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The dynamical assumption that single mesons are emitted or absorbed by nucleons is applied to 7-nucleus
scattering and leads to a m-nucleus Low equation. With the neglect of multinucleon currents and true meson
absorption, the 7-nucleus Low equation is shown to be equivalent to a linear equation of the same form as in
standard theories except for a striking propagator modification arising from the energy dependence of the driving
term. The use of a corresponding linear equation for w-nucleon scattering enables us to derive a field-
theoretic multiple-scattering series. It is found that the propagator modification eliminates the Kisslinger
singularity, reduces the Lorentz-Lorenz effect and local field corrections. The effect of true meson
absorption on 7r-nucleus elastic scattering is also examined and found to be somewhat important at low (~50
MeV) energies but negligible (due to strong first-order optical absorption) for energies greater than 100 MeV.

[NUC LEAR REACTIONS Scattering theory, m-nucleon scattering, m-!%0 scatter—:l
ing, E=50-275 MeV.

1. INTRODUCTION

We consider the problem of how a meson inter-
acts with a nucleus when the basic meson-nucleon
interaction is taken as either a single absorption
by, or emission from, a nucleon. This is opposed
to the standard treatment which assumes that mes-
ons and nucleons interact via a potential and in
which a sum over all of the potential interactions
with nucleons is carried out. Our different dy-
namical assumption leads to effects which are not
contained in standard treatments. Among these
effects are the presence of crossed diagrams and
the influence of reactions in which the meson de-
posits its entire energy into the nucleus on elastic
scattering.

The understanding of 7-nucleus interactions is
being pursued with great vigor, and a complete
set of references may be found in Ref. 1. Of par-
ticular relevance is the work of Dover and Lem-
mer? (see also Ingraham?® and Cammarata and
Banerjee.* Dover and Lemmer were the first mod-
ern workers to use a field theoretic approach, and
Cammarata and Banerjee initiated attempts to
solve the m-nucleus Low equation.

The present approach can be described as fol-
lows. First we obtain a linear equation which is
equivalent to the nonlinear m-nucleon Low equation.
A linear equation equivalent to the m-nucleus Low
equation can also be obtained. The development of
the multiple-scattering theory proceeds via the
technique of inserting m-nucleon scattering infor-
mation (as summarized by the linear equation) into
the m-nucleus linear equation. A brief report of

some of the salient features of this work is given
in Ref. 5.

The energy dependence of the m-nucleon and 7-
nucleus driving terms complicate the procedure of
finding equivalent linear equations. In many cases,
however, such equations can be obtained.

It is worthwhile to give a brief table of contents.
The linear equation equivalent to the m-nucleon
Low equation, derived in Ref. 6, serves as essen-
tial input, and the principal results of that refer-
ence are given in this Introduction. Sections II-V
contain the necessary approximations and essen-
tial development in which the multiple-scattering
series as an expansion in terms of a crossing-sym-
metric m-nucleon 7 matrix, which includes 7-
nucleon inelasticities, is obtained from a basic
field theoretic Hamiltonian. Sections VI-VIII con-
tain discussions of the implications of the resulting
theory and treatments of various correction terms.

The results of Ref. 6 may be summarized as fol-
lows. If one works in the m-nucleon c.m. frame,
includes only p-wave scattering and nucleon recoil
kinetic energies to order (1/m), the following
equations obtain. The driving term of the Low
equation is v(q, p)/z where

Gb) -5 2a (g, p) =ua, ), (-1

where g represents the (relative) momentum of the
pion and its isospin index; « is the label for the
spin-isospin channel (e=1, 2, 3, and 4 refers to
the 11, 13, 31, and 33 channels, respectively).
The interaction strengths A, are (2/3) 2/
u?[4,1,1, —2] where f is the renormalized cou-
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pling constant and « is the pion mass. The quanti-
ty u,(q,p) is given by

ulq,p) = “w—“;—)m (@il pYP (4, ) (1.2)

with u(q) representing the m-nucleon form factor,
w,=(g*+ K?)'/2 and P,(q,p) are the channel projec-
tion operators of Chew and Low.” The m-nucleon
T matrix ¢ is given by

ta,0)= hy(2)u,lq,p), (1.3)

with
n( Wk) = — ety sin&a[uz(k)ks]-l(l + wk/m),

o

where W,=(k?+ 1221+ k2/2m and m is the nucleon
mass. The Low equation is

by AN
=Ca = ____17__
ha(2) z + w (L+wy/m
Tho(Wy) 12 12 Thg(W,) 12
[z—-W+z€ _ZA“B z+ W, ]'
(1.4)

where A, is the crossing matrix.” It may be
shown that the solution of the linear equation

ta(z)=a4’z(i)ua [1+<aa(h°)> z%z -ht+i€ t“(z):l ’

a,4(2)
(1.5)
where (k)= W, and
| hg(W,) |2
(l(Z —“Z f 1“’-’» ueB ;+u;k ’
(1.6)

is a solution of (1.4). Equation (1.5) does not nec-
essarily simplify the solution of the Low equation
because a,(z) depends on ¢,(z). However, once
h,(z) is obtained, (1.5) provides a useful summary
of the m-nucleon scattering information. If one ne-
glects the crossed term [third term of Eq. (1.4)],

then it follows that a,(z)=21, and Eq. (1.5) is sim-
plified

A
=l -
ta(2) z u"[1+h2 z —hy+ie

! t (z)] . (1.m)

In Sec. II we state our assumptions about the
Hamiltonian, and use the techniques of Wick® to
obtain the 7-nucleus Low equation. An assumed
complete set of zero and one meson-nuclear eigen-
states is used to simplify the equation.

The crossing-symmetric driving term arises
from the sum over zero meson-nuclear intermed-
iate states, and depends on matrix elements of the
current operator, J,, between nuclear eigenstates.

Many -body perturbation techniques are applied to
obtain the necessary matrix elements of the cur-
rent operator as an equivalent matrix element of
an effective current J, between unperturbed eigen-
states of a chosen H,. In general, J, is a multi-
nucleon operator, but as a first approximation we
keep only its single nucleon term J ", As a fur-
ther approximation, in performing the sum over
intermediate states, we assume that low excita-
tion energies dominate, and neglect the excitation
energies of the nuclear states. As a result of these
approximations the driving term is simply the sum
over nucleons of the driving term of the 7-nucleon
Low equation. Such approximations are implicit in
conventional multiple-scattering theories in which
the fundamental interaction (driving term of the
linear wave equation) is taken as a m-nucleon po-
tential which is the same in the nuclear medium as
in free space. Hence, we call these approxima-
tions the usual approximation. Under the usual ap-
proximation the crossing symmetric driving term
is given by V/z.

The full driving term is the sum of V/z and a
correction term, AV (i.e., AV is the full driving
term minus V/z). Now AV is also given as a sum
over intermediate zero-meson eigenstates. Some
of these states have excitation energy equal to the
pion energy of the pion. Excitations of such states
in AV, give rise to a complex potential. Because
this term is not included in the usual approxima-
tion, it is said to arise from #rue meson absorp-
tion. (The usual optical absorption arises from
various iterations of the 7-nucleus driving term
V/z.)

In Sec. III, the Low equation under the addition-
al approximation of neglecting the m-nucleus cross-
ing term C(T 'D,T) along with the usual approxima-
tion is solved. The m-nucleus equivalent linear
equation is used in conjunction with Eq. (1.7) to ob-
tain the multiple-scattering theory. A significant
difference between this theory and conventional
versions is the appearance of an additional factor
of (z/H,)? in the propagator. This factor, which
arises from the 1/z dependence of the driving
term, considerably reduces off-shell scattering.

The importance of m-nucleus crossing has been
emphasized by Cammarata and Banerjee.® Such
effects are included in the crossing term which is
handled, in Sec. IV, by first including its single-
nucleon contributions. This enables us to develop
the multiple-scattering expansion in terms of the
crossing symmetric m-nucleon 7 matrix of Eq.
(1.5). Only the first term (involving one nucleon) is
crossing symmetric. By crossing the series of
many -body (two-nucleon, three-nucleon, etc.)
terms and adding them to the original series, one
obtains a crossing symmetric result. For the case
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of N=Z, closed shell nuclei and in the fixed scat-
terer approximation the multiple-scattering series
has approximately the form of the conventional
theory except that the propagators are of the Klein-
Gordon form of Ref. 9 multiplied by the (z/H,)?
modification.

In Sec. V the one-meson truncation is relaxed.
First, a m-nucleon equation similar to Eq. (1.5)
but including the effects of m-nucleon inelasticities
is obtained. The techniques of Sec. IV may be ap-
plied (for pion energies less than m-production
threshold) to obtain a multiple-scattering series in
terms of a crossing-symmetric, m-nucleon T ma-
trix which includes inelasticities.

At this point the only effect of the field theoretic
approach (other than the explicit manifestation of
crossing symmetry) is the (z/H,)? propagator modi-
fication. The implications of this factor, with re-
spect to the Kisslinger singularity, Lorentz-Lor-
enz effect, and local field corrections, are dis-
cussed in Sec. VI. First-order optical model cal-
culations are performed for elastic 7-'°0 secatter-
ing. The relationship between our theory and those
of others'®!! is also discussed.

In Sec. VII the effect of true meson absorption is
estimated. It is found that at low energies the ef-
fect of the (m,NN) reaction on elastic scattering is
substantial.

The nonstatic crossing corrections are defined
and estimated in Sec. VIII. These are small.

A discussion of the strengths and weaknesses of
this approach is presented in Sec. IX.

Various technical details are presented in Ap-
pendixes A-E.

II. --NUCLEUS LOW EQUATION

The starting point is a field-theoretic Hamilton-
ian consisting of a pion interaction term H_,, a
noninteracting pion Hamiltonian H,, and a nonrela-
tivistic noninteracting nucleon Hamiltonian. We
have

Hoy=8, Y ('] i |paidlb,+ (o' |it|phabld,),

Prast’
(2.1)
H,=) wala, (2.2)
R
(2
HN=; b,b,(gn—o +m0>, (2.3)

where g, is the unrenormalized coupling constant.
The operator b,(b}) destroys (creates) a bare nu-
cleon of momentum P, spin magnetic quantum num-
ber s,, and isospin magnetic quantum number ¢,.
The operator a(a!) destroys (creates) a meson of

momentum § and isospin index A (A, =1,2,3). The
quantities K and m, are the mass (139.6 MeV) of
the physical pion and the mass of the bare nucleon.
The operator j, is the m-nucleon interaction vertex
function.

The S matrix element for the scattering

m(k) + M~m(q) +N, (2.4)
where M and N are any two nuclear eigenstates, is
Sp=(Ng|MR)™ . (2.5)

The states |Mk)® refer to eigenstates which con-
sist of a nucleus plus a free pion of quantum num-
bers k at an infinite time before or after the scat-
tering event.

The straightforward application of the techniques
of Wick yields an equation for the scattering states

1
) _ ,t
| M) —a,,lA/I)+E—————-——_Hiing0JklA/I), (2.6)
where
8ody=[H,a}] - wyal (2.7

and E= E, +w,. The first term of Eq. (2.6) repre-
sents a free pion and a nucleus at {=+~ and the sec-
ond term represents the scattering.

By using Eq. (2.6) in Eq. (2.5) one has

Sy= 0, - 2mi8(E, - E)T,,, (2.8)

T, =" (Ng|J,| M)

1
=g ?)(N|lJy—m——v——o J' M
g°< *Ey-w,-H-in"'® >
1
2 t
& (M T M) 29

where the second line of Eq. (2.9) is obtained by
the equation for a | M),

1

aa|M>=EM_w _H-
q

in e,

which is derived and discussed in Appendix A.
In using our simple Hamiltonian the seagull
terms have been neglected. The importance of
such terms has been recently discussed by Baner-
jee.'? Equation (2.9) has been derived by Cam-
marata.'®* The nucleon-nucleus version of (2.9) has
been obtained by Ernst.'*

The next step in solving Eq. (2.9) is to insert a
complete set of intermediate eigenstates of H. In
this section only the no-meson and one-meson
states are included so that inelastic states in-
volving production of an additional pionare ignored.
Thus we insert the truncated set
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£y ‘Np>('”‘"(Nq| (2.10)

1= |M)<M

into Eq. (2.9).

