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Treatment of the charge-independent pairing Hamiltonian without violation
of conservation laws
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An equations-of-motion method is proposed for treating neutron-proton pairing correlations conserving both
nucleon number N and isospin T. This method makes it possible to find approximate solutions to the charge-
independent pairing Hamiltonian by a step-by-step procedure. It is shown that for the degenerate model the
exact results are obtained.

I. INTRODUCTION

In Ref. 1 an. equations-of-motion method was
proposed to treat pairing correlations in systems
with an even number of identical, nucleons. Its
main advantage lies in the conservation of the num-
ber of particles. This feature extends the range
of validity of the method beyond that of the BCS
approximation, as it makes it possible to find
physical solutions for all values of the strength
G so that one can pass continuously from the super-
fluid to the normal phase.

The problem of treating the charge-independent
pairing Hamiltonian by means of a BCS-like ap-
proximation has been extensively investigated. '
This approximation breaks both number and iso-
spin conservation and it has been shown"' that,
as a consequence, the quasiparticle ground state
has no neutron-proton pairing correl, ations, re-
ducing to a product of two BCS wave functions for
the neutrons and the protons separately. One is
therefore led to seek an improvement on the BCS
tr'eatment trying to take into account the residual
interaction between the quasiparticles. ' Alter-
natively, one may try to devise an approximation
scheme which avoids the relaxation of conserva-
tion laws. '

In this paper, we present a generalization of the
method of H,ef. 1 to the more complicated case of
systems of unlike nucleons interacting through a
charge-independent pairing interaction.

The practical importance of taking into account
the isospin degree of freedom is related to the
fact that it plays a major role in the description

of the 0' states in the region around A = 56.' In the
last few years a number of works have success-
fully reproduced energies and two-particle transi-
tion rates in this region by using both collective' '
and microscopic"'" models.

II. FORMULATION OF THE METHOD

We consider a system of N nucleons (N even)
moving in a set of single-particle orbits and in-
teracting through a charge-independent pairing
force, which is effective only for J = 0, T = 1 pairs.
'The model Hamiltonian is written

H= Q c~N(j) -G Q At„(j)A„(j'),

where the && are the single-particle energies, and

N(&)= ZZ n~ ~s~ ~

fnOO t t'

In the latter expression t is the z component of the
isospin, f =+ , (-—,) for neutron —(proton) states, and

the barred suffix refers to a time-rever'sed single-
particie state. The operators At (j) can be regard
ed as the three components of a vector operator
A~(j) in isospace.

The pair creation operators (3), their Hermitian
conlugates, the number operator N(j), and the
three components of the level isospin T(j) can be
related"'" to the infinitesimal generators of R,.
'Their comrhutation relations are
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[T„(f),~'„(j')]=&2&Ii »~ Ir&~,'(j)5»„
[N(j),~'.(j')l = ~'.(j)5;, ,

[A„(J),A„(j')] ={[@ xN(i }—PT, (J}]5„„
+ T,(j )5„„,—T,(j )6„,)6, , (4c)

(4a)

(4b)

where 0& =j+-,'.
We shall restrict ourselves, in the following,

to states with individual level seniorities of zero.
The wave function for a system with N particles is
then written

X„,,(N)=&N, r~g'(f)~g 2, T &,

e(N, T, T') = E~(N2 T) —E,(N —2, T'),
(7)

(8)

where E,(N, T) stands for the energy of the lowest
state

wrath&

particles, J =0, and ~sospin T.
The equations for the amplitudes X»~, are

obtained by taking reduced matrix elements of the
equations of motion for A„(j). They are

(N Tll(H»'(f)lllN »T'-&=e(»»r'}Xj-( }

INTT, T,)=g c»r, (N){A (j) ~N 2, T—'))rr, (5)
jT'

where curly brackets denote isospin coupling:

{4'(j)~N -2, T'&j r

= Z&r T;II ~rr,&~&(f)~N 2, r, r;) (5).
Some of the definitions of Ref. 1 can be extended
to include the isospin degree of freedom. In par-
ticular, we now define

