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A method is presented for the expansion of properly antisymmetrized cluster model (or resonating group
method) wave functions in terms of translationally invariant shell-model wave functions. By coupling the
relative motion (harmonic oscillator) wave functions and the internal cluster functions to resultant SU,,SU,
strong coupled functions, the cluster model wave functions can be expanded in terms of standard shell-model
wave functions by SU,, SU, recoupling techniques, using readily available recoupling coefficients. As a
specific example, the full shell-model expansions are given for (a + '2C®) cluster functions for all possible
SU, symmetries and a-'2C relative motion wave functions carrying from 4 to 8 oscillator quanta, hence '°O

core excitations up to 4fiw.

[NUCLEAR STRUCTURE Shell-model expansions of cluster functions; o + ‘20]
representations of 0,

I. INTRODUCTION

Recent extended shell-model calculations!'? and
resonating group or cluster model calculations®®
for nuclei such as '°0, **Ne, and **Ti have renewed
interest in the well known relationship between
shell-model and resonating group method wave
functions.® In the extended shell-model calcula-
tions of Arima and Tomoda! a comparatively rich
shell-model basis is augmented by core excitations
which are described as a-cluster states with oscil-
lator excitations up to 20 units of zZw, carried by
the a-core relative motion wave function. Although
introduced to incorporate the physics of @ cluster-
ing, these states have the additional advantage that
they furnish a means of introducing core excita-
tions which are automatically free of spurious cen-
ter of mass excitations. The recent calculation
for %O by Suzuki,® in the framework of the ortho-
gonality condition model,” uses a !2C +a cluster
function basis with core excitations up to 26 units
of #w. Despite its striking success this calcula-
tion may overemphasize the a-cluster nature of
certain states in !®0. The 1- state at 7.12 MeV is
a particularly interesting example, since its «
spectroscopic amplitude is of astrophysical inter-
est. Recent experimental determinations of the a
amplitude of the 7.12 MeV state by four-nucleon
transfer reactions® may be at variance with earlier
estimates.® This 1° state is predominantly a 1p-
1h state. In the harmohic oscillator shell model
the major 1p-1h component of this state is identi-
cal with the a +!2C cluster state corresponding to
an oscillator excitation of 17w. For an accurate
determination of its & spectroscopic amplitude,
however, both higher cluster-motion and additional
small p-h components in its wave function may be
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important. Moreover, the low energy *?C(a, 7)!°O
cross section, which is one of the crucial param-
eters in the determination of the !2C to %O ratio
in a He-burning star, depends on the rvelative o
amplitudes of the 7.12 MeV and the nearby 9.6
MeV 1° state. More detailed conventional shell-
model calculations based on the 1p-1h and 3p-3h
excitations'®!! may be even more inadequate since
they fail to account for the wide 1° a-cluster state
at 9.6 MeV whose properties are predicted more
successfully by the cluster model calculation of
Suzuki.

Detailed calculations which have merged the
shell-model and cluster-model pictures have re-
sorted to various approximation techniques. It
may therefore be of interest to reexamine the re-
lationship between cluster and shell-model wave
functions. It is the purpose of this contribution to
present a new method for the expansion of cluster-
model wave functions in terms of properly anti-
symmetrized, normalized, translationally invar-
iant shell-model wave functions which can be car-
ried out explicitly for core excitations up to a few
units of iw of oscillator excitation. The method
uses harmonic oscillator SU,, SU, strong coupled
resonating group wave functions and is thus parti-
cularly useful for p and sd shell nuclei. It uses
simple SU, and SU, recoupling techniques, re-
quiring only recoupling coefficients which are
readily available. Similar techniques have re-
cently been exploited in the calculation of cluster
spectroscopic amplitudes'? for core excited states
in sd shell nuclei.

The general method of calculation is outlined in
Sec. II. Some of the technical details of the method
are reserved for an Appendix. The a +'2C cluster
function basis for !®O is used as the prime example
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to illustrate the method. In this basis the internal
wave function for *2C is restricted to the SU; sym-
metry (04). The full shell-model expansions for
these a +!2C cluster states are tabulated in Sec.
III for all possible SU, symmetries and a - core
relative motion wave functions carrying from four
to eight oscillator quanta, hence *®0 core excita-
tions from 0 to 4 units of Zw of oscillator excita-
tion. These detailed expansions of ¢-cluster wave
functions make possible a study of the approxima-
tions inherent in earlier cluster model and mixed
shell- and cluster-model calculations, and may be
useful in merging earlier p-h shell-model calcu-
lations!® for '®0O with the more complicated clus-
ter-model caclulations.

II. METHOD OF CALCULATION

In the resonating group method the nuclear wave
function is built in terms of clusters A, B, ...
with internal wave functions ¢ 4(£,), ¢5(£5),- .- ,
where £,, £5,... are intrinsic coordinates of the
clusters. The trial wave function for the reson-
ating group method is of the form

a[u(FAm .- ')A(gA)d)B(gB)"‘]’ (1)

where I, ... are the relative vectors from the
centers of mass of A to B, ..., and u(T 5, ...) i8S
the wave function describing the relative motion of
the cluster. The internal wave functions ¢(£) are
properly antisymmetrized. The antisymmetrizer
@ makes the complete wave function antisymmetric
under exchange of nucleons between clusters. It is
assumed that the internal wave functions are con-
structed from single particle harmonic oscillator
wave functions &(r;) with I;/=(mw/k)*/?r;, with one
common oscillator frequency w for all clusters.
The relative motion wave function will be expanded
in terms of harmonic oscillator wave functions
with this same w. It will then be possible to ex-
pand such oscillator cluster wave functions in
terms of standard shell-model wave functions.
Since the internal wave functions ¢(£) are assumed
to correspond to oscillator ground state configura-
tions these oscillator cluster wave functions, with
excitations restricted to relative motion wave func-
tions, are automatically free of spurious center of
mass excitations. In addition, it will be assumed
that the internal cluster wave functions ¢(£) have
good SU; and supermultiplet symmetry. (SU,
quantum numbers will be given by the Elliott la-
bels (Ap), SU, quantum numbers by [f], derived
from the U, partition numbers conjugate to the
space symmetry labels [f].) If the relative motion
harmonic oscillator wave function carries @ oscil-
lator quanta (@ =2N + L) it will be described by the
SU, irreducible representation (@0). In addition,

it will be useful to couple the SU, and SU, repre-
sentations of u, ¢,(£,), ¢5(¢g), ... to resultant
total SU, and SU, symmetries (An), [f]. The ad-
vantage of this so-called SU,, SU, stréng-coupled
form of the cluster wave function is related to the
fact that these SU, strong-coupled functions are
eigenfunctions'® of the exchange kernel, K, asso-
ciated with the antisymmetrizer.