It is necessary to inquire if the states of Eq.
(2.10) have the necessary orthogonality properties.
In particular, states (M) with excitation energy
greater than a pion mass are degenerate with some
of the one-meson states. It is shown in Appendix
A that

(M|Np)® =0,
(t)Wk !NP}“’

so that Eq. (2.10) is meaningful.
Using (2.10) in (2.9) we have

5(k, p)6(M, N) (2.11)

NIJVILYLIJ, M
_— Z(' NALAL
E +w,-E; +in

> (NIJ I LYL It IM)

— Ey-w, -E;+in

(NI LY (Lpld, IM)
2 q R
*+&o ;-; < Ey+wp,~Ep —w,+in
(NIJ |Lp)"""(Lle'|M> )

Ey-w,—E; —w, +i7 (2.12)

It is interesting to note thatfor states IL) such that
wy+Ey=E,, <L|J,,‘M) is the transition operator
for the meson absorption reaction.

The m-nucleus Low equation gives T;; in terms
of a nonlinear equation involving other 7' matrices
T,; (where n is any one-meson state) and a driving
term. The first two terms of Eq. (2.12), which
come from the no-meson intermediate states are
defined as the driving term 7‘2’, Then in a more
concise notation

TT
T.=T®8) ——nfmi_
fO A z": Ey+w,-E, +in

ey _ ToyTy (2.13)

E,+w,-E, +in’
where the crossing operator C designates the re-
placement (%, p) by (-p, —k) where the minus sign
does not apply tothe isospinindices. Aneven more

schematic notation which stresses the matrix char-
acter of Eq. (2.13) is

T=T‘®+T'D,T+C(T'D,T), (2.14)

where z=E, + w,.

In order to solve Eq. (2.14) it is necessary to ob-
tain expressions for the matrix elements (L|J,|M).
We proceed by developing a perturbation procedure
for this quantity. First, add and subtract a Her-
mitian nucleon-nucleon potential V, and a mass

counterterm CT to the Hamiltonian, with
1
cT=3 830, [ (m m>+m mo],

1
Vyy= EZ (prba| 0| poba b'bgzb,4b,3 (2.15)

Then one has an unperturbed Hamiltonian H, and a
perturbation Hamiltonian H,

H=H,+H,, (2.16)
= P ot

Hy=H,+) 5—blb,+ Vyy, (2.17)

Hy=H, - Vy, -CT. (2.18)

The unperturbed states |N Yo are defined by
HoiN)o= Ey |N>0)

where we assume that V,, may be chosen so that
the spectrum of H, is a good approximation to the
physical spectrum. Of course, H,|N)0= 0. Fur-
thermore, nuclear eigenstates of H, form a com-
plete set.

By using the expressions for physical states in
terms of unperturbed states one may write (see
Appendix B) (N |J,,|I:) as a matrix element of an
effective operator J, acting between unperturbed
states, and a linked cluster expansion may be ob-
tained for J,, i.e.,

go<Nle|L>=o<N|jk|L>o-

In general J, is 2 many-nucleon operator and

(2.19)

F_FfW, T@, 73
Jy=d D+ I P+ T3+

where the superscript denotes the number of nu-
cleons involved in the matrix element. Here we
consider only the single-nucleon terms. Examina-
tion of the perturbation series (Appendix B) shows
that such terms depend only on CT and H,,, and
furthermore, that CT cancels all terms involving
H_, except for a series which renormalizes the
coupling constant, Thus under the single-nucleon
approximation

(N|T@|Ly=o(N|gd L), (2.20)

and the only influence of the meson degrees of free-
dom of the nucleus is to renormalize the coupling
constant.

Even with the single-nucleon approximation to
the effective current, it is necessary to make a
further approximation. It is useful to define the
quantity z=E, + w,+in=Ey+w, +in and rewrite the
energy denominator, 1/z +€), of the Born term in
the form
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1 1./ 1 l)
zZ+x 2 zzx z/°

We are then able to write the Born term as one

where

which has an explicit 1/z dependence plus a spe-
cific correction term. We have

T}f’:%imv,,(z), (2.21)

z

_VJl=g2 Z oNITIILY (LT, M) g= (N1, | LYy (L IJFIM),
V4
L

1 1
AV,,(z)=g2 EOWIJ:[I’)OO(LlJ"IM)o(Z—EL ~z
L

>+g2 3 NI, I LYo (L 1T IM),
L

) (2.22)

-]; E, _(EM+EN)
zz+E;, - (E,+E),)

. N ITEMILY, (LITSM MY, oNIT M ILY, (L 1T 1M, [_
zZ+E;, - (E,+E,) §

z-E
Lynym L
1
m>1

Our strategy is to first solve the Low equation
with the driving term V/z and then to treat A V(z)
as a perturbation, if possible. Note that A V(z) in-
cludes the effects of the multinucleon current op-
erator and is complex because there are energies
E, greater than yu. Furthermore, AV(z) is cross-
ing symmetric. Because conventional theories
neglect three-body m-nucleon potentials and true
meson absorption, we call the approximation of
neglecting AV(z) the usual approximation.

The use of the completeness property of the ei-
genstates of H, gives

L AR ATI (2.24)

Because the commutation of two single-nucleon
operators is itself a single-nucleon operator, one
may write the operator V/z as

1
RO

where the matrix element is to be taken between
nuclear states. In terms of second quantized no-
tation

(2.25)

(85,55, 558,101 | 321 £2) (05 |72 | £2)
Z b;1b94(p1 Ijllpz)(pzl]‘klih)

2
DN CAIAPRIPATMPS)
Pab3py
(2.26)

(2.23)

2
2 %‘ =g7 S 030’ | 135,31 1),

Pet’

(2.27)

where use of the completeness of the momentum
representation is made in obtaining (2.27). This
expression for the approximate driving term has
been obtained by Cammarata and Banerjee.*

At this point it is worthwhile to remind the read-
er that Eq. (2.27) represents an operator, which
is to be taken between the one-meson eigenstates
of H, in order to obtain V,,/z. In order for this
to be meaningful, it is necessary that the wave
functions of H, be reasonable approximations to
the wave functions of the physical states.

It is often noted that within the static model for
J,, the ground state expectation value of V van-
ishes for closed shell nuclei with zero isospin.
However, the off-diagonal matrix elements of V/z
do not vanish so that V/z may be used as a driving
term even in the static model.

The next step is to rewrite the eque on

Ty=V,/2+T'D,T+C(T'D,T) (2.28)

as an equivalent linear equation. Before proceed-
ing with the solution of Eq. (2.28) it is worthwhile
to consider the effects of introducing other meson-
nucleon couplings into the Hamiltonian. This en-
ables one to calculate better nuclear eigenstates.
If these other mesons do not interact with the pion,
the current operator J, is unchanged. The exis-
tence of other mesons requires us to modify the
completeness relation, Eq. (2.10), so as to in-
clude a sum over the appropriate meson-nuclear
states. However, if the coupling is weak, or if
the mass of the meson is very large, such terms
may be ignored and the form of the equations for
the T matrix are unchanged. (See, however, Ref.
15.)
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III. SOLUTION OF THE LOW EQUATION
IN THE USUAL APPROXIMATION—NO CROSSING TERM

The Low equation, under the usual approximation
along with neglect of the crossing term, is solved
in this section. In this case the Low equation is

Tyi(e) = Z Z - E +z17 (3.1)

Because the driving term of (3.1) is obtained by
taking matrix elements of operators between un-
perturbed eigenstates, we look for solutions which
are also expressible as operators taken between
such eigenstates.

The solution of

v z\? 1
T‘=E(1+(_ﬁ;‘> E?mT,). (3.2)
where matrix elements of T, are to be taken bet-
ween unperturbed eigenstates, is a solution of
Eq. (3.1). This is proved in Appendix C.

The appearance of the (z/H,)* factor in the prop-
agator may also be understood from a consider-
ation of the analytic structure of Eqs. (3.1) and
(3.2). From Eq. (3.1) we see that in the limit of
z approaching zero, T,<1/z. The same limit
obtains from Eq. (3.2). Furthermore, the elimi-
nation of the (z/H,)? factor would completely change
the z equals zero limit of (3.2). Similarly, it is
apparent that as z approaches infinity, the T ma-
trices of Eqs. (3.1) and (3.2) are both proportional
to 1/z.

The linear equation (3.2) is much more tractable
than the nonlinear Low equation. Indeed, except
for the presence of a factor (z/H,)?, Eq. (3.2) is
the starting point for the usual multiple-scattering
theory. One may obtain equations for multiple-
scattering expansions by simply modifying the
Green’s functions of the standard theories.

In the remainder of this section the optical po-
tential of Kerman, McManus, and Thaler (KMT) !
is obtained. A discussion of several current mul-
tiple-scattering theories has been presented by
£rnst, Londergan, Miller, and Thaler!” and we
closely follow their techniques.

In order to simplify the notation define

u‘='[)i/2 (3.3)
and
z \? 1
so that
T,= D u1+G(2)T,]. (3.5)

The procedure of Watson'® is followed by defining
T =2,T, with T, given by

Ty=u; +u,G(2) 2T, (3.6)

The linear equation®

2 1
- 2y 1 _ 3.7
t u+u(h0>zz—ho+int 3.7

is a solution of the 7-nucleon Low equation for p-
wave T-nucleon scattering [neglecting the C(¥'Dt)
term]. Here, as in Sec. I, %, is a propagator
which includes the recoil kinetic energy of the nu-
cleon to order 1/m. Then for scattering from the
ith nucleon

ti=uy +u g2), (3.8)
where

(2 = (3.9)
@=(7) e -

By solving Eq. (3.8) for #; in terms of ¢; and in-
serting the result in Eq. (3.6) we have

—g(z)]z T;.

T,=t,+1,8(2) 2T, +£[G(2) (3.10)
j#

At this point we are faced with one of the more
difficult problems of multiple-scattering theory.
In order to proceed we must evaluate the terms
involving (G —g). As this problem has not been
solved and because our present interest is in spe-
cific changes caused by the field-theoretic ap-
proach the G - g term of Eq. (3.10) is simply ig-
nored.

By iterating Eq. (3.10) and summing over ¢ we
have

T=Zti+z gt + 9 tighgty+ere,  (3.11)
i 17 i#j
i*k

The optical potential of KMT, U’, when in-
serted into a Lippmann-Schwinger equation, yields

the pseudo T matrix 7= [(A -1)/A]T. 1t is de-
fined by
T'=U'+U'gPT’, (3.12)

where P is the ground state projection operator.
In Ref. 17 it is shown that U’ is given by the ser-
ies

U'=(A -1){2 ti+ Yy 1,891

i#f

+Y 1,8Q8t; g0+ + } (3.13)

i#4
J#k
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where @=1 - P and where it is understood that we
may only take matrix elements of U’ between anti-
symmetrized states. The use of (3.13) in (3.12),
along with the definition of T’, gives the series
(3.11).

This means that within the usual approximation
the field-theoretic multiple-scattering theory has
the same form as conventional theories except for
the use of a modified Green’s function.

IV. CROSSING

In Sec. III the term C[T'D,T] is ignored. This
leads to a multiple-scattering expansion in terms
of a m-nucleon T matrix which is not crossing sym-
metric. Furthermore, crossed m-nucleus pro-
cesses, which have been emphasized by Camma-
rata and Banerjee,® are also neglected. We seek
to remedy these deficiencies by the following pro-
cedure. First, the C[T'D,t] term is approximated
by its one-body part. This term, when added to
V/z, defines a new driving term W, which is the
sum over nucleons of the driving term of Eq. (1.5).
A linear equation which is a solution of the m-nu-
cleus Low equation with W as the driving term is
then obtained. This enables us to develop the
multiple-scattering expansion in terms of the
crossing symmetric 7-nucleon 7 matrix of Eq.
(1.5). Only the first term, E,ti, of this new series
is crossing symmetric, while terms involving two
or more nucleons are not. By crossing the series
of such terms and adding them to the original ser-
ies one obtains a crossing symmetric result.

