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Integral representations for the s-wave, off-shell Jost function and half-off-shell T matrix for a
superposition of Yukawa potentials are derived. A representation for the form factor or vertex function

associated with a bound state or resonance produced by such a potential is also derived. The analytic

structure of the various functions is discussed. The applicability of the form factor result to the 'So virtual

bound state of the two-nucleon system is pointed out, and a calculation of the form factor for the 'So Reid

potential is presented.

NUCLEAR REACTIONS Off-shell Jost function, T matrix, and form factor for a
superposition of Yukawa potentials; application to go Reid potential.

I. INTRODUCTION

The off-shell Jost function' is obtained from an
irregular solution of an inhomogeneous form of the
Schrodinger equation. In this equation two mo-
menta k and q appear, where k is an on-shell mo-
mentum, related to the energy by E= k' (our units
are such that )f'/2m = 1), and q is an off-shell mo-
mentum. When q = k the inhomogeneous equation
goes over into the Schrodinger equation, and the
off-shell Jost function becomes the ordinary Jost
function. ' The half-off-shell T matrix can be ex-
pressed directly in terms of the off-shell Jost
function. ' A concise and thorough discussion of
the 7 matrix, and its use in few and many body
theories, is given in the review article by
Srivastava and Sprung. '

Analytic expressions for the s-wave, off-shell
Jost function have been derived for the square
well, ' exponential, ' Hulthen, ' Morse, ' and Woods-
Saxon' potentials. A momentum space formulation
of the off-shell Jost function has been developed, '
and various integral representations have been ob-
tained for it." It has been shown that it is an an-
alytic function of q' except for a right hand cut,
and that the discontinuity across this cut is directly
related to a function which plays an essential role
in Kowalski's' generalized Sasakawa method.

Here we shall derive two integral representa-
tions for the s-wave, off-shell Jost function pro-
duced by a superposition of Yukawa potentials. The
method employed here is closely related to the
technique developed by Martin ' for studying the
ordinary Jost function of such a potential. The
representations obtained are similar in spirit to
those of Brayshaw. ' One of the representations
shows clearly that the off-shell Jost function for
this potential is an analytic function in the upper
half of the complex q plane and possesses two

II. OFF-SHELL JOST FUNCTION

According to Eqs. (2.12), (2.15), and (2.20) of
Ref. 1, the s-wave, off-shell Jost function is given
by

f(k, q) =f(k, q, o),
where f(k, q, r) is the irregular solution of the
equation

[k'+, —V(r)' f(k, q, r) = (k' —q')e"", (2)

which satisfies the boundary condition

f(k, q, r) ~ e"".

The half-off-shell T matrix is given by' the ex-

branch cuts in the lower half of this plane. This
representation leads directly to an integral form-
ula for the half-off-shell T matrix, which reveals
clearly its analytic structure in the momentum q.
From this formula for the T matrix, we shall ob-
tain an expression for the vertex function or form
factor associated with the bound states or reso-
nances produced by a superposition of Yukawa po-
tentials. A similar representation for the bound
state form factor has been obtained previously by
other authors. ' Our result shows clearly that the
vertex function is an analytic function of q' except
for a left hand cut, and that the position of the cut
and its low q' discontinuity depend only on the tail
of the potential, the position of the bound state or
resonance, and its effective range. Numerical
results are given for the form factor associated
with the 'S, virtual bound state of the two nucleon
system produced by the acid potential. &' Knowledge
of this function, which has not been calculated
previously, is necessary for constructing the uni-
tary pole approximation' to the So T matrix.
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f (k) =f (k, k) (5)

and is the ordinary Jost function. ' The function
f (k, q, r) is related to the irregular solutions' of
the radial Schrodinger equation by

pression

T(kq )
f(kq) f(k q)

k ()viqf (k)

where 4)(k, r) is the regular solution of the Schro-
dinger equation, which satisfies the boundary con-
dition'

lim r '4)(k, r)= 1.
r 0

This function can be expressed in terms of the ir-
regular solutions f (sk, r) by means of the relation'

4(k, r)= 2. (f(-k)f(k, r) f(k)f-( k, r)]-. (14)
j

f (sk, r) =f (k, ak, r) .