The a+!2C cluster function basis for '®0 will be
used as the prime example to illustrate the tech-
nique whereby the cluster states of the form (1)
are expanded in terms of standard shell-model
wave functions. It is assumed that the 2C cluster
function has space symmetry [444], and hence be-
longs to the scalar SU, representation [f]=[0],
and is in addition a pure (0s)*(0p)® shell-model
function of SU, symmetry (04). The SU,, SU,
strong-coupled cluster function then has the form

‘I’cl =a[q,(oo)(r*.‘lx_c) X ¢“(£a)(00)[o]
X ¢1zc(€1zc)(°4)[°]]?“)m] ’ (2)

where the square bracket denotes the SU, coupling
(Q0) x (04)~ (Ap), and the (trivial) SU, coupling
[0]x[0]~[0]. The SU,, SU, subgroup labels are
designated by a since any convenient set of labels
can be chosen. (For [f]=0, S=T=0, of course,
for any other supermultiplet it is immaterial
whether a KLSJM ;, or a KLM ;SM ;, or any other
basis is chosen.) These SU, strong coupled func-
tions can be related to ordinary angular momen-
tum-coupled (SU, weak-coupled functions) by
straightforward coupling techniques; see, e.g.,
Eqgs. (2) and (3) or Ref. 12. The antisymmetrizer
@ is normalized according to

a=(41) " (142 1p,),

where the P, are permutation operators which ex-
change at least one pair of nucleons from the «
and 2C clusters. With @ <4, the antisymmetrizer
annihilates the state (2). For @ =4, the only Pauli-
allowed state has (Au)=(00) and is the closed shell
(0s)*(0p)*2 ground state for **0. For @ =17, only the
state (Ap)=(74) is Pauli forbidden; for @ =8, all
possible (Apn) are allowed. Normalization factors
for the states (2) have been given by Horiuchi!® for
Q@ values up to @ =19. The shell-model expansions
for the 17, 27, 3~ states with @ =5, (Ap)=(21),
were first given in a weak-coupled basis among
the detailed examples of the pioneering work of
Kanellopoulos and Wildermuth.®

The relative motion harmonic oscillator function
®®(F ,_ ) is a function of the dimensionless coordi-
nate

- 4 x 1z,
o = < 12 X '”L_w> a-C»

aC \" 18
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where m =nucleon mass, and Fa_c is the position
vector from the center of mass of the a particle
to the center of mass of the '2C cluster.

The basic method whereby the cluster wave func-
tion (2) is expanded in terms of standard shell-
model wave functions makes use of an expansion of
harmonic oscillator wave functions. The harmonic
oscillator wave function $‘9°(5) in a variable g’
is expanded in terms of harmonic oscillator func-
tions ®“°)(F)), with ¥ (mw/ﬁ)”"’r‘ or Q‘“’(R’)
where the d1mens1onless variables 5’ and r,, (or
R}), are related by unitary transformations. If
the variable p’ is labeled as the first variable in
the unitary transformation from r; to g’ =g/, ..
then

*

'=Z{:Fi'uu . (3a)

In our example,

. Q! 12
¢(QO)( r'u' ) = <————-———>
(L)~ T, (araian

(Tay=@)
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P4

P =Tgc
=‘ﬁ (r1+r2 Tt ) - (r13+r14+r15+i’s)‘
(3b)
Or, alternately
- 1 -, 1 -, V3 =
P'=Toc™ 75 Rit 75 Ri- 5 R{ (4a)
with
- - 1 . -
R1'=2(r + ‘+r;), Rzl=\/?8' (tg+- - THI),),

RI=3(F/ o+ +T0). (4b)

The basic expansion of the harmonic oscillator
function ®¢9(5’) has its simplest form in an SU,-
coupled representation. Under the transformation
(3)

xn () [+ ([ B0 (F1) x @00(F) |60 %00 x Blag0)(F) [(0y*p2agr0) x + + - @LaUO(F1) |49
=1

a result given by Kramer'* which makes use of the
transformation properties of the A-particle har-
monic oscillator function under the direct product
group U(A) X U(3), and which has been transcribed
here into SU,-coupled language. The square brack-
ets denote SU, coupling. Since all SU, couplings
in Eq. (5) are “stretched,” the order of the cou-
plings can be rearranged at will (without change

of phase). It will also be useful to express har-
monic oscillator functions in terms of polyno-
mials'® irr the oscillator creation operators, 7;,
acting on the oscillator ground state

q’nxm(Ftl)=P§?n°)(ﬁi) 10> (6)

with g =2rn+1. For oscillator functions in the single
particle variables, F{ , the creation operator ﬁ‘

is a function of the coordinate and momentum com-
ponents of particle i. For oscillator functions of
variables such as ﬁ the corresponding oscillator
creation operator Th is the analogous function of
the coordinate R; and conjugate momentum B,. The
action of a polynomial creation operator on an os-
cillator function in the same variable is given by
the relation

®)

[P @) g

+ 1/2 -
=0ru) tasats0) <qu_!(_]¢1,’!)_!> LA CHI )
Two methods have been used for the expansion of
cluster-model functions of the form (2) in terms
of standard shell-model components. In the most
direct method the relative motion function is ex-
panded in terms of single particle harmonic oscil-
lator functions by successive application of Eq. (5)
to the transformations (4a) and (4b) whereby the @
oscillator quanta carried by the relative motion
function are partitioned first into @,, Qz, Q3 quanta
associated with the degrees of freedom R Rz', R’
and secondly into ¢,, ¢,, ..., g, quanta assoc1ated
with the single particle shell-model functions. The
bookkeeping procedure for this partitioning process
is somewhat complicated (see Ref. 23). A less di-
rect, but somewhat simpler method makes use of
a chain calculation which is particularly useful for
the calculation of specific shell-model components
of a cluster function of moderate core excitation.
This technique makes use of a “cluster-like” wave
function which is obtained from the true cluster
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function by replacing the relative motion function ®‘9°)(r/_.) in the cluster function by a function
d>(°°’(§;), in the coordinates of the last four particles only, and by multiplying the internal function .
for the core cluster by a wave function of Os excitation for the center of mass motion of the core, DON(RY)

Yo pustor-11xe = Gl BQONR/) X pOO0O ) x ¢(§1zc)(°m°]4’(°°’(§,’2) Jowrtod, (8)
The (a +2C) cluster function is again used as the specific example, so that

- 1 . - -, = 1 . - - 1 - -

R:I:\/—I(rx's*'”""rz's)r Ré=R;2=m—(r(+ TrrHr)), R",'m'=\/——f€ B+t +T]). (9)

The application of transformation (5) to the 2 X 2 unitary transformation
Ri=- ) Frct @)/ Rim, Rip=@)"*Foct® R n. - (10)

can be used to expand $®)(R’) [and trivially ®(R},)] in terms of proper relative motion functions
$(@)(£7_.) and center of mass excitation operators P(7j,,,,.)