In doing the algebraic manipulations a problem
occurs in that for each of the spin-isospin channels
the driving term has a different energy depen-
dence. An approximation method based on the fact
that the most rapid energy variation, the 1/z de-
pendence, is treated exactly is developed.

Consider the equation

T,=V/z+T'D,T+C(T'D,T). (4.1)

As a first approximation we extract the one-body
piece of the crossing term,

C(T'D,T) =3~ C(t'D7Y),, (4.2)
i
where D{ neglects effects of nucleons other than

i. This approximation is suggested by the form
of the m-nucleon Low equation

t,=v+t'DPt+ C(+'DL) (4.3)
=w+t'D%¢, (4.4)

where Eq. (4.4) defines w. As shown in Ref. 2 and
summarized in the Introduction

wig, )= 3 2 (g 0)= 3 wa(2) (4.5)

z
a

and
tl2)= 222 14 <-:_0>2 ?%712 (%9‘0%0)—)>2tu(z)]- (4.6)

Using Eq. (4.2) in Eq. (4.1)

T=% wy2)+T'D,T=W+T'D,T . (4.7
i

We wish to obtgin an equivalent linear equation.
The operator W is defined by replacing a,(z) by
a,(H,) in (4.5)

zz =Y Alaa(H) 1 2wy /2) [ag(H) 12, . (4.8)
i

The idea of having a single-nucleon operator de-
pend on a many-body Hamiltonian seems unusual.
However, the matrix elements of W between eigen-
states of H, are well defined:

o Nb | W [MgYy = 3 ﬁ%ﬁ)—‘”

o

X [ay(Ey+w)ay(Ey+w,) ]2

9 <Nl2 ei(a-i)-;;Pa(p’q)i1M> ,
i 0

(4.9)

where ]Mq)o_is a one meson eigenstate of H .
Consider T where,

T,=W/z+T'D,T (4.10)
by the proof of Sec. III and Appendix C

- W W({z\2 1 -

T‘_TZ—“-E—(II_O) ZTH;+_Z.T]T“ (4.11)

so that Eq. (4.10) is in a solvable form. However,
we want a solution of Eq. (4.7). Consider the ma-
trix elements of 7. We have

SME|T,[Np)y =3~ oM | [ay(2)]2(usd/ 2)[ag(2)]2| N ),
i

+Z T} uelp Np (4.12)
e« Z—Ep—w +in
but z=E,+w,= Ey+ w,.
Thus
T,=W+T'D,T (4.13)

and for on-shell values of z, T is equivalent to T
so that it is sufficient to solve (4.11). Thus the
linear equation is obtained, but at the expense
of having a driving term which is a many-body
operator.

Because Eq. (4.11) involves W it is useful to de-
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fine {, and o,

[aa(ho) ] uzta [aa(hO)J 12
a,(z)

i,-

’

1,47 [aa(ho)]llzwa[aa(ho)]llz'

o« a,(2)
By multiplying Eq. (4.6) by [a,(ho)/a,(z)]*/? from
the left and right we obtain

- - 2 \2 1 aa(h) _
fa= 100 {1+<ﬁ;) Z —hg+in “a(z_g— tu} . (4.15)

Another equation is

- 4 z\? 1 -
ta=wa|:1+<h—o) m:ta], (4.16)

where the equivalence of Eqs. (4.15) and (4.16) is
assured by eliminating {, between the two equa-
tions to obtain w, in terms of w,. In Appendix D,
it is shown that #%, and %, are equivalent to better
than five percent at resonance and to higher ac-
curacy at lower energies. This obtains from the
slow variation of a,(z) and the presence of the
(2/H,)? factor which inhibits off-shell scattering.
In the following we set w, equal to w,. The cor-
rections may be systematically inserted, if nec-
essary.

Consider the multiple-scattering series obtained
from

T=(W/2)(1+GT),

(4.14)

(;_<_Z__>2 1 (4.17)
H,) z-Hy+in "~
In the usual manner take
- I".’s I’.Vc
Ty=—t += G; T,. (4.18)

We wish to rewrite W, in terms of some effective
scattering operator. However, W—" depends upon
H,, but, depends upon i, Define the operator
O such that

—vL—/i= Ow,0. (4.19)
The required operator is
_ P a. (H,) 1/2
vlola= = hodr-o[mEn] T 420

and its inverse is

P 1/2
<p|@-1|q>=2 _Q%_q_)_é(p-q) [Z%(L(I‘f':T)] - (4.21)
Define

K;= 01,0
so that

MILLER 16
K,;=(W,/2)(1+07g0™K,). (4.22)
For a given spin-isospin channel

-~ - h ) 1/2 a (h ) 1/2
Ky = W @) W(a)[M} [ PALL ] K@),
WO e Ey] fla A, i

(4.23)

We proceed to obtain the multiple-scattering ser-
ies by solving (4.23) for W in terms of K. One ob-
tains

T,=K, <1 +GY T,> +K,07g0"' T,

- K, <1+g2 T,> +E(G-g) Y T,

j#i iti
+K,(071g07 - )T, (4.24)

which defines the multiple-scattering series. Even
if one makes the impulse approximation,

K(G-8) T,=0, (4.25)
it

an additional term remains. However, if the im-
portant matrix elements of (G - g) are reasonably
small then ©71g0"! — g must also be small. This
is because the replacement of G by g involves the
replacement of (2/H,)?/(z - H,) by (2/hy)?/(z = k)
and these functions are more rapidly varying than
a,(h,)/a (H,). Thus a generalized impulse approxi-
mation is defined by

T,=K,+K,g )T, (4.26)
FEX]

or

T=Y" K+ Y K. gK,+ ) K gK;gKg++++ . (4.27)

i i#4 i#4

jtK
and one now has a multiple-scattering series in
terms of an operator K which is equivalent to the
solution of the Low equation for on-shell kinemat-
ics, Hy=z. In the event that G — g terms are to be
included, the expression (4.24) may be used.
We now turn to a discussion of the crossing

properties of the amplitude, T. Consider the first
term of (4.27), T,, for elastic scattering

T1=<0E)l| ; g, oE'x'>
- (o | e ] 2020 o),

fya

(4.28)

where IOE)\) represents the one-meson, nuclear
ground state eigenstate of H,. For on-shell scat-
tering |Kk|=|k’| and z = w, and [a,(w)a,(w,.)/
a,*@))*2=1. For closed-shell, N=Z nuclei, the
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expectation value has the simple form®

1672 - -
Ty=- 311 Syeu(k?)u(k')k - K'p(q)H*(2), (4.29)
where
H®)(2) = hy(2) + 2h,(2) + 2h4(2) + 4hy(2).
For solutions of the Low equation
H(n(z):Hu)(_Z)_ (4.30)

In order to ascertain crossing symmetry define
the crossing operator C by

C(F(kx, k™!, 2)) = F(-k

If CF=F the operator is crossing symmetric.
From (4.29) and (4.30) we see that CT,=T,.

Next consider the higher-order terms. These
are of the form

R\, R0, —2). (4.31)

D K, g(2)K,;g(2)K, g(2)K, g(2) * ** K (4.32)
jen
kR#1
In the term
_ a(H) 1/2 a(H) 1/2
K,= ;[;;L(z—g-] t“[_;;‘(‘éo)—] (4.33)

the factor on the left-hand side may be replaced by
1 and in the term K, the similar term on the right-
hand side may be replaced by 1. If we then express
each K, in terms of £, one has the usual multiple-
scattering series, except that each Green’s func-
tion is of the form

[aa(Ho) ]1/2 z* 1 [aE(HO) ]1/2
a,(z) hy? z —hy | ag(2)

For a given application one may use Eq. (4.34), but
we wish to make a further approximation to simpli-
fy the equations. The approximation in which the
factors [a,(H,)/a,(z)]*” and[a,(H,)/a,(2)]*/? are re-
placed by 1 is defined to be the on-shell crossing
approximation (ONCA). This approximation is
suggested by the slow variation of a,(x) and by the
presence of the (z/h,)? factor which dampens the
off-shell scattering. Under this approximation the
second- and higher-order terms are given by

(4.34)

D tig@)t+ Y g2t g(2)ty + e (4.35)
i#] li#4
j*tk

Banerjee and Cammarata have argued that the in-
clusion of m-nucleus crossed graphs lead to the re-
placement of g(z) in Eq. (4.35) by g(z) + g(-z).

Their considerations do not include the effects of
correlations. Here we show that if pairwise corre-

lations occur such that the two-body density
p(r,,7,)=p(r,,7,), and for N=Z, closed shell nu-
clei, the Cammarata-Banerjee result which we call
the crossing theorem, applies to the most impor-
tant of the terms of Eq. (4.35) in the fixed scatter-
er approximation. Of course our g(z) includes the
z%/hy? modification. The method of proof is to cross
the terms of Eq. (4.35) and add the resulting terms
to Eq. (4.35).

Consider the second-order terms of Eq. (4.35)
T,. Under the ONCA we have

T,(kx, k", z) Z J dordor et =ik "'!p(ri,rj)

i#4

'[ 3h (2) PR, p)—5

-

I B p, k.
z—w,+in °
(4.36)

We wish to make (4.35) crossing symmetric by add-
ing in the crossed version of the second- and high-
er-order terms. The quantity CT, is given by

(a) (b)

(c) (d)

(e) (f)

FIG. 1. Some terms of Eq. (4.35) for which the proof
of Eqs. (4.36)—(4.42) applies. The dashed line repre-
sents pions, the solid line represents nucleons and the
heavy dot represents ¢t.
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CT=Y [@rdrptr,rpes i &5,
i#j

xj (gjgi e i} b (-2) PR, p)

7Y ]

ZZ
=z
Wy

(4.37)

1 @)
_Z —w,hﬂ(_Z)PB (P, ‘k)-

Convert the integral over d*p to an integral over — d®, then use the crossing symmetry of the 7-nucleon T

matrix,
Y k(=) PR, p) =3 ho(2) PN (—p, k')
a (<3
to obtain

v drplry,ry)ei¥ ritiker,

cT,=Y I

1,5

d3p

where a and B have been interchanged and where
fori#j

[P PP ]=0. (4.40)

p(;i’ ;j) = p(;p ;i)

one may switch the indices i and j in Eq. (4.39)
and find that CT, is obtained from 7, merely by
the replacement of the z in the Green’s function by
—z. Then the sum of the two terms is given by the
replacement of

_z 1

8&) = e
by

g.(2)=g(2) +g(-2)

22 2h,

LR, L — 4.41

ke 2% —hy +in ° ( )

TLF=.<0k Zt‘gt,gt,IOk'>
i#J

2
+iplrymr,) (§) o
Gy e ; ho(2) P (k’f’)mz

(4.38)
=1 () P9p, k1) (4.39)
+tw, ° ’
For simple models of p(T,,T,) such as
p(F,,T,)=p?[(F,+T,)/2]R(|T, = T,]|) (4.42)

the condition on p(T,,T,) holds. However, for other
models the condition is not true and the result
(4.41) is not necessarily obtained. Note that the
2h, factor in (4.41) serves to cancel the (21,)1/2
factor appearing in the m-nucleon T matrices.

Under the stated assumptions it is straightfor-
ward to see that the proof and result of the above para-
graph holds for all terms of (4.35) in which the last
nucleon struck is different than the first nucleon
and in which the first and last nucleon are struck
only once. Examples of such terms are given in
Fig. 1.

Consider the local field correction of Foldy and
Walecka'® illustrated in Fig. 2(a).

