus
optical potential. The influence of NN correlations
on &-'He elastic scattering are investigated in
detail. It is found that NN correlations signifi-
cantly decrease the forward cross section at low

energy E,= 60 MeV, and increase the cross sec-
tion at higher energy in the region near and beyond
the second minimum. The corresponding effects
on total cross sections and pion wave functions are
also found to be significant, especially at low en-
ergies.

In a semiphenomenological approach in which
the range parameters l, and [i of U'" are allowed
to vary, no fully satisfactory fit to low-energy
data can be obtained within our model of U"'+ U ".
On the other hand, the fits to the data at higher
energies E~ 120 MeV are satisfactory. This sug-
gests that the expansion of the pion-nucleus optical
potential in terms of the ~N t matrix converges at
energies above 120 MeV. Finally, it is not diffi-
cult to generalize our method to calculate the
second-order optical potential for heavier nuclei
in a form appropriate for the momentum-space
study' of pion-nucleus reactions involving pions
with E& 120 MeV.
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