/
HPRD=T (G5) | @@ PO ) X SOOI ay
Ql 1°7%2°
Q,+Q,=Q

With this transformation the projection of the “cluster-like” function onto a specific shell-model compo-
nent [(¥2_)*# ) can be related to the overlap of the true cluster function, Eq. (2), with this same shell-
model component; (¥ is a short-hand symbol which denotes the full configuration and SU;, SU, quantum
numbers of each major shell component). Thus

((Er )0 l.l,[(oo)x(oax)](u)> =[- (i%)x/zlo ((Er )w ' LQOIX(04) 1w |

cluster-like true cluster
/
Y (;Q'L) C@9 @20 Y U(Q, 0)(@,0(1)(04); (QO)A 1)
oo o Q,!Q, )
1*92°

X (L) 0 [ PO, ) X G 8490 (Fr ) X 9O (E,)pOVIY(5,,) |41 Jowtod)
(12)
The square brackets in the last term again denote SU, (and the trivial SU,) coupling, and a transformation
has been made from the
[[p(olc\)(ﬁc.m') X q,(ozo)({.;_c) ](Qo) X ¢(o4)(§12) J(lu)
to the recoupled
[P0l ) X [ 89 (F ) X GO, 5) |00 |00

basis by means of an SU, Racah [6-(Ap)] recoupling transformation. The U coefficient is an SU s Racah
coefficient in unitary form,'>!5 free of multiplicity labels. By a simple symmetry property it is identical
with the coefficient U((04)(Q,0)(A1)(Q,0); (A'u1’)(Q0)) for which an algebraic expression is given in Ref. 12.
More complicated SU, U coefficients, including SU, couplings which may not be multiplicity-free, are
needed for other parts of the calculation process and are available through the computer code of Akiyama
and Draayer.®

The cluster-like function has a nonzero overlap only with shell-model states of the type

(¥7,) 2 = (05 )*[(0p)* " (' w))F ‘1 [(sd)"2(f )5 . . . [ w")[F *] A 103)

with E;z, =4, Q=In +2n,+3n,+..., andn, =4, and with p shell SU;, SU, representations A'n)=(0,4-n,),
[F’]1=[1"], and (\" u")=(Q —n,,0) =(2n, +3ns+*+ *,0), [f”]=[1*™]. For all other shell-model components,
7, the left hand side of Eq. (12) is zero. The nonzero overlaps of ¥} with the cluster-like function become

<‘I’((OS)4[(01))8‘"1(0, 4 nl)x [(sd)"2(pf)23](Q -n,, 0)](“)[01 I W(Q0)Ix(04) J(An) )

cluster-like

=[<(1:)"1(2|§z!(3;)n3. ; .)m(%)"](Iil‘tii!)>"2<(i;::!)1)1/2

dim, [44] >"2
dim, [44n,
80"1

X U((04)(2,0)(A 2)(@ - ,,0); (0, 4 — nJ(QO))( (13)



16 RELATION BETWEEN CLUSTER AND SHELL-MODEL WAVE... 2405

To derive Eq. (13) it is convenient to express the cluster-like function in terms of

N7 =aa'[¢‘°°"°1(1, 2’3,4)¢(o4)[o](5’ ey 12)[@(00)('}%;)(1)&00)[0](13, e, 16)] ]()m)[o] s (14)

cluster-like

where the antisymmetrizer @’ [normalized as in
Eq. (2)] makes the *C internal function antisym-
metric under exchange of nucleons between the
(0s)* cluster containing nucleons numbered 1,...,4
and the (0p)® cluster containing nucleons 5 to 12.
The reordering of the SU, coupling from (Q0) x (04)
= (Ap) to (04) X (Q0)~ (Ap), with A+ - @ —4=even,
introduces no change of sign (see Appendix A).

The transformation (5) applied to the function
BOOR!, =4 (rly+ - -+ +T!,)) gives (4! /n,In,ln,l...)
X (factor inthe first square bracket) where it is as-
sumed that nucleons numbered 13, .. .13 +n, have
beenplaced inthe p shell, ..., by the transformation
(5). In the overlap (13) the antisymmetrizers @,
@’ can be made to act to the left to yield the factor
[161/418141]*/2, The overlap between the totally
antisymmetric shell-model function on the left and
the cluster functions inside the square bracket of
(14) then yield the factor

{[41(8+n)In,!n,!...]/161}1/2
x[8+n, - (8+n,) p shell cfp],

after a recoupling transformation from the [¢(°*

X [Q(nlo) X q)(Q-n,_,O)](OO)](Xu) to the [[ ¢(04)

X @ (MO (0 4=np) 5 $EQ=m O | pagig in which the p-
shell nucleons are coupled to (A" u’)=(0,4 -n,).
This recoupling transformation is effected by the
SU, U coefficient which is of the simple form en-
countered previously. The 8+n - (8+n,) p-shell
coefficient of fractional parentage (cfp) is an SU,,
SU,-reduced multiparticle cfp which for the p shell
is given by the simple symmetric group dimension
ratio shown and has the phase +1 (see Appendix A).
To calculate the overlap between a true cluster
function and a specific shell-model component,
¥? . the last term of Eq. (12) must still be evalu-
ated. Note that the antisymmetrizer @ commutes
with the totally symmetric center of mass motion
excitation operator so that @ can be made to act
directly on the cluster function. The last term of
Eq. (12) thus involves the action of the center of
mass excitation operator on a properly antisym-
metrized true cluster function with @,<@. In most
cluster-model studies wave functions with relative
motion excitations up to some maximum number
of quanta @ are usually of interest. The cluster
functions with @,< @ will thus have been expanded
in terms of shell-model components in an earlier
step of the calculational process. (For a more
direct method not dependent on such a chain cal-
culation, see Ref. 23). In the a+'2C cluster sys-

tem, the cluster state with @ =7, (Au)=(41), for
example, can be decomposed into shell-model
components by Eq. (12) if the shell-model decom-
position of cluster states with @, =6 and (Ap)

=(42), (31), and @,=5, (Au)=(21) has been evalu-
ated in an earlier step of the calculational process.
The minimum Pauli-allowed @ value makes no con-
tribution in this example, since the only state with
Q,=4 has (Au)=(00) and cannot be connected to
(Ap)=(41) by PEO(7), ). The spurious states gen-
erated by the center of mass motion excitation
operator P9 (ij__ ) acting on the true cluster
states with @,=6, (Au)=(42), (31) and P**® (ij__ )
actingon the statewith @, =5, (Ap) =(21), when pro-
jected onto a shell-model component, give the pro-
jection of the spurious center of mass motion of
the “cluster-like” function with @ =7 onto this spe-
cific shell-model component. The matrix elements
of PU%(1), ) connecting specific shell-model
components can be evaluated by SU,, SU, recou-
pling techniques. For this purpose it is again con-
venient to expand P{91°(i], . ) in terms of single-
particle operators P‘®)(i7;), i=1, ..., A, by trans-
formation (5). To illustrate this SU,, SU, recou-
pling process a specific example is worked out in
Appendix B.