. - 3 3 . . . v -
= (30 30 ik eTTymikee T P APy 3G i (bt
= | &rd’r,e i i (2—5—{;e 1T4le!P Ty

m)* (2m)

2
1
= h (z2)PY(E d _—
Zs S e

22
1, &P, (, b)) =
?

1

S — (1) ’
) _w’l +in hﬂ(z)PB (plyk )- (4.43)
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(a) (b)

FIG. 2. (a) Local field correction. (b) Another term
for which the crossing theorem can be proved.

Copsider CT™F, replace p and p, by —p and -p,,
use Eqgs. (4.41), (4.40), and (4.39) and the fact that

> (][RP, Bl 0y=0 (4.44)

i
for closed-shell N=Z nuclei. This gives

TLF 4 CTLF =TV (g) (4.45)

J

(a) (b)

FIG. 3. The crossing theorem applies for the term
(a) but not for (b). )

where the notation (g,) means g, replaces g in Eq.
(4.43).

By similar means the corresponding proof for
the term of Fig. 2(b) follows immediately for N=Z
closed-shell nuclei.

Consider now terms in which the initial nucleon
is struck more than twice such as in Fig. 3. By
writing the relevant integrals one can show that the
theorem obtains if the expression

Pk, DPP by, 0 Py by, B) = PP psy RPN Dy, o) Po (R, )
= [PO(R, p), P by, ) 1PS Py, k) + PEO(Dy, ) [P R, p), P pay k) ]+ [PV (D1, ), Py (D, k)P (R, D)

vanishes. Consider the spin dependent terms aris-
ing from the commutator and use the fact that
terms linear in & vanish for a closed-shell nucleus.
Straightforward algebra gives

3 bobeb (K x By) [ @, xBy) x G xK)]  (4.47)
yByy
for (4.46), where the spin-dependent part of the
a projection operator is b,. The expression (4.47)
is rewritten as

Z bubﬂbrl? : (54 X51)E' ®, xD), (4.48)
7Y: 124
\\\ \\\ \\
1 = ==
4 -
’ , -=
ot P

’
/

FIG. 4. More terms for which the crossing theorem
can be proved.

(4.46)

-

where the Eq. (4.48) obtains because P, X D gives,
upon integration, a term proportional to ('x"l —?z)
X(f, -T,) If only two nucleons are involved [Fig.
3(a)] then P, X, gives a term of the form (F, - T,)
X (f, - T,) =0 so that the theorem holds. However,
for three-nucleon terms, Fig. 3(b), (4.48) does
not vanish and the theorem is not true.

Similar consideration of two-nucleon terms shows
that the theorem is true for all two-nucleon terms
in which the last nucleon struck is also the first
one (Fig. 4). It is also possible to show that all
terms of the form shown in Fig. 5 obey the theo-
rem.

/ 7 7

YEYRVEVE
AR ANA
Vil vy

Vv

/ 7/
7/
7
FIG. 5. More terms for which the crossing theorem

can be proved.
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The crossing theorem holds for the terms of
Figs. 1, 2, 3(a), 4, and 5. This means that for
all terms involving two struck nucleons the cross-
ing theorem holds. It is also true that, because
T,=CT, (and under the ONCA), all terms of the
form (4.35) obey the crossing theorem under the
coherent approximation (replacement of g by gP).

The correlation expansion of the optical potential
has been discussed by Ernst et al.'” In that work
an expansion in which terms involving two struck
nucleons is summed as a three-body problem is
recommended. Terms involving more than two nu-
cleons are also included but these terms do not
contain successive scatterings from more than two
different nucleons in which the scattering does not
proceed through the ground state at some point be-
tween the scatterings.

We have showed that all terms involving two
struck nucleons and all coherent terms obey the
crossing theorem. By combining these results one
may show that the terms of the above para-
graph also obey the crossing theorem. Thus
for the optical potential of Ref. 17 one has

T'=U'+U'g,PT’, (4.49)
where g, is used in obtaining U’. This means that
if the correlation expansion including two struck
nucleons converges the replacement of g by g, by
in Eq. (4.35) is valid.

The crossing theorem has been proved using the
simplification afforded by the fixed scatterer ap-
proximation. The result is probably true under
more general considerations, but we have not at-
tempted to obtain the necessary derivation.

V. INCLUSION OF 7-NUCLEON INELASTICITIES

In this section the one-meson truncation is re-
laxed. We begin by examining the resulting modi-
fication of the m-nucleon scattering equation. Then
the set of two-meson nuclear states is inserted in-
to Eq. (2.9) and a solution which makes use of the
modified m-nucleon equation is presented.

The m-nucleon Low equation as modified by the
inclusion of two-meson states is

v Bt ni Bt ni
t=?+2 z—ni,‘,,-{-in +CZ z—g‘,,+ir)

n n

T, rl.r,.,
+Z,,,: z—ém:in+cz z-mb;,,,zin ’ (5.1)
where T',; is the T matrix element for the process
7+ N—=m+m+N and the sum over m is a sum over
the two-meson states. Equation (5.1) is given in
the m-nucleon center of mass and (for on-shell ele-
ments) z=W, =(p2 + u2)!/2 + p2/2m where p is the

on-shell center-of-mass momentum. Qur notation
for the various terms of (5.1) is given in Eqs.
(1.1)=(1.5). The observed separable form of v and
t, result from the simple form of the interaction
current,

J =80 (—.Wgu (q )T

If one considers a few m-nucleon scattering graphs
which have a two-meson cut one finds that a similar
representation may be made for the terms involv-
ing I'. We write

Z }%ELI::T,, 2 Yol2)uo(4, D), (5.2)

where y(z) depends onthe model of I',;. At this
point we do not investigate such models but merely
show that one can find a linear equation, the solu-
tion of which is a solution of the Low equation of
(5.1).

The analytic structure of Eq. (5.1) tells us that
Yo(2) has a cut for z>m +2u. We assume that
¥«(2) has no other singularities and write

yol2) = _1_[: _am

o e v [ULW))2, (5.3)

where |Uy(W,)|* = -Imy(W,) and U4(W,) =0 for W,
<m +2U.
By using Eqgs. (5.2) and (5.3) in (5.1) we find

()= =D g syt [ Ghe JelE
(5.4)
where
al(2) =y +2b(2) +28.(2) (5.5)

and where b/(z) arises from the crossed I'' T term.
The analytic structure of b/(z2) is assumed to con-
sist of a cut for 2< —(m +2u). The use of (5.3) in
(5.4) followed by the evaluation of the angular inte-
grals gives

wo- L 2 (1)

x B
+—f Wm [U ()2 (5.6)

The evaluation of Eq. (5.6) at z=W +i€and z=W
— i€ followed by the taking of the difference be-
tween the two quantities gives

=Imhy(W) = [ W)*p (W) + |ULW)|?, (5.7)

where
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p(W)= Wuz(ﬁ)

evaluated at W,=W. We use the form

N 8, +ing)

h = —e ¥a=Ty sin(8, +iny) 5.8
(W) = —€ e (") (5.8)
with 6,1, real and 7,> 0. The use of (5.8) in (5.7)
gives

[ULW)|2 =(1 = e ~4%) /4 p(W) (5.9)

which shows that n, depends only on the reaction
cross section and p(W). Furthermore, the equa-
tion (5.9) is consistent with the usual condition,
based on conservation of total flux, that the reac-
tion cross section in a given channel is less than or
equal to i of the maximum elastic cross section in
that channel.

It is useful to combine [i(W,)|2 and |Uy(W,)| as
follows

P(DIRAWIZ + |U L W2 = [ W) 20 (W) fo2 (W) -
(5.10)
The use of (5.8) and (5.9) in (5.10) gives
fo2(We) = 2 - 2c0s20, (5.11)

1-2cos26 ™%+ 4 *

Clearly f,*(W,) is positive definite, and indeed is
greater than 1.
The use of (5.10) in (5.6) gives

2
hote) = 2L L[ gy P oy

z=Wy+in
(5.12)

A relation between f,2(W) and y,(W) is obtained by
comparing (5.6) and (5.12)

= (WF(W) = 1]=Imy(W)/[hW)F.  (5.13)

We claim that a linear equation which is a solu-
tion of (5.12) is

_ ayz) a,(ho)\? 2% 1
to(2) = U [1+( e ) 2@ Toho
sz(ho)ta(z)] (5.14)

where 7, includes the recoil kinetic energy of the
nucleon. This is established by defining 7, and &,

te(2) =f (o)t o 2)f (hy)

#(2) = f (ho)ue, f (1) (5.15)
so as to recast Eq. (5.14)
(2) - ayho) \* 2°
a(z) a[l"‘( a(;(zo)) hoz
1 _
m ta(z)] . (5.16)
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From Ref. 5 we know that (5.16) is a solution of

P CR VRIUA;
z ¢ @2n z=W,+in"

t.(2) (5.17)
The result (5.12) is reestablished by multiplying
Eq. (5.17) from the left and right by f~'(%,) and us-
ing (5.15). Thus (5.14) is a linear equation equiv-
alent to the Low equation when inelasticities are
included. Note that a(z) and f,(2) depend on £y(z)
so that (5.14) is not necessarily an aid in solving
the Low equation.

We now turn to the use of these ideas and Eq.
(5.14) in m-nucleus scattering. Inclusion of the sum
2| Na,w, )X Nm,m,| in Eq. (2.9) gives the additional
terms

l, Pu, 9y

A=) et Ol Ty (519
where f‘m isthe T matrix for the 7-nuclear reaction
T+A-m+7+A’. Thequantity AT includes various
complicated many-body effects and our treatment
of it closely parallels the treatment of the crossing
term. As a first approximation, only the terms in
(5.18) involving single nucleons are kept and we
take

AT,=p (T'D,I),+C)_ (I'H,I),,  (5.19)

where D, is the two-meson nucleon propagator.
This enables us to write the modified m-nucleus
Low equation as

T=E‘[z¢;< "‘(Z)+ya(z)> _J +TTDZT.

i

(5.20)

Equation (5.20) is very similar to Eq. (4.7) ex-
cept for the significant difference that y,(z) is com-
plex. However, the main interest of this investiga-
tion is on energies up to and slightly above the
(3, 3) resonance. For such energies Re[y,(2)] has a
significant effect on 7-nucleon elastic scattering,?
but Im[y4(2)] is important only at higher (>400
MeV) energies. Thus for the energies of interest
here, it is reasonable to ignore Imy(2). This
means that the techniques of Sec. IV may be used
with a,(2) replaced by a/(z) +Rey,(z), and one is
therefore able to obtain a multiple-scattering ex-
pansion, equivalent to the Low equation, in terms
of a m-nucleon T matrix which includes the effects
of crossing and pion inelasticities.

In making the approximation (5.19) certain many-
body effects are ignored. For example, terms in
Fig. 6 in which two-pion system is created on one
nucleon and destroyed on another nucleon are ne-
glected. For a thorough discussion of such effects,
see Londergan and Moniz.*!

In order to be specific, we have restricted our
discussion to the two-pion inelastic channels.
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FIG. 6. Term not included in our treatment. The
square box represents T.

However, the same considerations apply for any
m-nucleon inelastic channel for which Eq. (5.2) is
valid.

VI. SIGNIFICANCE OF THE (z/HO)2 FACTOR

At this point the only effect of the field theoretic
approach (other than the explicit manifestation of
crossing symmetry), is the modification of the
propagators by the factor (z2/H,)*. By considering
processes in which a sum over virtual states is
involved, one sees that the factor (z/Ho)2 decreases
the contribution of the high energy states consider-
ably. As a result the importance of effects which
depend on the high energy part of such sums is ex-
pected to be decreased. In order to illustrate these
ideas we consider the consequences of the (z/H,)?
factor for three effects which are of present inter-
est. These are the Kisslinger singularity, the
Lorentz-Lorenz-Ericson-Ericson effect (LLEE),
and local field corrections.