For the potential we assume the form

V(r) = da p(a)e ", p(a) =0 for a &a„

(6) Inserting (14) into (12), and using (2) and (8) with

q = +k, we find

) "„()
a(a —2ik)s(a, k)

2ik, a —i q —ik

which reduces to an ordinary Yukawa potential if
p(a) is a constant. Following Martin, "it is nat-
ural to look for a solution of (2) in the form

a( 1 k)s(, -k))f(k-
a —iq+ik

(15)

f(k, q, r)= 1+ das(a, k, q)e " e"". (8)
where

s(a, ~k) =s(a, k, ~k) . (16)
Insertion of (8) into (2) leads to the following ectua-
tion for s(a, k, q):

[k'+ (iq -a)' ]s(a, k, q)

This representation shows that f(k, q) is an ana-
lytic function of q except for the branch cuts given
by

= p(a)+
a -o0

da' p(a -a' )s(a', k, q), (9) q =4k —2a) 00 ~ 0 &~ ~

From (4) and (15) we obtain

(17)

where the integral term is absent for a & Ba0. It
should be noted that (9) is really a recursion rela-
tion in that s(a, k, q) can be determined on the in-
terval nao&a &(n+ l)ao from its values on the in-
terval a, &a &na0. In particular, we have

s(a, k, q) =0, a&a, ,

s(a, k, q)= ~ . )~, a &a&2aP(a)
k'+ iq-a' '

1 " a(a —2ik)s(a, k)
(k, q;s)= . f( )

da f
60

„a(a 1'k) (, —
k))

q'+ (a+ ik)'

which shows that the half-off-shell T matrix has
cuts in the q' plane given by

s(a kq)=, . ),
p(a)

k + iq-a
p(a —a')P(a')

[k'+ (iq -a)'] [k'+ (iq -a')'] '

q =-(a+ik), ao &a&~.

It is by now well known"'" that the off-shell T
matrix has a separable residue at the bound state
and resonance energies given by

2a, &a &3a, , (10)
f(k,)=o (20)

etc. According to (1) and (8), the off-shell Jost
function is given by

f(k, q)=1 ~ J das(a, k, q).
a0

Martin's result" for the on-shell Jost function is
obtained by setting q = k.

Another representation for the off-shell Jost
function can be obtained from the relation'

g(P)g(q)
2k (k —k) (21)

A~40 0 0

The function g is called. the vertex function or form
factor for the bound state or resonance. Using
(18), (20), (21) and (11) with q =k= k„we find

4~k0

(1+ik p)

f(k, q)=1 f drs'"V( )a(k, r),
0

(12)
a(a —2ik,)s(a, k,)

q'+ (a —ik,)' (22)
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where TABLE I. Form factor for the '&0 Reid potential.

p=2 dr [e"'0" —f'(k„r)], (23) q (fm ) gtv) 4 (&0) q (fm ) g(e) /g(&())

V(r) = -10.463 e */x —1650.6 e "/x
+6484.2e '*/x (MeV),

x = O. Vr (r in fm) .
(24)

and is the effective range for the bound state or
resonance. In deriving this result we have used
Eqs. (3.18}and (3.19) of Ref. 14. We see that for
a bound state or virtual bound state (ko pure imag-
inary) g(q) is an analytic function of q', except for
a left hand cut beginning at q'= -(ao+

~ kJ ) .
A useful application of (22) is to the 'S, virtual

bound state of the two nucleon system. From (7),
(22), and (23) it follows that the location of the cut
and the discontinuity across the low q' end of the
cut are given by the effective range parameters
and the tail of the potential, which presumably is
given reliably by one pion exchange. We have
carried out a calculation of g(q) for the 'S, Reid
potential, "which is given by
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—0.347
—0.328
—0.308
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-0.262
-0.239
—0.216
—0.194
-0.173
—0.153
-0.134
—0.116
—0.100
—0.086
—0.073
-0.061
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-0.042
-0.034
-0.027

g = -17.1 fm,

ro=2. 80 fm,

P = 0.020,

(26}

respectively. We have found the position of the
virtual state by solving the equation

k cot5 =ik (26)

The scattering length, effective range, and shape
parameter for this potential are"

4ik,
v(1+ ik, p)

i/2
= ~&0.245 fm-'" (29)

good, since the third term on the right hand side
is very small. For the potential (24) the function

p(a) is simply a sum of three step functions.
Simpson's rule was used to evaluate the integrals
in (9) and (22). The results for g(q)/g(ko) are pre-
sented in Table l. According to (20), (22), and (11)
with q = k= ko

wj, th

kcot5= ——+ —r,k -Pr, k .1 1

Q 2

The result is

(27)

where we have used r, for p. The sign is of no
significance as only g' appears in the T matrix.
These results should be of use in constructing the
unitary pole approximation' for the Reid 'S, T'

matrix.

ko= -i0.0543 fm '. (28)

The approximation (2V) is easily seen to be very
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