The technique whereby cluster-model functions
are expanded in terms of standard shell-model
components depends on three technical details,

(1) SU,, SU, recoupling transformations, (2) the
reordering of SU,-, SU,-coupled functions, and

(3) the uncoupling or recoupling of open shell func-
tions through SU,-, SU,-reduced fractional parent-
age coefficients. Since it is important to use a
consistent set of phases, these three steps of the
calculational process will be discussed in some
detail in Appendix A.

III. SHELL-MODEL EXPANSIONS
OF THE (« + '2C) CLUSTER FUNCTIONS

With the techniques outlined in Sec. II the full
expansions of the (a +!2C©%) cluster functions
can now be projected onto all possible shell-model
components. The method leads naturally to shell-
model components expressed in terms of SU,, SU,
strong-coupled functions. Whenever results are
available for all possible (Au), for a particular @,
these SU,, SU, strong-coupled functions can be
transformed to ordinary angular momentum cou-
pled functions (SU, weak-coupled functions) by
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straightforward SU, coupling techniques, (see Egs.

(2) and (3) of Ref. 12). Results for the expansions
of the antisymmetrized [${92) X (a +12C)© ] »
cluster functions are given in Table I for @ =8,
hence for %0 core excitations up to 4%w. Results
could be extended to higher @ values. For small
values of (An), however, the number of shell-
model components becomes very large, and a full
shell-model expansion may then no longer be of
interest. The shell-model components in Table I
are SU,, SU, strong-coupled functions. For the
sake of compactness, however, SU, labels are
omitted whenever they follow unambiguously from
the SU, labels and the fact that the resultant total
SU, label is [7]=[0]. For the state

[(0s)*{(0p)°(02)[(s@)*(20) (£ )* B0V (A, ) I (A ) )

e.g., the SU, representation for the (0p)*° configu-
ration, [F,,]=[12], follows from (A, u,,) = (02); the
two-particle configuration (sd)!(pf)* must thus be
coupled to SU, symmetry [f,]=[1?], a spatially
symmetric two-particle state, to yield the re-
quired [f,,] % [7,]=[0]. The expansion of the

a +'2C cluster wave function of Eq. (2) in terms of
shell-model components gives (1/N) times a nor-
malized shell-model functions. Table I lists the
normalized shell-model functions along with the
normalization coefficients N of the cluster wave
functions. The values of (1/N) have previously
been calculated by Horiuchi.!?

TABLE 1. Shell-model expansions of o +!2C cluster wave functions for 1f0. State vectors
are given in 8U;, SU, strong-coupled form. Square brackets denote both SU; and SU, coupling.
SU, representation labels [}] are omitted whenever they follow (unambiguously) from the SU;
labels (Au) and the fact that the final resultant [ f] =[0].

Q=4

(u)=(00) (1/N) = (42)1/2
[(0s)%(0p)!%(00))

Q=5

() =(@1) (1/N)=— (1)
[(05)*[(0p)* (01)(sd)! (20)] (21))

Q=6

() =@2) (1/N)=@E1/?

| (0s)*[(0p)1°(02) (sd)? (40)] (42))

() =(31) (1/N)= ()2

{221 (05)¢1(0p)! (01)(p)! (30)] (31)
+ ()" 21(05)*1(0p)*(02)(sd)* (40)] (31))
— GEI2)(0s)'1(0p)1°(10) (s 21 (31)) }

() =(20) (1/N) = (H1/2

{112 (0s)'1(0p)! (01) (p (30)] (20))

+ (5121 (05)41(0p)!°(02) (s2)*(40)] (20))

— (21?](0s)*[(0p)*(02) (s@)? (02)] (20))

+ (33)12](05)*1(0p)!°(10)(sd)* (1)1 (20))

+ (18172 (05)1(0p)'? (00) (sl)! (20011 (20)) }

Q=7

(Ap) = (63) (1/N)=—(%13)”2
1 (0s)4[(0p)%(03) (sd)? (60)] (63))
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TABLE 1. (Continued)

(A =(52) (1/N) = (32
{ 1)1 (05)* 1(0p)%(03) (s)* 60)) (52))
+ (21121 (08)'1(0p)° (11) (5@ (1)) (52))
- (Z)2](05)41(0p)*(02)[ (sd)' (20) (p)! (B0 (501 (52)) }

() =@1) (1/N)= ()12
{=(35)" /21 (05)*1(0p)*(03)(s@)* (60)] (41))
+ (32 (05)[(0p)°(03) (sd)* (22)] (41))
HEEDV0s)[(0p) (1) (s2)* (1)) (4 1)p = 1)

_ ( 15 >‘” 1 08)11(0p)(11) (s2)* @1)] (41)p = 2)
32x11

+ (2] (05)41(0p)7(11) (s@)* (22)] (41))

- (2121 (0)*[(0p)**(02)[ (s@)! (20) (p/)* (30)] (50)] (41))
- (};:0)1/ 2[(0s)4 (0p)'°(02)[ (sa) (20) (p)! (30)] (31)] (41))
— (B)2](05)'1(0p)' (10} (sd)! (20) (p)* (30)} (50)1 (41))
+ (ZL)2|1(0s)°(0p)! (01)(sd)? (40)] (41)] (1))