The “Kisslinger singularity” is the result of the
attractive p-wave nature of m-nucleon scattering
at energies below the resonance. In a uniform
medium of density p

p2=K?+4mpfK*=0, (6.1)

where p2=2%2~ u? and f is the on-shell m-nucleon
forward scattering amplitude divided by p%. The
solution of (6.1) is
p2
2 _

K Todmr (6.2)
and the Kisslinger singularity arises at low ener-
gies because the imaginary part of f is small and
because Re(47pf) ~1 for values of p near the nu-
clear density, p,(=4fm™). Thus K° takes on a

MILLER 16

very large and purely imaginary value. For scat-
tering by a finite nucleus the imaginary part of /
presents a barrier so that the effective density is
much lower than p and the problem is mitigated.
However, even in situations where potentials of
the Kisslinger form fit the elastic scattering data
the m-nucleus wave functions have kinks inside the
nucleus.

In our theory the equation corresponding to (6.2)
is

2 2 2 Zz

bP?=K?+4npfK W—O. (6.3)
Even if we solve (6.3) for the extreme case, 4mpf
=1, we find that K is finite. This is because the
K? factor in the denominator of (6.3) prevents the
p-wave scattering term from being too large. For
example, at a kinetic energy of 50 MeV one has
K/p=1.55 instead of infinity. Thus the use of the
modified propagator destroys the Kisslinger singu-
larity.

It is also interesting to consider the effects of the
propagator modification at resonance energies
where the neglect of meson annihilation and multi-
nucleon currents is better justified. Ericson?
and Hiifner parametrized the scattering amplitude
by the crude (see Ref. 2) formula f=C/(z —Eg+il'/
2), with C <0, and obtained the solution of (6.2)

n—1=-21pC/(z = Ex+il'/2 = 371pC), (6.4)

where n=K/p. The term -3mpC pushes the posi-
tion where the real part of the denominator of
(6.4) vanishes down in energy by about 30 MeV.
This downward shift is caused by the K? behavior
of t,. Using the same scattering amplitude, the
solution of (6.3) is

n-1=-21pC/(z —=Eg+il'/2+ mpC) (6.5)

and the position of the zero in the denominator
vises by about 10 MeV. The result (6.5) is also
obtained from (6.3) by noticing that for resonance
energies p?~4u? and the factor z2/(K?+ u?) is well
approximated by p2/K2. In this case, the wave
equation (6.3) reduces to the equation of the stan-
dard theory, but with the local Laplacian off-shell
extension of {,.

If one does first-order, optical model calcula-
tions in finite nuclei one finds that the propagator
modification causes significant differences. For
scattering on 'O at 30 MeV, the unmodified model,
corresponding to Eq. (6.3), gives a reaction cross
section oy of 210 mb and do/dQ (180°) = 1.5 mb/sr.
The same calculation done with the propagator
modification gives 129 mb for o, and do/dQ (180°)
=1.1 mb/sr.

If one uses various off-shell models of ¢, that
cut off at large (~1000 MeV) but finite momenta,
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TABLE I. Effects of 2 /H(,)2 factor on reaction cross
sections (in mb) for (v* ,180) scattering. The column
labeled (z/HO)zG includes our modification in the Green’s
function, the column labeled G does not.

E, (2/Hy)%G G
30 118.28 118.68
66 347.8 350.2

150 587.3 587.1

the effects of our modification in first-order opti-
cal potential calculations are negligible. Table I
shows that the inclusion of the (z/H,)? factor
changes the reaction cross section by less than

1%. Furthermore, negligible changes in angular
distributions are also obtained. For a variety of
energies and targets no change greater than 3%
was obtained, and this only at the diffraction mini-
ma. The insensitivity occurs because the first
order optical potential is proportional to
u(k)u(k')p(]ﬁ -r ). For k=k’, the cutoff function
u(k’) removes the Kisslinger singularity. For k=k’
the density cuts off contributions for large momen-
tum transfer so that (z/H,)* takes on values of

the order of 1.

Next we turn to the LLEE. As shown by several
workers,?* this effect is caused by successive iter-
ations of the term of Fig. 1(a), i.e., Figs. 1(b),
1(c), 1(e), etc. To obtain the optical potential one
removes the uncorrelated part of Fig. 1(a) and the
remaining piece has a large value which is inde-
pendent of the details of off-shell 7-nucleon scat-
tering and the correlation function. In nuclear mat-
ter the contribution to the optical potential from the
term of Fig. 1(a) is proportional to L,

dsq (R-gr -
L= [a3slR(s)-1) [ oy ot et
[&(s)-1] @ P -+ ’
(6.6)
where R(s) is the two-nucleon relative density.
By doing the ¢ integral we have
- ei(q-K) s K2q2
L=| d3s|R(s)-1 ———
j [R(s) ]—pz—:?-
x [P,(@)+2P,@)], (6.7)

where we have taken the direction of K parallel to the
b, axis. The next step is to make the small K-S ap-
proximation in the medium, i.e., we sete *¥ ' equal
to 1. If R(s)is spherically symmetric, the first
error in this approximation is of order (K-35)2.
Then

_K? (s R
L-—?st[R(s) ] —q PE_qi+in :
(6.8)
If we use
q- 2
pr_ qf =-1+ pzp_ qz (6.9)

and neglect terms of order p®
d®q is -5*'(s) and one has

, the integral over

L=13K?+0(z% K?). (6.10)
The 3K? term is the origin of the LLEE.

In the present theory, under the same approxi-
mations, we have

_K o, (2 g q°z*
L 3 fd s[R(s) 1]} @) e - C+ D)
(6.11)

which becomes, aiter doing the d*q integration,

( >fd3 R(s RE) =1 agins, 2oy (6.12)

The integral over d*q gives no 6 function and the
lowest order contribution to the proper self-energy
is of order p?, a?, or u’a?, where a is a typical
correlation length. These terms are much smaller
than % and the conventional LLEE is suppressed.
A simple evaluation of (6.12) using R(s)=0 for
s<a and R(s)=1 for s=a gives L= (K?/3)(0.23
+0.057) for 50 MeV pions and a=0.7 fm.

Another effect is the local field correction shown
in Fig. 2(a). Keister® has shown the correction
to the optical potential is proportional to M,

M= [ X2dxR ()|, (x) + 2h,2(x)] , (6.13)
where x=p s. In order to estimate M we use the
simple correlation function of Fig. 7 and find a
huge correction which results mainly from the
large values of h,(x) for small x near pa. The
modification of the propagator by the factor (z/
H,)? causes M to be replaced by M’:

R(s)

FIG. 7. Correlation function R (s).
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w- [ demx){[h - —r"“; il

+2 I:h (x) - —I"iﬂ } .
(6.14)
Now limy_, ,(y) is 3i/y® so we see that
tux\]
}:-T [h (x) - —prh (Tﬂ =0(1/x) (6.15)

and not «x~3 so that the large value of M is de-
stroyed. A straightforward computation gives
M=-59+4.9¢ and M’ ="7.57 - 2.5; for 58 MeV pion
(p=u), so that the effect of local field corrections
is reduced by a factor of about 7.

The results of this section may be summarized
by the statement that the (z/H,)? factor introduces
a cutoff at a low momentum (strong cutoff) into
the multiple-scattering series even though the
fundamental form factor contains either no or a
very weak cutoff.

It is interesting to obtain a direct relationship
with theories which use the conventional Green’s
function. Our field-theoretic multiple-scattering
series, under the impulse and ONCA approxima-
tions, is given by

T= 4+ 48,1+ }; L8t 8ot t
i#§ i#5
Fid ]

(6.16)
By defining
7‘=hiThi ,
0 ° (6.17)
-z 2z
t—'}:th—o s
one obtains

Tzzfv‘; ;igcz-l""z*:rlgc-f}gcz—lr*"" ’
F]
J#K

(6.18)
where
2h,
gc = m (6. 19)

and we again note that the 2k, cancels the (2w)™!/2
factors of the m-nucleon T matrix. By redefining
T which has a different off-shell behavior than ¢,
we have converted our theory into one which uses
the conventional Klein-Gordon Green’s function.
However, the operators 7 fall off rapidly for mo-
menta for off shell. Thus the series (6.18) bears
a striking resemblance to theories such as that
of Moniz and collaborators'® and Gibbs et al.'!
which employ m-nucleon T matrices which are
strongly damped for off-shell momenta.

VII. EFFECTS OF TRUE MESON ABSORPTION

So far nuclear excitation energies and multinu-
cleon contributions to the driving term (2.21) have
been neglected. These terms contain specific field
theoretic features not found in conventional theo-
ries. However, I am not yet able to include many of
these terms within the framework of obtaining lin-
ear equations equivalent to the Low equation. The
problem is that these terms are complex and en-
ergy dependent. The driving terms considered
previously are energy dependent but of a form
such that an equivalent linear equation could be
found. The terms of the present section are not.

We may, however, calculate the leading con-
tributions to AV(z) [cf. Eq. (2.23)] and determine
the conditions under which meson annihilation is
significant. If AV(z) is important it is used as an
additional term to be combined with V/z or W(z).
If V/z and W(z) were energy independent and AV (z)
were Hermitian as well as energy independent then
such a procedure would be equivalent to solving
the Low equation. These conditions do not obtain,
our procedure is not a solution of the Low equa-
tion, and hence our results should be taken as an
order -of -magnitude estimate. (If one is using a
perturbative or other linear scheme this procedure
would be valid.)

In this section effects of true meson absorption
are considered. Of course many kinds of states
are excited when a meson deposits its entire ener-
gy into the nucleus. Here we examine only the ef-
fects of the (m,N) and (m, NN) reactions. Because
these reactions occur at high momentum transfer
it is expected that the (m,N) effects are small and
that the (m, NN) effects will be more important.

We first focus on effects of the (m, N) reaction,
discussed in Ref. 25, where generally modest cor-
rections to standard theories are obtained. We
provide, here, the promised derivation of Eq. (1)
of that reference. Start with that part of AV(z),
V,(z), obtained from the one-body effective cur-
rents [the first term of Eq. (2.23)]

Vz(x):; 820 3| L)L |7, |00,

1 1
“(e=mrm —3): b

where |0>o is the unperturbed ground state. The
crossed version of (7.1) has no cut and is discussed
in Sec. VIII. To examine the effects of the (m, N)
vertex consider only those states |L)0 that asymp-
totically consist of one fast nucleon and a residual
(A —1)-nucleon state |L’),.

The term (L |J &’|0), which is the matrix ele-
ment of the single-nucleon current is not the com-
plete matrix element for pion absorption which
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appears in (2.12), as it is well known that pion
rescattering processes play a dominant role. How-
ever, we consider V,(z) as a correction to be eval-
uated between distorted waves of the optical poten-
tial of the previous sections. Thus a reasonable
representation of the (m, N) and (N, ) matrix ele-
ment is used.

Next consider the sum over intermediate nuclear
states as a Green’s function G *'(z),

@)= 2 |Dolt (o - ) (2
L

Z-E +in  z
where the state |L), is approximated by by |L’),
with X\ representing a single-nucleon continuum
wave function. We consider only single-nucleon
transfer in which the core is inert. Then the
Green’s function may be written

. o 1 1

Gin(?’, r')= ; ¢f(7)¢x(7')<m —;) , (7.3)
where ¢, is the excitation energy of the continuum
nucleon. The quantity G{*(r, ') is just the coor-
dinate representation of the operator Gﬁ”,

1 1

G(1)= . =
£ z-Hg +in =z

, (1.4)
where H, is an effective single-nucleon Hamilton-
ian, consisting of the kinetic energy plus nucleon
optical potential. The biorthogonal basis is used
in Eq. (7.3) because H,, is complex. The use of
(7.4) in (7.1) allows us to write the correction due
to the (m, N) process V, as

Vi=g? ) WIGOW,),= 2 v,(), (7.5)
1 1

A picture which represents V, is given in Fig. 8.
In developing the multiple-scattering expansion

replace the m-nucleon scattering operator ¢; by
f, where

L=+ V(). (7.6)
The optical potential is then given by
-1 - A4
=f—<2 foe 2 t,GQt,+---> (7.7)
A i#4
AN AN
AN N
N AN
—( —_—
A
7 7/
7 /
7/ 4
7/ 7

FIG. 8. Effect of (m,N) reaction. The heavy bar re-
presents Hg,.
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FIG. 9. Effect of (m,N) reaction at 50 MeV.

which is Eq. (1) of Ref. 25 (except that binding ef-
fects are neglected here).