The commutator [H, At(j)] is calculated by making
use of the commutation relations (4). The left-
hand side of Eq. (9) can then be linearized by in-
troducing a complete set of states of the (N —2}-
particle system, and neglecting all the excited
states for a given T under the assumption that the
corresponding reduced transfer matrix elements
are small. In this way we obtain a homogeneous
set of Bnj (nj is the number of single-particle lev-
els) linear equations in the 3~j unknowns X,»(N), . ,

namely

[e(NT, T') —2,ee[xe„„(N)=-G()e E I[( —P .(N —e2)]2. ..~ jX(-() ', „2& ~ (N —2)Ixe (N),
1 1 1

jpgpg T T T

(10)

where

and

N} (2T+ 1)-2f 2 fv(j )
)20)

Xj (N)= (2r+1)'I'g c, (N)d rr'r"(N

with

(14)

tjrr (N)= N, T N, T'T(j)
(12)

dT2" r (N) ~( )rer'ere)(2K I)2/2 [']I r" z]

gc j rre (N}Xjrre (N) = (2T + 1) (13)

The coefficients cjr~(N} defined by (5) and the
amplitudes X»r (N} are in turn related by

It should be noted that compared with the case of
identical particles' a new quantity, the isospin
matrix t»~, is introduced in the formalism. This
accounts for both the occupation of each level by
neutrons and protons and the degree of isospin
alignment.

The condition for the system (10) to admit non-
trivial solutions leads to a determinantal equation
for the energies e(N, T, T'). From the normaliza-
tion condition & N, T, T, ~N, T, T, )= 1, we obtain

x&N, r" I{a(j')x~ (j}] IN, T &, (15)

where the multiplication sign indicates the tensor
product and A, (j)= (-)""A „(j).

As is Hear from Eqs. (10) and (14), the calcu-
lation of the energies and wave functions for the
N-particle system requires knowledge of the
matrices p»(N -2), t,»,(N —2), and drr r (N —2).
If these matrices can in turn be expressed in
terms of the c; r ~(N —2) and X,.», (N —2), then
the calculation can be carried out through a step-
by-step procedure. To this end, we rewrite the
definitions (11) and (12) making use of (5). Next
we resort to the commutation relations (4) and
employ a closure procedure similar to the one that
leads to Eq. (10). In this way we obtain
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1 1
pgr(N) —

~& 2 g corfu (N)XJ Trt (N)+ cysTFt (N)Xprrr(N)pg pt (N 2) y+ I
(16)

t„,.(N) = (2T'+1)"' —„g(-)""', , c„,(N)X„,g2&W6 r„~, I T" 1 T'

1 T' T~'
ci r r-(N)X, , rr (N)t». , r„(N 2)

gt+4t AN@

In order to make use of a closure procedure for the right-hand side of Eq. (15), the commutation relations
(4) are more conveniently recast into the tensor coupled form

(~(j'}»'(j)]'-(-)'(&'(j)x&(j')j'=(&3[0 .'N-(j-)]5 &2T (j)6 )5 . .

Then we obtain

~pgetpA 1 „,, v'6 T1T
d~~. (N)= —[1-p~r (N)]5r r. 5 ~. +(-) ' t .(N)5

+P(-) ', (X»„,.„(N}X,.» (N).

p)r(0)=0, terr (0)=0,

d, ~,'(0) = A)6)p5r, . (20}

It is to be noted that for N= 2 our procedure is
exact. In this case Eq. (10) reduces to the well-
known' eigenvalue equation

(21)

The matrix d&&, bears the exclusion principle ef-
fects and is therefore crucial in providing a wave
function with the proper symmetry.

The step-by-step procedure outlined Above has
to be started with the obvious initial values

N
p, (N) =-M' (23)

t (N) = —[T(T+ 1)(2T+ I)]'t'51
Q

Then Eq. (10}becomes

e(N, T, T') = —G (II —pN+ 2

+ ,'[T'(T'+ 1) —T—(T+1)]], (25)

A. Energy spectrum

In the degenerate case the exact values of pr(N}
and trr, (N) are given by

and

III. DEGE5ERATE CASE

(22)

and the energy E,(N, T) of the N-particle system
can be easily derived. One obtains

E,(N, T) = — G[N(&+-' —-'N) —T(T+ 1)l], (26)

which is the exact result" for states with seniority
and reduced isospin of zero.