= (12 (05)*1(0p)* (01)(sdg)! (40N 41D}

(M) = (80) (1/N) = (B)1/2
{= (1172 (05)'1(0p)°(03) (52 (60)] (30))
— ()21 (05)41(0p)*(03) (s)® (22)] (30)
— (E2) (05)'1(0p)* (1) (s 41)] (30))
— ()2](05)41(0p) (11)(52)* 22)] (30))
+ (%) (08)4[(0p)* (1) (s)® (11)] (30))
+ (Z5)172] (05)*(0p)(00) (s (30)1 (30))
— ()12 (05)*1(0p)*(02)((s)! (20)(p)* (30)] (50)) (30))
= (2)1721(05)'10p)*(02)[s)' (20) (p7)! (30)] (311 (30))
— (121 (05)41(0p)*(02)1 (s)* 20) (p) (30N (12)] (30))
— ()2 (05)*1(0p)° (10) [Isd)! (20) (1) (30N (31)] (30))
- (2] (05)4 (0p) (01) (sdg)' (401 (30))
+ (Z1 2105 P (0p)! (01) (s} (40)] (30)] (30))
— (199)1/2]((05)%] (0p)* (01) (sd)?(21)] (30)] (30))
= (V2110’1 (0p)" (00) (1! (30)] (30)] (30}

Q=8

w=(84) (1/N)= (-27-:-3-)‘/ 2
[ (0s)4[(0p)8(04)(sd)* (80)](84))

()= (73) (1/N)=(28)!/2
{21 0s)'1(0p)*(04) (s} (801 (73))
- (B)1/2]0s)1(0p)* (12) (s)* (61 (73))
+ ($2)172](05)41 (0p)* (03)] (sd)* (40) (611" (30)1(70)1 (73))}

2407
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TABLE 1. (Continued)

(Aw)=(62) (1/N)=(40x 43/3")/2

__8(431)1/2 {91721 (05)'1(0p)*(04) (sd)* (80)] (62))

- (2] (05141 (0p)* (04)(s)* (42)) (62))
— (49 x 12)172] (05)* (0p)*(12) (sd)* (61)] (62)p = 1)
+ (@5 x 3)112| 05)4 (0p)(12) (sd)* (61)] (62)p = 2)
_ (%5_)1/” (0s)4(0p)3(12)(sd)* (42)1(62))
+(165)'/2[ 05)(0p)* 20) (sd)* (42)) (62))
+73/(14)1/2] (05)(0p) * (03)[ (sd)* (40) (pf)! (30)] (70)] (62))
+ (33 22)1/2] (05)(0p)° (03)[ ()2 (40) (£)* (30)] (51)] (62))
+10(35)1/2) 054 (0p)*(11){ (s @0) (p)! (30)] (T0)] (62))
+ (188)1/2] (05)4[ (0p)* (L) (s)? (40) (£ (30)] (51))(62))
+ (185121 (05)4[(0p)* (1) (sd)* (21) (p)* (30)] (51)] (62))
+ (9172] 05)4[ (0p)°(02) (612 (60)] (62))
+ 27 x 11)12] (0s)41 (0p)1°(02)] (sd)! (20) (sdg)! (40)] (60)] (62))
+(81x %)’/ZI[(Os)3[(0p)1°(02)(sd)3(60)] (62)1(62)) }

(Ap) =(51) (1/N)=(40x43/3")/?

64[413]1/2'{19(%)1/ | (05)(08)° (04)(s@)* (80)) (51))

+ (%)”zl (0s)*1(0p)%(04) (sd)* (42)] (51))

~109 (2 162563>” 2 (08)4[ (0p)*(12) (sd)*(61)] (51)p = 1)

+21(5x %)"21 (0s)[(0p)3(12)(sd)*(61)] (51)p =2)

1/2
—_5x 33<§%> (3 x 19)1/2](05)'{ (0p)%(12)(s2)* (42)] (51)p = 1)

+10(3 x £)1/2](05)'[(0p)*(12) (sd)* 42)] (51)p =2)

- 3(165)!/2](0s)*[(0p)*(12)(s@)*(23)] (51))

— 15(39)1/2] (05)[(0p)*(12) (s@)* (31)] (51))

- 25(88)1/2(05)[ (0p)®(20)(sd)* (42)] (51))
+15(2)12](05)'1(0p)*(20) (sd)* (31)] (51))

—45(4L)72] (05)4[(0p)®(01)(sd)*(50)] (51))

+68(51)12] (0s)[(0p)°(03)[(sa)* (40) (p)* (30)] (70)] (51))
+53(32)1/2 (0541 (0p)°(03)[ (sd)* (40)(pf)! (BO)] (51)] (1))
+8(33)!/2(0s)4[(0p)°(03)[ (sd)* (40) (p/)! (30)1(32)] (51))

— (330)1/2] (0s)[ (0p)°(03)[ (sd) (02)(pf)* (30)] (32)1(51))

+25 (D12 (0s)*[(0p*(11)[ (sd) (40) () (30)] (70)] (51))

- (BHEB)2) (0511 (0p) (1D (sd) @O) (p)' BON (B (B1)p=1)
+ (HEB)(E)M?] (05)4[(0p) (11 (sd)* (40) (£ BON(EV(51)p = 2)
+(165)1/2/2](05)*(0p)° (11)[ (sd)* (40) (p/)! (30)] (32)1(51))

+ 52| (0s)'[(0p)* (11)[ (s@)* (02) (pf) (30)] (32)] (51))

165 \!/? 1¢5 1721 (0281 (010 ) 1 _
+(12gg)<14x23) (485 x 23)1/2] (0s)4{ (0p) (1) s} @1)(p)* (30)] G1)] (51)p=1)

+ D B2 (05)'1(0p) 1) (sd)* 1) (p BON (51)] (51)p = 2)
+(2)(55)1/2] (0s)*1 (0p)* (1) [(sd)* (21)(p)* (30)] (32)] (51))
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TABLE I.

(Continued)

+15(E81/2] (05)1(0p)° (1) (s@)* (21) () (30)] (40)] (51))

- 25(3)1/2] (05)*1(0p)° (00){ (sd)* (21) (p/)! (BO) (51)] (51))

+ (1)(55)12 (05)*1(0p)*(02)(p7)* (60)] 51))

+(2)(33)72] (05)*1(0p)' (10N (p/ (41)] (51))

+6(330)1/2] (0s)*[(0p)!*(02)[ (sd)" (20)(sdg)" (40)] (60)](51))

+ (49)(55)!/2 (05)'1 (09)'*(02)[ (sd)! (20) (sdg)* (40)] (41)] (51))

+5(154)1 /2] (0s)(0p)!* (10)[ (s)* (20)(sdg)' (40)] (60)] (51))

— (&) A1)2) (0s)[(0p)'*(10)[ (sd)! (20) (sdg)! (40)) 41)] (51))
+9(55)12|[(0)°[ (0p)!*(02) (sd)* (60)] (51)] (51))

+ (42)(33)/2][05)°1(09)!°(02) (s@)* U1)] (51)] (51))

— (42)(33)"2][(0s)*[(0p)'*(10)(s)* (A1)} (1)1 (51))

— (1) (65) 2] (051 (0p)! (01)L (s@)! (20) (£ (30)) (50N F] = [12]] (5 1)] (51))
+ (42)(33)!2|[(0s)°[ (0p)! (01)[ (s@)! (20) (p)! (30)) (50N F1] = [21}(51)](51))
+7(33)1/2] (05)[ (0p) (01) (! (50)1 (51))}

1/2
() = €0) (L/N) = (40 < ;_§’>

(This state has 47 shell-model components. Amplitudes are available from the

author.)