Technical details for the calculation of V, and
the corresponding change in the optical potential
are provided in Ref. 25. For completeness we in-
clude the angular distributions of Figs. 9 and 10

T T T T
IOZ: 6 =
: '60 100MeV ]
@ 10k -
=] F ]
£ ]
. i ]
|O_IE_ -g
g:
z5 O .
< P
I o
© 2 -251 I | 1 | N
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FIG. 10. Effect of {7,N) reaction at 100 MeV.
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TABLE II. Effects of the (7,N) reaction channels on
total reaction cross sections (given in mb) on (7, 16O)
scattering. The notation IA designates the standard im-
pulse approximation. The notation (7,N) designates the
inclusion of that channel.

E IA (r,N)
30 86 99.7
50 153 175
75 288 312
100 4117 429
125 528 526
150 567 562
175 547 543
200 496 489

and the reaction cross sections of Table II. The
effects of the (m, N) reaction are very small.
Furthermore, the results of Figs. 9 and 10 repre-
sent an overestimate of the effect. Recent data®
show that the procedure of Ref. 25 (using distorted
waves from the local Laplacian potential) leads to
8Q(m, p)!SN cross sections that are too large. Thus
the present results should be taken as an upper
limit, and it is safe to ignore the effects of the
(m, N) reaction.

Next we examine the effects of the (7, NN) reac-
tion which are expected to be more important.
We sum over states |L)0 that asymptotically con-
sist of two nucleons plus an inert, (A - 2)-nucleon
core. The reaction p+p —d+ 7* is dominated by
terms [Fig. 11(a)] in which the pion scatters from
one nucleon and is absorbed on another (see, how-
ever, Ref. 27). The two-nucleon emission pro-
cess in nuclei is expected to be dominated by a
similar term. Our procedure is to determine the
two-nucleon pion absorption (or production) opera-
tor from the Wick reduction technique, and to per-
form the sum over two-nucleon states by Green’s
function methods. The two-nucleon current is ob-
tained in Appendix E and is described by

oL [T [0)5=o(L | T (k)] 0), (1.8)

T'(g) is a two nucleon operator of the form

(a) (b)

FIG. 11. Dominant mechanisms for the dm—pp reac-
tion. The wiggly line represents the p meson.

1
T(k) = 22 (pupa|Y(0)[pp B} ] by By - (7.9
To calculate the contribution AV, due to two-
nucleon intermediate states, take
| LYo =0} 65, L"), - (7.10)

Use (7.8) and (7.10) in the n=m =2 term of (2.23)
and assume |L')0 is inert. Then, defining the con-
tribution of the (m, NN) reaction as AV®),

ave=Y (ab |y (q)Jp,m)(plpzly(k)lab)

ab Z—Ep _€Pz+1'n

(7.11)

where €, +¢€,, is the excitation energy of the nu-
cleon palr, a, b denote states below the Fermi sea,
and the subscript a denotes the antisymmetric ma-
trix element

|ab), = |ab) - |ba).

In Eq. (7.11) we have used the dominant part of the
reaction mechanism for both (0|J,|L) and (L |J,|0).

The calculation is facilitated by defining the two-
nucleon Green’s function Gy,

Gyn= Z |P1P2>(IJ1P2

prbe 2 €, —El, +in

which is approximated by the use of plane waves
for [ py and | p,). The coordinate space representa-
tion of Gy is then

(7.12)

(7.13)

d’pd’p’

GNN(-R.'lg;-ﬁ'l "= f - P RRN15- -3

1

.14
=y -p/m+in’ (7.14)

_L - 'O_-’ -
R"z(f;'*‘rz); S=T, =Ty
D W B P {1 n
'-z(f,+r2, §'=F! T3,
px+p2) _2<p1 pz

If one considers the two nucleons as an indepen-
dent pair moving about the nucleus, the relative
momentum may be quite high, whereas the total
momentum is generally smaller and is bounded

by twice the Fermi momentum. We use this as
guidance, and neglect the P2/4M term in Eq. (7.14).
This provides an important simplification because
then

l

dp» (3-3)

r"l 3) ’
G (RS, R'8) =6 ® - R)f 217)32 —p*/m+ie

=5%'R -R")g(§,¥). (7.15)

The 6 function considerably simplifies the evalua-
tion of Eq. (7.11). Note that Im(G ) is proportion-
al to 6(p —q,), where g,=Vmz. Thus AV‘® will

be complex.
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TABLE III. Effects of the (m,NN) reaction channels on (1", 16O) scattering. E is the pion’s
kinetic energy in MeV; B is given in fm®; Im(AU (0)) is given in fm~2 as is v (0) (these
are potentials evaluated at the origin). IA designates the impulse approximation result for
0g. The column with AU represents the effects of including AU.

E B Im AU (0) ImUV (0) 1A With AU
50 7.2 +0.61i 0.24 0.17 153 206
75 74 +0.53i 0.25 0.37 288 339
100 8.2 +0.49i 0.28 0.62 417 451
125 9.1 +0.48i 0.31 1.0 528 540
150 9.1 +0.42i 0.31 1.4 567 570
175 7.0 +0.29i 0.22 1.6 547 548
200 4.6 +0.17i 0.16 1.3 491 493
225 2.8 +0.092i 0.094 0.88 433 435
250 1.7 +0.051; 0.056 0.60 379 381
275 0.83 +0.023i 0.028 0.43 341 343

The remainder of the calculation is outlined in
Appendix E, where it is shown that the change in
the optical potential is given by the formula

2 ; 2
AV @R By S ima, 2 ma
VUKD = S g @ PO\
1

1+2z/m

x{1+4[3(u/q,P -3 (u/q,)°1},

where F(gq) is the Fourier transform of the square
of the nuclear density and where u?, z, m, and

q, are given in MeV and all other momenta in fm™'.
At 50 MeV ¢,/u =3 and is larger for higher ener-
gies. This means that Re(AV®)/Im(AV?)<0.10
at all energies of interest. The magnitude of
ReAV'? is of interest because it simulates the
Lorentz-Lorenz effects. However, the value ob-
tained here corresponds to a contribution of less
than 5% to the parameter £. In coordinate space

2
1

X

X

©lw
5l

(7.16)

AVE(F)=iC Vp?(r)V, (7.17)
where
C= (i?a %mqoﬁzvzlh‘;(Z)V(mr:—fwr)
x 822 1
915 (14 2z/m) (7.18)
x [1+i(G(u/q,f - 3(1/q,P)],
so that one has
AV ={BVp?V (7.19)

with B=2wC/(ic)?. The values of B are given in
Table III, which also includes a comparison of
AU(r=0) to ImV(»=0). The effect of AU on first-

order optical-potential calculations is shown in
Figs. 12 and 13. At low energies the reaction
cross sections are increased by as much as 30%
and the angular distributions are, for the most
part, unaffected. At energies greater than 100
MeV the effect of true meson annihilation is es-
sentially negligible. This is because of the use of
a strongly absorbing first-order potential.

The size of the effect caused by AU is, somewhat
sensitive to the details of the distorting optical
potential. For Figs. 12 and 13 we use the local
Laplacian model. If the Kisslinger model is used,
the effect of AV is decreased because there is
greater absorption in the Kisslinger model.

Recent work®” shows that inclusion of p exchange
[Fig. 11(b)] plays an important role in reducing

10—
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FIG. 12. Effect of the (r,NN) reaction —50 MeV.
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FIG. 13. Effect of the (r,NN) reaction —100 MeV.

nd ~ pp calculated cross sections and in improving
agreement with experiment. We have not included
p exchange. However, I'(k) includes only terms in
which the intermediate meson propagates forward
in time (see Appendix E). The neglect of inter-
mediate states with mesons propagating backward
in time also has the effect of reducing the annihila-
tion cross section. It turns out that when I' (%) is
used in calculations of the md - pp cross section
good agreement with experiment is obtained.
These deuteron calculations will be reported else-
where.

It is worthwhile to review the development and
to assess the approximations used in obtaining
(7.16). We have used dynamics that are consistent
with the pp —dn* reaction in obtaining the operator
I'. This is the strongest feature of the calculation.
However, several approximations have been made.
Nucleon plane waves have been used in obtaining
the two-nucleon Green’s function G. Whereas this
is adequate®” for pp —dn*, the optical distortions
provided by the nucleus are neglected. However,
for nucleons of about 100 MeV such distortions
are relatively weak. A further approximation in
obtaining G is the neglect of the center-of-mass
momentum of the pair. Finally, the simple quasilocal
form of (7.17) obtains from neglecting the varia-
tion of the pion wave function over the distance
between the two nucleons and by setting the rela-
tive two-nucleon wave function to one except at
the origin where it vanishes. Because we are in-

terested in pions of small momentum and because
of the short-range of the two-nucleon relative wave
function, these approximations should not be too
bad. It seems that the result (7.17) represents a
qualitatively reasonable estimate of the effects

of the (m, NN) reaction.

VIII. NONSTATIC CROSSING TERM

Although inclusion of the correct energy denom-
inators in the second term of Eq. (2.23) introduces
no imaginary piece into the driving term, it is
interesting to see if there are significant nonstatic
corrections. One way to obtain an estimate is to
cross the terms of Sec. VII. Instead we simply
employ a sum-rule technique.

To first order in excitation energy, the non-
static crossing term AV, given by the single nu-
cleon currents, is

E
AV,=-g2 D —F (0| LYool ]I }[0)-  (8.1)

By performing some algebraic manipulations and
using the time-reversal invariance properties of
the ground state, we have

2
AV, = —£ (0| [Hoy I3[ 0%, - 8.2)
Here H is
2
Hy=2 g‘ + 20 vy (8.3)
i AMm gy

and we further assume that v, is local, spin and
isospin independent. Then the only terms con-
tributing to the double conumutator come from the
kinetic energy. We take |0) to be an N=Z, closed
shell nucleus so that terms arising from commu-
tators of spin and isospin operators vanish.

Using

- f 1 B oxrtar
Jq—VITTTWo' qTe (8.4)

and performing the required manipulations of Eq.
(8.2) gives

2 1 -k 1

AV = §-k
Ve=41"r 27 o (2wq2wk)‘/2F(|q kD,
(8.5)
where the form factor is defined by
F(q)=0<0 > eter o>0. (8.6)
i

This is to be compared with the first-order optical
potential which is dominated by terms arising
from the (3, 3) phase shifts

_ 2 1/4 2 D4(Z) > = - >
U—41T—IJ'2-;<T) Wq kF(lq——k]), (8.7)
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where D,(z)=h,(z)/A,. We consider the ratio of
the term of Eqs. (7.6) and (7.7). In the forward
direction

AV, ¢® 1 3)2 "
7= 5 (1) 2o &8

At low energies D,(z)~1 and at 50 MeV we have
6V,/U =0.02 so that the correction is very small.
At energies nearer to the (3, 3) resonance |D,™(z)|
is greater than 1 so that the effect of 6V, is even
smaller.