We come now to consider the special case of
degenerate single-particle levels z~ = 0 v j . In this
case there is only one state of seniority v= 0 with
given isospin T for each nucleon number, and
therefore the closure procedure is exact. In this
section we show that our method, once applied
to the degenerate model, leads indeed to the exact
results for the energies and two-particle ampli-
tudes which can be obtained analytically by other
methods. "" From now on we drop the orbit
index j.

B. Two-particle amplitudes

A general proof can be given by induction. Since
our method is exact for N= 2, we have to derive
the X's for N+ 2 assuming that they coincide with
the exact results for the N-particle system which
can be obtained using group properties of 8,."
The values of the isospin T„of the exact v = 0
states of the N-particle system are restricted to
those having the same parity as &N; hence, there
are only two nonzero amplitudes. They are"
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x,„,,„,(N) I,„,,„,=[.' T-„(2n--.'N —r„+2)

x(-.'N+ r„+1)]"',
x,„,„(N)I,„,„„=-[,'(r„-+ I)(2a--.'N+ r„+3)

x(-'N - T«}]". (2V)

= T+ I inserting (23), (24), and (2V) into (19). We
obtain

)
r(2n .'N--r+-l)(r+-,'N+2)

2(2T+ 1)

We first prove that the amplitudes Xr„, r„(N+ 2}
are given by the expressions (2V) replacing N by
N+ 2. To this end, we calculate the values of
d «+2' «'r&(N) for T„„=T,T„=T+I, and T„'

(r+ I)(2II - -.'N+ r+ 2)(.—,'N - r+ I)
2(2T+ 1)

(2 8b)

d ' " "(N)=d ' '" '(N)=—
2 2T+1 [T(T+ 1)(T+ 2N+ 2)(«N —T+ 1)(2A - 2N —T+ 1)(2Q —«N+ T+ 2)]'i'

(28c)

By making use of (14) and (15) we can now cal-
culate the parentage coefficients err (N+ 2) and

the two-particle amplitudes Xr~(N+ 2). As can
be easily verified, the determinant of the system
(14),

cr, r, (N+ 2)

2(2r+ 1)
r(2O !N r+ I)(-r+ «N-+ 2)

(30)

x, , ,(N+ 2)

=[«T(2g «N T+ 1)(T—+ «N—+ 2)]' ', (3la)

Xr
1 r„(N+ 2) = —[2(T+ l)(2Q —«N+ T+ 2)

x(-.'N —r+ 1)]"'. (31b)

The expressions (31) are precisely the exact ones
for the degenerate model and are obviously inde-
pendent of the arbitrariness in the choice of the
coefficients err (N+ 2).

It is readily shown now that, in the degenerate
limit, our +ave functions fulfill the requirement
(-)"~"r=+ l. In fact, the matrix elements
d «+2' "«' «(N), which are required to calculate
Xr r ~ r (N+ 2) vallish ldentlcaLLy. It ls lnX+2' N ~Ne 2

drip r ly r 1(N)dryr+1 ~ Ttl(N) [dr& T 1' Ttl(N)]2

(29}

is equal to zero. 'This is related to the fact that
the same state IN+ 2, T, T, ) can be obtained in two

ways, namely as&A, tIN, T '1&&r, or -&klIN, r+ I&] r,
Hence, we can make an arbitrary choice of one of
the two pa,rentage coefficients, for instance
cr, r.,(N+ 2) = 0 or cr r.,(N+ 2) = 0, and solve the
system (14) supplemented by the normalization
condition (13). In particular, by choosing
cr r„(N+2)=0, We obtain

this way evident that tQe d matrices carry the in-
formation necessary to provide wave functions
with the proper symmetry.

Finally, it is straightforward to check that in-
serting (23}, (24) and (30), (31) into (16) and (1V)

one obtains the exact values of pr(N+ 2) and

t», (N+ 2). This completes the proof.

IV. CONCLUDING REMARKS

The method presented in this paper can be ap-
plied to the realistic case of N nucleons in non-
degenerate levels keeping the amount of numerical
work rather limited. Thus, it should prove to be
an effective tool to analyze experimental data in
terms of the pairing model. In particular, the
two-particle transfer ainplitudes associated with
each j shell are obtained directly and can be used
to analyze two-nucleon transfer cross sections.
The impossibility of providing such amplitudes is
a short-coming of all collective approaches' 9 "
that have to resort to a microscopic model to pro-
cure a, valid input to distorted wave Born approxi-
mation codes.
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