Since the recoupling transformations used in the
expansion of the properly antisymmetrized cluster
function introduce many shell-model components
with 12-particle cores other than (0s)*(0p)3(04), a
properly antisymmetrized cluster function has
many pieces which do not have a 2C(Ap) = (04)
+four particle (Ap)=(QO0) parentage. Only the
cluster-like shell-model components
(05)*(0p)*"(Ap) = (0,4 - n)(sd, pf, . ..)9"(Ak)
=(Q - n,0) can contribute to the a-spectroscopic
amplitudes. For small values of (Apn) these often
comprise a relatively small percentage of the
whole wave function. With the exception of the
most deformed states for a particular core exci-
tation up to @ =8, viz., the states with (Ap)=(21)
for @ =5, (42) for @ =6, (63) for @ =7, and (84) for
Q@ =8, which are equivalent to single one-compo-
nent shell-model functions (Table I) and 100%
cluster-like, the remaining states often have sur-
prisingly small cluster-like percentages in their
wave functions. In the cluster states with @ =6
and (Au)=(31) and (20), the cluster-like compo-
nents make up only 18% and 45% of these wave
functions. For states with @ =7, the cluster-like
components comprise only 21.9%, 28.4%, and
17.4% of the (Apn)=(52), (41), and (30) cluster
states, respectively. The largest component (78%)
of the (Ap)=(52) state, e.g., is the shell-model
state |(0s)*[(0p)°(11)(sd)*(41)](52) ) which has a non-
cluster-like (sd) configuration and a p-shell con-

figuration with zero parentage to the cluster con-
figuration (0p)®(04). The effects of antisymmetri-
zation can thus be seen to be of crucial importance
for a +!2C cluster states with @ <8, and approxi-
mation techniques which ignore the antisymmetri-
zation process may be very poor for cluster states
with important low-@ components.

The shell-model decompositions of Table I also
make it possible to compare these a-cluster
states with other core excitations in 0, e.g., the
giant E2 excitations which may have to be incor-
porated into a full description of the %0 spectrum,
particularly for accurate predictions of the E2
transition probabilities. Table I shows that the
a-cluster states of *0 have large components with
single particle excitations of 2zZw. The state with
Q=6, (\n)=(20), e.g., has s*p'pf* and s3p*2sq*
components of 42.2% and 23.4% which correspond
to excitations in *°0 in which a single particle has
been lifted from the 0p to the pf shell and from
the Os to the sd shell, respectively. The overlap
of this (20) a-cluster state with a giant E2 excita-
tion based on the %0 closed shell configuration is
thus large, (0.808), with important implications
for the a-breakup of this giant E2 excitation.
Giant E2 excitations based on higher core-excited
states, in particular the np-nh core excitations of
the largest possible intrinsic deformation, the
shell-model states with (Ap)=(21), (42), (63), and
(84) forn=1, 2, 3, and 4, also have large over-
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laps with the a-cluster states of Table I. For ex-
ample, the a-cluster state with @ =7 and (Apu)=(41)
has an overlap of 0.816 with the giant E2 excitation
with the same SU, symmetry based on the 1p-1h
state with (Ap)=(21). For the states with @ =8
(Ap)=(62), Q=9 (An)=(83), and @ =10 (Ap)=(10,4)
the corresponding overlaps are 0.818, 0.821, and
0.832, (see Ref. 24).

Since the cluster wave functions are free of
spurious center of mass excitations, states with
Q=5, 6, 7, 8 give a translationally invariant shell-
model basis for p-h excitations in 0. Since
states for all possible (Ap) have been constructed,
it is now possible to reexamine the weak-coupling
model?*?2 for %0 in terms of 0*, 2*, 4* four-hole
states (*2C) and 0%, 2%, ..., 8* four-particle states
(®°Ne), e.g., without the uncertainties introduced by
the use of p-h excitations contaminated by spurious
components.

The inclusion of a select set of properly anti-
symmetrized cluster states may give a convenient
way of introducing a few of the most physically
relevant low-lying core excitations into the shell-
model description of many nuclei. These core
excitations are then automatically free of spurious
center of mass contamination. The techniques
presented in this investigation make it possible to
treat these complicated core excitations on an
equal footing with the shell-model states of the
simpler ground state configurations. The detailed
expansion of the a +2C cluster wave functions for
160 make it possible to test some of the approxi-
mations made in orthogonality condition model cal-
culations. These wave functions should also be
useful in combining earlier p-h shell-model cal-
culations for %0 with the much more ambitious
cluster-model calculations.

APPENDIX A. TECHNICAL DETAILS
OF THE SU,,SU, RECOUPLING PROCESS

It is important to use a consistent set of phases
for the unitary group coupling and recoupling co-
efficients. This can be achieved by interpreting
both U, and U, recoupling coefficients for multi-
plicity-free couplings in terms of permutation
group recoupling coefficients.'”!® The permuta-
tion group phase conventions of Kramer!® have
been adopted. These are consistent with the SU,
phase conventions of Draayer and Akiyama,' as
well as the ordinary SU, phase conventions. How-
ever, some of the SU, phase conventions used
earlier'®!® must be modified.

The three steps of the calculational process will
be discussed in terms of the present phase con-
ventions.