IX. DISCUSSION

This work is an attempt tolearn if solutions or use-
ful approximate solutions of the Low equation for 7 nu-
cleon and 7 nucleus scattering could be obtained. The
procedure of looking for linear equations equiva-
lent to the Low equations is employed. Under the
usual approximation, the driving term of the 7-
nucleus Low equation is a single-nucleon operator
of the form V/z. In this case, and neglecting the
crossing C(TTDT) term, a linear equation equiva-
lent to the Low equation is obtained. The use of
this equation in conjunction with a corresponding
equation for 7-nucleon scattering enables us to
obtain a field-theoretic derivation of the multiple-
scattering series. The difference between this the-
ory and conventional ones is the appearance of fac-
tors (z/H,)? and (z /h,)? in the various Green’s
functions. Such factors, which arise from the as-
sumed 1/z energy dependence of the driving term,
significantly reduce off-shell scattering. Three
specific consequences of this are the elimination
of the Kisslinger singularity, reduction of the
Lorentz-Lorenz effect (correlations), and the re-
duction of the local field correction.

The principal problem of applying our method
is that equivalent linear equations are difficult to
obtain for cases in which the 7-nucleus driving
term has a more complicated energy dependence
or is non-Hermitian.

The first place where this difficulty occurs is
in the inclusion of the crossing term. The single-
nucleon approximation to this term, when com-
bined with V/z, results in a single-nucleon driving
term which has a different energy dependence in
each spin-isospin channel. This difficulty is han-
dled by replacing the term a,(z) u, by [a(H,)]'/?
Xaqla.(Hy)]*?. Alinear equation equivalent to the
Low equation (for on-shell 7-nucleus scattering) is
obtained at the cost of having the 7-nucleon potential
dependon H,. However, the multiple-scattering
series can then be developed as an expansion ina
crossing symmetric 7-nucleon 7 matrix. Further-
more, for closed-shell, N =Z targetnuclei, in the
fixed scatterer approximation, and under an addition-

al approximation (ONCA) the analog of the Cam-
marata-Banerjee crossing theorem may be proved.
That is, for the most important terms, the series

T=Et,. + }:t‘g(z)tj + Z LgR) gy +0-
=7 i=7

i=k

is rendered crossing symmetric by making the
replacement g(z)~g () +g(=z). In our case, g(z)
=(Z/ho)2(z —ho)-l-

The effects of m-nucleon inelasticities can also
be included, to a certain extent. First with the re-
laxation of the one-meson truncation, a linear
equation equivalent to the m-nucleon Low equation
is obtained. The techniques of Sec. IV may then
be applied. However, for pion energies above
pion-production threshold, the w-nucleus driving
term is complex. I have been unable to find the
necessary equivalent linear equation in this energy
region. However, the main interest of this study
is on energies up to and slightly above the (3, 3)
resonance. For such energies Re[y,(z)] (Sec. V)
has a significant effect on 7-nucleon elastic scat-
tering, but Imy(z) is important only at higher
(>400 MeV) energies. Thus for the energies of
interest here, it is reasonable to ignore Imy ,(z).
In this case, we obtain a field-theoretic derivation
of the multiple-scattering series as an expansion
in a m-nucleon T matrix which includes the nucleon
pole, crossing symmetry, and inelastic channels.

The effects of true meson absorption leads to
important 7-nucleus inelasticities. At low energies
the imaginary part of the no-meson driving term is
comparable to the imaginary part, AV, of the first
order optical potential. The necessary linear equa-
tion equivalent to the 7-nucleus Low equation has
not been obtained. Instead we use AV, together
with the optical potential of the previous sections,
to obtain crude estimates of the size of the effect.
For scattering at 50 MeV the reaction cross sec-
tion is increased by about 30% but for energies
greater than 100 MeV the effects of true meson
absorption are negligible.

Recently, the importance of virtual p-meson
exchange has been emphasized.!® Suppose, for ex-
ample, we include a p-nucleon coupling term in
the Hamiltonian. This has two consequences. The
first is that we are able to obtain better nuclear
eigenstates. The second is that a sum of p-nuclear
states must be inserted into Eq. (2.9) and a more
complicated equation is obtained. With the cou-
plings,'® dominated by the (3, 3) resonance, we are
able to find the equivalent linear equation. This
will be reported elsewhere.

Note added. In the time since this manu-
script was accepted, I have been able to solve the
Low equation including the effects of true meson
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absorption. The procedure of using AV as an addi-
tional optical potential is essentially correct. I
have also been able to show that Re(AV) depends
strongly on the m-nucleon cutoff.

I thank R. A. Friedenberg, E. M. Henley, and
J. F. Walker for many useful discussions.

APPENDIX A
The orthogonality properties of the various wave
functions of the theory are discussed in this Ap-
pendix. By following the arguments of Wick one
obtains

IND* =al|N) + - J,IN) . (A1)

Ey+w,—H +i
It is also necessary to obtaina,|M). We have

Ha,|M) =[H,a,]| M) +Ea, | M)
=(=d)=w,a, +E a,)| M) . (A2)

One then solves Eq. (A2) by keeping only the in-
homogeneous term,

1

a | M) = Ey—w, —H +ie

Jilm) . (A3)
The addition of the term ¢ requires some explan-
ation. In applications by previous workers, | M)

1

MILLER 16
was the ground state and E, =0 so that no singu-
larity could occur. However, in some cases E,>
so that one must choose the sign of € correctly.
The choice given in (A3) guarantees the orthogon-
ality of | M) and |Np)**’ and, furthermore, if one
looks at quantities involving a, | M) in a time de-
pendent representation these quantities vanish as
t—« so that asymptotically there are no mesons
present in the no-meson state | M).

To show the orthogonality consider (M|Np)*

1
MNP = (M|a}
MNP = (Mla]IN) + o ~E. i

1
=M|J, IN) (——————
w7, ><E,—w,—EN—ie

. M| J,IN)

1
* Ey +w,—E,,+ie)
=0. (A4)

The choice +ie in (A2) gives orthogonality with
the state |[Np)*’, a choice of —ie in (A2) would give
orthogonality with the state [Np)-). In obtaining
Eq. (2.9) the state | M) must be orthogonal to the
state |Ng)”) and we use —i€.

The next task is to prove the orthogonality of the
different one-meson states. Consider

<Mk(t) INp(i:)) = <Mlak le>(t) + <M

~5(6,2) (M, N) + (Mlaja, IN) + (M

1

+<M

=6(k,p) 6(M,N) +A .

)

gy ,
kP Ey+tw,=Ey-w,Fin

Np>(*) (A5)

J-‘- 1 |N (%)
* Ey+w,—Ey—w,¥in 1)>

(A86)

Our task to show that the sum of the three terms in A vanishes. The use of (A3) in the first term of

A gives

(Mla}a, IN) =

1
—w, +Ey+w,—E,*in <M
The second term of A is

*)_ 1

7 ( 1 _ 1 )JT
’\=w,~H +E ,Fin k

Y

—w, —H +Ey£in

<M

¢
T =
L Ey+w, —Ey, +w,Fin lN‘b> Ey+w, =E,-w,Fin <

+
Eytw,—Ey-w,¥in <M

Consider the last term of (A6). The identity

1 _; t 1
{a”’ z—Hilvz—H(w“ak*LJ") z—-H (49)

is useful. Taking z =E, +w,*in and defining the
last term of (A6) as X we have

: )
_ gt
M\Ie o "h +E 7 x|V
P — N> AS8)
* Eytw,=H=*in |7/ (
—
X= L (M J Jr N>
z2—E, —w, ? ~w,=H +Ey tin “*
1 < ¢ 1 >
+ . (A10
2 —E,—w, M{Je 275 o |N (10

The sum of X and the terms of (A7) and (A8) van-
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ish. Thus one has

(ME®|Np®) =5(M,N) 6(k,p) - (A11)

APPENDIX B. CONSTRUCTION OF (L | J, | M)

The unperturbed Hamiltonian H , and perturbation
H, are defined in Eqs. (2.16)—(2.18). We use the
time-independent Brillouin-Wigner techniques and
follow a discussion given by Brandow.?® First a
projection operator P is defined,

P=ZIM>00<M,, (Bl)
M

where

Hol M)o=EQ | M),
and

H,|M),=0. (B2)
The Schrdinger equation is

Ey| M) =(EQ +AE) | M) =(Ho+H,)IM) . (B3)

By using standard techniques one may show
1
AE,P|M)=PH,P|M) +PH,Q —————QH,P| M),
Ey—Hgqq

(B4)

where @ =1-P, and Hyq =QHQ. It is useful to use
the normalization {M|M),=1={(M|M). Multi-
plying (B4) by { M| we have

AE, = <M
(4]

HI(P+Q E-—IHIQH‘P>IM> (B5)

[

which may be used to define the operator Q,,

AEm=0<M|1110ml1M>0’

(B6)
Q,=P+Q WQHIP.
However, multiplication of (B3) by (M| gives
AE, ={M|H,|M) . (B7)
Hence
[ M) =Q,| M),. (B8)

We have ignored difficulties arising from possible
degeneracies of the unperturbed states. A re-
normalized wave function | M) =Q_| M),/
({MIQlQ,|M),)* is defined so that

LLIQfT, 2, M),
& LIef9,IL) 2 ( Mle] 9, M),
(B9)

(LlJ, | M) =

A many-body effective current is defined by

gl LIdy MY = L|J, | M), (B10)

// ///r\a //{v“)(
/s / 7
(b) (c)

(a)

/ /s 7 I
/ / / /

(d) (e) (f)

FIG. 14. First-, second-, and some third-order con-
tributions to J ,f D The wiggly line with the x repre-
sents CT.

and
j_ - gOQ;er‘Qm .
PoKLIRfe, L) (MlQt e, M)

The operator jk is a many-body operator, and
Brandow?® has shown how to derive the necessary
linked-cluster expansions. Our main concern is
with the single-nucleon part J¥ of J,. The terms
up to third order in CT and fourth order inH
are shown in Figs. 14-16. For J{", terms involv-

(B11)

N~ X -~
I~
// //V\/\x // ~~—~X
/ / Z [~—~—%
s / s
(a) (b) (c)
e
/b~ \ ~
7NN 1) // )
/ 1 L7/ /
/ 7 o V: ~
/ t// //A / L,‘
/ - /
(d) (e) (f)
B B B
| ) )
/_/ |~ |/
/
/ B //-\ B
/ ) 7 ) — )
/ 7/ -
/ -7 / F e F/
(g) (h) (i)
- -
\ AN
r’ |
§ /“\ X
\ [ |
| / / Py /
y / S o
-7 / L/ -

/
(j) (k) (1)

FIG. 15. Some second- and fourth-order contribu-
tions to {1V .
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/ - <

|
(d) (e) (f)
(g) T T T

FIG. 16. Some fourth- and third-order contributions
tod .

ing Vv donot appear explicitly. The terms of Figs.
14(b) and 14(c) are chosen to cancel the terms of Figs.
14(e) and 14(f). The terms of Figs. 15(a), 15(b),
and 15(c) are chosen to cancel the terms of Figs.
15(d)-15(1). The terms of Figs.16(g)-16(j)areused
to cancel the sixth-order graphs. The remaining
series, Figs. 14(a), 14(d) and Figs. 16(a)-16(f),
are almost identical to the series found by Wick
which simply replaces the unrenormalized cou-
pling constant by the renormalized coupling con-
stant. The only difference is the appearance of
the energy E,, in the operator ,. The important
contributions to the graphs of Figs. 14(a), 14(d)
and Figs. 16(a)-16(f) come from the virtual states
with excitation energy on the order of the cutoff
energy which is about a nucleon mass. As all of
the states of interest have excitation energies much
lower than 1000 MeV we neglect these energies in
evaluating the remaining diagrams. Hence our re-
normalized coupling constant is the (free) physical
coupling constant.