1. Reordering of SU; ,SU, coupling

In the present unified phase convention the
change in the order of a unitary group coupling
from I’ XI',-T, to ', XTI -T, is particularly
simple, provided the coupling I') XT',~I'; is multi-
plicity free (the representation I', occurs only
once in the Kronecker product I', XI';). In the case
of multiplicity-free couplings the reordering in-
troduces the phase factor

[ W2 x ¥T1 [Fa= (1)@ (M) +@ (T (T Why x T2 |Ts

(15)
with

N
#3317 )

for all U(N). The f, are the partition numbers
which indicate the number of squares in the Zth
row of the Young tableau which characterizes the
irreducible representation of U(N). For U(2), with
¢=3(f,—f,)=j, the phase factor of Eq. (15) is the
usual (-1)1*%27%3, For U(3), ¢(A, u) =2+ u; and the
phase factor becomes (-1)M1*#1*22*#2"*3"¥3 which is
consistent with Ref. 16. For couplings (A, u,)(, )
~ (A, ;) with d-fold occurrences of (A\,u,), d>1,
the states of Ref. 16 are based on the Biedenharn-
Louck conventions, with multiplicity labels denoted
by p. With d>1, the coupled states of Ref. 16 have
no simple symmetry property under interchange of
the order of representations (A, i,) and (A, u,); but
the coupling coefficients fit consistently into the
above scheme. With d>1, however, reordering of
representations (A, y,) and (A, u,) must be handled
with care. For the representations [f,7,7,f,] of
U(4) the phase factors ¢ have the values

¢=%f'1+%f2-53"%f4- (16)

2. SU; and SU, recoupling coefficients

SU, Racah and 9-(Ap) recoupling coefficients of
the type introduced in Refs. 12, 15, and 16 are
consistent with the above phase conventions. The
SU, recoupling for a-cluster functions usually con-
tain the scalar SU, representation [0]=[1?] and are
of a particularly simple kind. Their magnitudes
are often given by simple SU, dimension ratios.
Their phases are fixed by the equivalent permuta-
tion group recoupling coefficients [see Egs. (3.17)-
(3.19) of Ref. 17]. The basic phases can be fixed
by the signs of the recoupling coefficients of the
form

Ul Jaml; 7D

=<£L!—’121>”2 H 634(1 -1/T )z (A7)

n! "
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with n =n, +n,. The product runs over the 7, in-
dices ¢, and the n, indices j as follows: The
Young tableau for the representation

LF*)=1f"fY, ..., f¥) is obtained from the tableau
for [f] by removing squares from the rows cor-
responding to labels ¢, while the tableau for [r’]
is then obtained from the tableau for [f”] by
the further removal of squares from the rows
corresponding to labels j. The axial distance be-
tween squares corresponding to ¢ and j is 7, with
7;;=—T;. The €, is the sign of the axial distance
T;; €,;=+1 if the row index for j = row index for
i, €;,,=-1 if the row index for j> row index for 7.
The above U coefficients for all possible [f”] give
one column in a unitary transformation matrix.

If this transformation is 2X 2, the coefficients in

to SU, U coefficients by

FARVAREMN

the second column are both positive in the simple
case whenn,=1. For greater dimensions or more
complicated cases, the signs of the remaining co-
efficients can be obtained from these simple ones
by recursion relations. The above phase conven-
tions which fit onto those of Ref. 16 have the fol-
lowing additional advantages: (1) All U coefficients
which describe 1-dimensional unitary transforma-
tions are always +1; (2) U(4) recoupling coefficients
with at most three-rowed tableaux are equivalent
to U(3) recoupling coefficients; U(3) recoupling co-
efficients with at most two-rowed tableaux are
equivalent to U(2) recoupling coefficients (including
phase). SU, 9-[f] recoupling coefficients contain-
ing only multiplicity-free couplings can be related

Xou| o] [ gl |2 22 (r1peteretame_pyevenetraretee

fael [Fod [F]1 4 97

X U(Lf U U WP s Uf Wea DULF IS WS o) o U DU AU s U U fraD)

(18)

where the reordering phase factors ¢ are given by Eq. (16). In a-cluster calculations SU, X coefficients

of the following type are needed most frequently:

(1] [1*m] [0]

Xgy,| [172] [1%72] [0] | = (~1)°u™ meu™retAy (1 ][1m][17][1*"]; [7 ][0)), (19)

7] (7] [o]

where the U coefficient is given in terms of SU, dimension factors by

U([FIAIILE L LAATOD) = ULl ALl s [01LA]) = (= 1)° Yak e are i <

/2

dimg, (4)[f ] !
dimsu¢4)Lfa]dimsu(4)[f 5] ) ’ (20)

3. SU3 ,SU4 reduced cfp’s

Within a single major shell the overlaps between SU,-, SU,-coupled n, +n, particle functions and n-parti-
cle functions of definite SU, and SU, symmetry are given by reduced fractional parentage coefficients. For
the (0p) shell these multinucleon cfp’s are given by simple permutation group (S,) dimension ratios. For

multiplicity free couplings

([¥(0p)1,2. .., n)Ms0T1Ix ¥((0p)an, +1,m,+2, ...

dim,
x]\l‘((Op)nl’z’ ,n=n1+nz)"“"[”).=(—1)° ny

where [f] describe the full three-rowed tableaux
which give the space symmetry of the 0p-shell
functions, from which the SU, and SU, quantum
numbers can be read. The phase factor ® follows

, n1+n2)(x2u2)uzl]uu)[h

[f ] xdimg [f,]
dimg /] :

1/2
> with (-1)®=]] ¢,,, (21
Syt

r

the phase conventions of Kramer.!” It can be ex-
pressed most simply in terms of the signs €, of
the axial distances corresponding to particles num-
bered s and ¢, where s ranges from 1 toxn -1, with
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s<t, and ¢t ranges only from n,+1 to ». The full
Young tableau for [f]=[A+ u+v, p+v,v] is labeled
by particle indices 1, , 7 in an allowed manner
according to the following recipe: (1) The removal
of particle labels n,+1, ..., n=n,+n, from the
tableau for [f] leaves the tableau for [f,]. (2) Par-
ticle labels 1,2...,n, are placed within [f,] in
cardinal order: 1,2..., A+, +v, in the first
row; A+ u +v,+1,..., A, +2u, +2v, in the second
row; A +2u,+2v,+1, , A, +2p, +3v, in the third
row. (3) The particle labels n,+1, n,+2, ..., n
must, in addition, be placed in the tableau for [f]
in the following manner: If the tableau [f] is
emptied of indices 1,2..., n,, a shift up and/or

to the left of the labels n, +1, n, +2,... in order,
leads to a tableau of shape [ f.] with cardinal label-
ing, n,+1, n,+2,...,n,+ X+ W, + v, in the first
row, etc. (4) The path along which »n, +2 is shifted
to its final position must not cross the path along
which n, +1 was shifted; similarly for greater in-
dices. This process is illustrated with a few ex-
amples in Fig. 1. (Note that once %, +1 is in place,
n,+2 cannot be shifted to the right or down in its
journey to its final position.) Although applications
in the present work are limited to multiplicity-
free (0p)-shell couplings, the above rules for de-
termining the reduced multiparticle p-shell cfp’s
can be made to include the case of couplings with
multiplicities, by properly matching the phases of
the SU, recoupling coefficients with multiplicities
to those of Ref. 16 for the p-dependent SU, U coef-
ficients.