APPENDIX C. EQUIVALENCE OF EQS. (3.1) AND (3.2)

To prove that Egs. (3.1) and (3.2) are equivalent,
define T,=(z/H,)T,. Then
1 1 z 1

T,=—V+—V————"—
VHO z —Hqy+in

T, c1
A ; (c1)

which may be written in the equivalent Lippmann-
Schwinger form
- - 1
r = e ’
T V+Vz—H0+z'17 T.. (c2)

The equivalence of (C1) and (C2) are assured by
equating them and obtaining

V+—V—V. (C3)

Although V is non-Hermitian it is enevgy indepen-
dent, so that a complete bi-orthogonal set of basis
states may be set up. By solving Eq. (C3) for
(1/H,)V and using the resulting expression in the
second term of (C3) one finds

1

_ 1
V=V T

V. (cq)

The non-Hermiticity of V requires us to examine
the scattering caused by V. This defines T,,

= ot
=ptapt — L
T=V V" oy Te -

(C5)
The next step is to define wave functions |y, )~ and
[95,> which correspond to solutions of the Schréd-
inger equations, with the potentials V and V'.
Solution of Eq. (C2) by eliminating 7/ from the
right-hand side gives

1 .
- 6
z—V—HO+inV’ (C6)

T,=V+V
which together with the assumed completeness of
the bi-orthogonal basis and Eq. (C4) gives

1 TrT! z
P nf” ni = 7

T H, V+Z,,: z—-E,+in E, ' (€
In general 7‘_, and T, have no simple relationship
(see Ref. 30, for example). In the present case
one may show that V'H,=H,V and then with (C2)
and (C5) that T,H,=H,T,. This relation gives

T e
1 2 ThsThi
! = — —_— ——e 8

T Ho V+H°Z,,:z-E"+in ’ (C8)
where z /H,=z /E;, when acting on an eigenstate | /)
of H,. For the half-shell matrix elements of 7"
appearing in (C8), z /H, corresponds to E, /E, and
in that case T =T'. The proof is completed by
multiplying by H,/z from the left.

Note that we use the term equivalent to mean
that the solution of (3.2) is a solution of (3.1).

APPENDIX D. EQUIVALENCE OF WG AND W‘x
The potential w , has the form

1/2
tala,) =2 (o lagwpe. oD

The elimination of £, between Eqgs. (4.15) and (4.16)
gives
" __ (aaky) N
wazwd-%wa(m— 1>g(z)wa . (D2)

The separability of «, implies that the solution of
(D2) is of the form

W= ﬁ"z—(ﬂu‘;a(q,k). (D3)

Insertion of (D3) into (D2) and performing the nec-
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essary angular integrations gives
Yo(2) g*dg u*(@)a,(W,)
an(z) J wW,2 z-W,

x[agW,) —an(z)]. (D4)

Ya(z)=1+%

In Eq. (1.6) it is convenient to define ¢, (W, )

k3 .
0oaW,) = Aus mlhB(W’!)' (D5)
so that
aw,
aa(x) A %f x +I;’k o'a(le)‘ (DG)

The use of (D6) allows us to write

Ya(2)=1+27;2(2) f 7.4 u*(q) a5, )

w W, 2 a(z)
AW W, oo(W,)
W +W,) (z +W,)

(D7)

It is our intention to make a crude estimate of the
integrals in (D7). To this end we assume that the
(8, 3) channel dominates the dw, integral and fur-
thermore approximate sin®s (W, ) by a 6 function
8(W, —Wpg) times a width I" =120 MeV which simu-
lates the resonance peaking. We take

o Aas
(1 +wg/m)?

where the subscript R implies that the quantity is
to be evaluated at the resonance energy. The use
of (D8) in (D7) gives

2y 4(2) WRI‘( m >3

oo(W,) %a(wk -y, (D8)
R

yo(z)=1+

T kR’ \m+wy
f q*dqu®(q)a,(W,)
X 3 .
w W, (2 +Wg)a(2) Wy +W,)

(D9)

We may also use (D8) in (D6) to obtain

W,

a,(W,) y X (D10)

Ae -Gy 7

where x,=(=%, =%, =%, &) and W, =ypu. Itis

therefore reasonable to replace a (W, )/a(z) by
1 in Eq. (D9) because the maximum value of y is
of the order of a nucleon mass=6.7. This gives

L 2ve(2) m \?
va() =1+ L w,r ()

» f q*dq u2(g) (d11)

W W2 (2 +WR) Wy +W,) °
The integral over dq is evaluated by effective range
techniques, and we find
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2y 4(2) WgeTl m >2 m= A
kp® \m+wp/) (2 +Wg) "’

(D12)

ya(2)=1+

where a cutoff of the order of a nucleon mass is
assumed. Evaluation of (D12) gives

0.944 <v,(z) <0.966 ,
0.986 <, 4(2) <0.992, (D13)
0.998 < ,(z) <0.999

for energies u <z <3u so that setting @, equal to
W, is a good approximation for all of the energies
of interest.

These estimates are substantiated reasonably
well by numerical calculation.

APPENDIX E. TWO-NUCLEON ABSORPTION VERTEX
AND TRUE MESON ABSORPTION

In this Appendix the two-nucleon absorption
vertex is obtained and used to calculate A V.

We start with the pion current J, which is de-
fined by g,J, =[H, a] ] —w,a)=[H, ,a,]. It is use-
ful to define a nucleon current by g,L,=[H, b}]
- (M +p?/2m)b}. Consider the T matrix T for the
absorption of a pion on a pair of bound nucleons
leading to a two-nucleon final state,

r() =go(-)<P1P2 I.Jk ) s (E1)

where |i) is the initial bound state and (E1) is ob-
tained by reducing the pion in the expression for the
S matrix. The techniques of Wick as applied to the
nucleon-nucleon wave function give

1
(V_pt -
'p1p2> b,1|172> * Eﬁlﬂz_H —-1in goL"l,‘D2> :
(E2)
The use of (E2) in (E1) gives
T(k) =go(p2lb, I, 10)
gl 3 (ol L1 pap )0 O pyp,|d,]4)

P3by EPIPZ_EP3P4 +in

rgl Y (bo| L] [nm) 2 nr |, |i) ,
nm Eblﬁsznﬂ '”Tl

(E3)

where a set of two-nucleon and two-nucleon one-
meson states has been used in the intermediate
state sum. It is necessary to identify the various
matrix elements of (E3). By reducing the S matrix
element “)(p,p,|p,p,)* it is easy to show that
"’(plpz ]L‘o [p4) represents the nucleon-nucleon T
matrix. It is also possible to show that
(pal Ly, Inm) is “Xp,p,|J,|n) for E, , =E,,. It
is well known that nucleon-nucleon rescattering
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LR T -]
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®
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/ p,Nn / n
/ /
1 2 | 2

FIG. 17. Charge states contributing to T'(k).

plays a minor role in the g —pp reaction, and we
neglect the second term of (E3). Furthermore,
terms involving both nucleons dominate. The
matrix element )(p, p,|J,|n) is approximated by
its Born term I', and the Born term of (E3) is
neglected. Then

P
z-E,, +in ~

T (k) —go}: r} (E4)

The matrix element (u1("|J,|i) includes 7-two-
nucleon scattering. The quantity I'(k) is the T
matrix element for the full 7-nucleus absorption
process. However, we are interested in the ab-
sorption process involving only two nucleons and
neglect terms involving more than two nucleons.
We approximate (E4) by replacing I'y by a re-
normalized single-nucleon absorption operator and
(n1”| J, |i) by a pion scattering on one other nu-
cleon. Thus

A picture representing this term is given in Fig.
17,

The isospin and space spin parts of (k) can be
treated separately. To use (E5) in evaluating (7.11)
we include 7 scattering only in the dominant (3, 3)
channel. The isospin factor appropriate to Figs.
17(a) and 17(b) is defined as T(1, 2) and is given by

71 Tz

T(1,2) =7,(2) = 7,(1) —5— (E6)

The space spin part of Fig. 17(a) or 17(b) is de-
fined as F(1,2) and

F(1,2)= “(z)ffj_sL [2k - p-tou (kxp)] - B

(2m)? w,? 92

Xe‘ p'(?g-?l)eik'-ﬁ . (E7)

It is useful to decompose T(1,2) and F(1, 2) into
parts even and odd under interchange of particle
labels. The decompositions

T(i); T(1,2)£T(2, 1)
2 b

T(1,2)=T(+) +T(-) (E8)
and

)= FL2:FE, D
2 b

F(1,2)=F(+) +F(=) (E9)

are useful because we take a ground state expecta-
tion value and only terms even in the spin, isospin,
and space coordinates survive.

N
%) =Z <££_(})_w 1;2> . (E5) Using (E7) and (E9), one may show that the quan-
A Rl N tities F@&) are given by
h) - - d3 Y P » - . i e
F(+)=_‘/__(;’f-zﬁeik‘l§ _u_);%eip-s [zk-pS-p- Glxk)opgz.p -——2-—(0-2)(1()01. ]’
h ) kR d3 —iDes = = i kS -
F(-)= {—fu (;1(72)33”( ® f—;’%e ipes [—k-pZ-p- -5 (@ G xk) pGyD+y 3 (osz)-pol-p}, (E10)
4

where
- -
§_01+02 = + -
- 2 ’ =0;,=02,
Y1t+7, - = =
=T g y SEI) =TI,

In obtaining (E10) a low momentum approximation
is used to set ¢**s/2=1,

The calculation of Eq. (7.11) requires the quan-
tity

r

[7(1,2) F(1,2) +T(2,1) F(2,1)]
x[T(1,2)F1(1,2) +T(2,1) F’(2, )]

where the prime designates the replacement of s
and k in Eq. (E10) by s’ and k’. This term equals
[via (E8) and (E9)]

47(+) TT (+) F(+) F'1(+) +T(=) TW(=) F (=) F'T (=)
(E11)

because the ground state expectation values of
T, T!=0.
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The use of (Ell) and (7.15) in (7.11) gives

av®= Ih4(z)IZZ<SM |®(TM |fd3Rd

S”s
TMT

HR+1B)pHR-18)g(5,%)

X[T(+) TT(+) F(+) FT(+) +T(=) TT (=) F (=) F T (=)]

x[pa(R+58)¢,(R~18) -

(=1)5*T ¢ (R~ 18)¢,(R+18)]ISM) ® | TM,) (E12)

when the sum over a,b in (7.11) is decomposed into its space, spin, and isospin parts.

In evaluating (E12) we neglect the § and 5’ dependence of the single particle wave functions except to as-
sume that the relative wave function is zero at s =0. This means that S+7=1. From (E6) and (E8) it may
be shown that only terms with T =1 contribute, so that S=0. Then after evaluating the spin matrix elements

8 - . 3 13,
AV(2)=—9-fdsRe‘Q'RpZ(R)f—LL—(zd d e

iPeI-ib S 0 (3, F)

1)°w, 2w,
X[-2k-BE DB B +4k- DR -Ppr? 44k PR B p? 4k K (55 zf; [ y(2)I7. (E13)
To simplify (E13) use the partial wave decomposition of g(§,§’)
£(8,8) == 100 s I (0055) T Vi) Vin), (E14)

where g,=Vmz and s, is the lesser (greater) of s and s’. Then defining F(Q) as the Fourier transform
of p?(R) and performing the four angular integrals of (E13) obtain

8 f2 - - 1
2= = 2k .k’ Pl
N z#2|h4(z)l k-k'F(Q) —

00 0 4dj) I4dpl
X f szdsf s’zds’f 4 f
1=0,2 "¢ € P2+H- P

i (p8)j, (p's") ], (qos<)h<xl) (q0S>)

x[-§(21+1)<l 1 1)2+§—5(z,o)+<l 1 1>2], (E15)
000 000

where € is an infinitesimal quantity to be set equal to zero after performing the integrals.
The integrals in (E15) are most easily handled by doing the coordinate integrals before the momentum
integrals. Careful attention to the limits is necessary. The result is simply

2 2
@ _ms 2 Iha2)l
Av 115 9 “zz" 1+22/m

oKk’ %(,?‘)"{1 +i[3 (u/q0)°

-3 (u/q0)°1}, (E16)

where the (1 +22z/m) results from the kinematic transformation of the momentum.
A similar calculation has recently been performed with similar results by Rockmore et al.*

*Work supported in part by the U. S. Energy Research
and Development Administration.
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