For the sd shell, the corresponding SU,-, SU,-
reduced fractional parentage coefficients are given
by [n,!n,! /n!]*/2 times the quadruple-barred re-
duced matrix elements or [n,!n,!/n!]*/2 x (C factor)
of Ref. 15. The computer code for these coeffi-
cients, including extensions into the fp shell, is
also available.?® (One-particle cfp’s previously
published by Akiyama® are based on a different
phase convention.) The computer code® calculates
the products of the needed reduced cfp’s (C fac-
tors) multiplied by reduced SU,DS,T Wigner co-
efficients (D factors). Both C and D factors are
tabulated in Ref. 15, the D factors taken from Ref.
19. To be consistent with the present phase con-
ventions, however, the D factors for some of the
unitary group couplings (hence also the C factors)
need to be multiplied by overall phase factors of
-1. In particular, all n—~n -1 particle C factors
(Table A.4 of Ref. 15) with n=even must be multi-
plied by —-1. Of the n—-n - 2 particle C factors
(Table A.3 of Ref. 15) those connecting space sym-
metries [31]-{11], [32]~[21], [43]~[41], and
their higher SU, equivalents, such as [443]— [441],
must be multiplied by —1. Of the n—-n -3 particle
C factors (Table A.2) those connecting space sym-

(o) (b) (c)
[31]) x [31]—[449] [41]x [3]—[a31] [311]x[21]—=[431]
2[3]7 1[2]3]4] 1]2]3]7]
a[5]6]8 5|78 alels
6] 5]
0% (-1° 0% = 1) ° =1
hht nNE -h ]
1T 11 I
LJ —J
s[e]7 6[7]s] ] 67
8 8

Forbidden Paths:
L—*—m 4——?——— ne Q—vn, *-— n>
n> n> Ne N¢

FIG. 1. Illustration of the numbering process for the
determination of the phase factor ®.

metries [41]-~[2], [41]-[11], [42]~[3], [431]
~[32], and [4422]~[432] must again be multiplied
by -1.

APPENDIX B. SAMPLE CALCULATION

The calculation of the matrix elements of
P99(f, ) which are needed in the evaluation of
Eq. (12) will be illustrated with a simple example,
the matrix element of P‘®(7], . ) between the clus-
ter state with @,=5, (An)=(21) on the right and a
specific shell-model component on the left. The
cluster state with @,=5, (Au)=(21) is made up of
the single shell-model component
|s*[ p**(01)sd*(20)](21) ), multiplied by the norm
factor —(32)*/2 (Table I). When expanded according
to the transformation (5) the c.m. excitation opera-
tor is

P(20 )(ﬁc. o )

11
Gd

P,

1/2 1 . R
(1!1v) :[P‘”’(m) X PUO(ij) [ (22)

The first term acting on the above shell-model
state gives rise to shell-model states of the con-
figurations s*p'!(sdg)!, s*p'°(sd)*(pf)*, and
s3pti(sd)?, while the second term gives rise to
shell-model states of the configurations

s'p'sd) (pf)', s°p*(pf), s°p''(sd)?, andsp?(sd)’.
Consider the last configuration as a special ex-
ample. Of the 11!1/9!2! operators of Eq. (22)
which convert the s*''sd* configuration into an
s*%(sd)? configuration, it is sufficient to consider
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a single one. With
(7 |=( s [P2(Xg o) = (03)sd3(A, k1) = (60) J(Am) |, (23)

(7| P, ) | s*[p**(01)sd* (20) ](21) )

[2]2/2 11!< 16! )‘/2 -
= A M X
. SrsT T UZ) U((20)(01)(A)(20); (XE)(21) )
(21)(10)
X (7]‘1“°°”°](s“1,2,3,4)[[[P“°’(ﬁl4) x PUO)(ij, ) | @0 x \1/(01>E13J(pu5, cee, 15)]65)[131

X w200 (gq 16) | w1y

Here, a (normalized) antisymmetrizer which antisymmetrizes the 4+11 +1-particle function of the right
hand side has been allowed to act to the left to yield the factor (16!/4!11!1!)!/2) and an SU, recoupling
transformation has been performed to allow the operator to act directly on the p-shell part of the wave
function.

By uncoupling particles labeled 14 and 15 from the p'! configuration by means of a p-shell reduced cfp,
applying a reordering transformation to the coupling (20) X (01) - (Xfx), and employing a second SU, recou-
pling transformation

[[P10)(#,,) x P10 (7, .) |0 x wponudy pus o 15) jGmu

=(@M/2(=12FE 3T U((03)(20)(XE)(20); (01) (A, k) )

(Agug)
X [wODUYp0 5 . 13) x [[ POONF, ) x PUO (i, ) ]#) x \y(zo)[lz](pz’14’15)](A2u2)[12]]d5)[13]
+... . (24)

The parentage expansion includes additional terms (indicated by + - - -) but only the term with (X, u,)=(03)
and cfp=(g)*/2 [Eq. (21)] can make a contribution to the matrix element (23). Next

(10) (10) (20)
[[POO7,,) x PUO T, ) |0 x \1,(20)[12](1,2,14’15)]02#2)[12]: VZXVZXg | (10) (10) (20) |¥2k2)(sd?,14,15)
(20) (20) (A, u,)

=2[ 0, (207 =20 [Pz (sd?,14,15),  (25)

yu,)(02)

where the V2 factors arise through the application of Eq. (7), and the SU, 9-(Au) coefficient with at most
two-rowed tableaux is equivalent to a simple SU, 9-j coefficient (in unitary form) and is thus easily evalu-
ated. One final recoupling transformation from the [ [ (03) X (A, 1) ] (Xi2) X (20) J(Ap) to the [ (03) X [ (A 1,)

X (20) ] (A;15) ] (A1) scheme is needed to couple the sd particles to three-particle (A;i,). The overlap with
the wave function for the sd® configuration of the left hand side of (23) introduces an sd-shell reduced cfp
which, for (A;u,)=(60), has the simple value (+1)6(x2“2)(40). The combination of the various steps yields
the matrix element

(s*[$°(03)sd*(60) | ) | PO (7, ) [s* p*1(01)sd*(20) ](21))

_[2P/2 111 /161 \/2/419131\/2 /2 \M/2 —1)2-% =5y ((20)(01) (A w)(20); (XD)(21
2pe ul (411111:) < 2 ) (11) 2 x QZ) (= 1)2-%%y((20)(01) (\1)(20); (XD (21) )

(21)(10)

X U((03)(20)(x)(20); (01)(40) )
x U((03)(40)(A1)(20); (X)(60)).  (26)

The needed SU, U coefficients are readily available.!® (In this example, with the final state SU, repre-
sentation [0], all SU, recoupling coefficients have the trivial value +1.)
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