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Quasimolecular resonance structures in the "C-"C system are studied in the framework of the coupled
channel formahsm in the energy range E, = 5-14 MeV. The influence of the coupling of the first excited
2+ state in ' C on the resonance structures is investigated by choosing various types of coupling potentials.
The intermediate structures in the reflection and transition coefficients and cross sections can be interpreted

with the double resonance mechanism.
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coupled channel calculations for z (g).

I. INTRODUCTION

In 1960 structure of nonstatistical origin in the
"C-"Ccross section near the Coulomb barrier
was discovered by Bromley et a/. ,"who first
introduced the concept of nuclear molecular states.
The resonances observed were explained by
Bromley et a/. ,

' Vogt and McManus, ' and Davis'
as states in a quasimolecular potential. Consid-
erably later, resonances below the Coulomb
barrier were observed by Patterson et aL, '
Mazarakis and Stephens, ' and Spinka and %Vinkler. '
Recently, Erb et al. ,' looking for the transitions
to low-lying states of "Ne, have found resonance
states at E, =7 7l and 9.84. MeV in the "C(",a)-
"Ne* reaction. This same reaction and the reac-
tion "C("C,p)"Na* were measured by Basrak
et al. ,' who detected several resonances in the
energy range E, = 7-10 MeV. Both reactions
were also investigated by Voit et al. ,

"" and the
reaction "C("C,p)"Na* by Cosman et at."who
summarized the known resonances as a rotational
band of quasimolecular states in the "Mg system.
Fletcher et al." and Eberhard et al."could identify
resonances in the reaction "C("C,'Be)"0 between
E, = 11-20 MeV. Further recent experimental
results on resonances are listed in Refs. 2, 15-17,
and 37.

Davis' was one of the first to suggest that the
intermediate structure in the "C-"{.elastic ex-
citation function may be due to resonances in a
quasimolecular nucleus-nucleus potential. He as-
sumed that the quasimolecular states can be ex-
cited directly. An indirect excitation of the poten-
tial states via the inelastic excitation of the first

excited "C state at 4.43 MeV mas proposed by
Imanishi" to explain the resonance states near the
Coulomb barrier. In Ref. 19, Scheid, Greiner,
and Lemmer have introduced the double resonance
mechanism in order to interpret the intermediate
structure of the excitation function above the
Coulomb barrier as caused by the inelastic excita-
tion of quasibound states in the molecular potential
well. In the double resonance model the elastic
and inelastic partial waves of the relative nucleus-
nucleus motion resonate simultaneously with their
corresponding virtual and quasibound molecular
potential states. In that process a sufficiently
large transition strength is generated to create
intermediate structure in the excitation function.
This structure, with widths of 0.1-0.5 MeV, is
superimposed over the gross structure (widths of
2 MeV) which is due to the direct excitation of
virtual potential states.

In Ref. 20 Park, Scheid, and Greiner have found
a molecular-type adiabatic potential for the "C-
"C system. The quasibound states of this potential
reproduce some of the prominent resonances ob-
served in the total reaction cross section and y-
ray yield of the "C-"C reaction at sub-Coulomb
barrier energies. Similar interpretations of the
resonance structures in the "C-"0system were
made earlier by Nagorcka and Newton. " In this
paper we apply the potential of Ref. 20, which was
adapted to the sub-Coulomb "C-"C resonances,
for the explanation of the resonances above the
Coulomb barrier up to E, = 14 MeV. As shown
by Fink, Scheid, and Greiner" the coupling of the
first excited 2' state in "C leads to intermediate
structure above the Coulomb barrier in the cross
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sections. Therefore, in this paper we also couple
the first excited 2' state to the elastic channel
and obtain intermediate structure in the cross sec-
tions at energies at which the conditions for the
double resonance effect are fulfilled.

Similar calculations were done by Kondo, Mat-
suse, and Abe" who solved the coupled equations
by a variational method, assuming the inelastic
channels as closed channels, so that their calcula-
ted results (especially widths) are not certain at
higher energies. Coupled channel calculations for
F., = 20 MeV have recently been carried out by
Tanimura, "who stresses the importance of the
mutual excitation of the "Cnuclei at these energies.

The aim of thi paper is to study systematically
the effects of the coupling on the reflection and
transition coefficients. In Secs. II and III we dis-
cuss the model applied for the "C-"C scattering
and various possible methods for deriving coupling
potentials. The analysis of the reflection and
transition coefficients and their interpretation in
the framework of the double resonance mechanism
is given in Sec. IV. Finally, inSec. Vwecompare
and analyze the obtained results with the experi-
mentally observed cross sections and resonances.

II. COUPLED EQUATIONS

The scattering and inelastic excitation of two
identical nuclei, e.g. , "C nuclei, is described by
the following Hamiltonian":

H=T(r)+W(r, 1, 2)+H (1)+H (2). (1)

The Hamiltonian consists of the kinetic energy T
of the relative motion, of the interaction 8' be-
tween the two nuclei (where 1 and 2 abbreviate the

coordinates for the intrinsic degrees of freedom
of the individual nuclei), and of the intrinsic
Hamiltonians H, of the separated nuclei. The in-
teraction between the nuclei can be divided up into
the average optical potential U(r), depending on
the internuclear distance only, and into multipole
potentials which couple the intrinsic degrees of
freedom with the relative motion:

g(r, 1, 2)=U(r)+p q,„(r,1, 2)r&„(e,y}. (2)

The scattering problem Hg= Eg is solved with
channel wave functions expressed in the eigen-
states of the separated nuclei:

1
9 Iyl2 I/I( & ) [2(1 + f )]&/2I l E2

X[XI (1)Xl (2)

+ (-)'Xl, (2) Xl, (1)],'"
with the eigensolutions }t«of H, (i):

H.(i)XI~(i) = eIXIM(t) ~

Here, we have characterized the levels of the
separated nuclei simply by their spin since we

restrict further consideration only to the ground

state and the first 2' state in "C. The scattering
wave functions, having total angular momentum I
and projection M, are given by

SllE2 J
The radial functions solve the system of coupled
differential equations":

d 1(l + 1)If '
2
—r' —+ U(r)+ +e +c —E Hl (r)2py dy 2~y2 El E2 / I l E2 J

The asymptotic form of the relative wave function
ean be expressed with ingoing and outgoing Cou-
lomb functions J, 0 and the S matrix elements

E
KK

R/I, I, I(r) =VII(r)5zII, —OII(r)Szl/

ff = (lI,E,J) .

%hen only the single excitation of "C to the first
2' state is considered, we have two coupled
channels for I = 0 and four coupled channels for
I = 2, 4, . . . with the channel quantum numbers:

/=I, I,=O, I2=0, J =0;
/=I-2, I, I+2, I, =2, I, =O, J=2.

The calculation of the S matrix elements and the
formulas for the differential cross sections are
discussed in great detail in Ref. 22.

III. POTENTIALS

A. Optical potential

The direct potential U(r) in Elf. (2) consists of
a real and imaginary part. The real part of the
"C+"C potential is taken from Ref. 20 and was
determined there by fitting the position and spacing
of the observed sub-Coulomb resonances in the
total cross section. In that procedure the real
potential was varied between the limiting case of
an adiabatic and a sudden potential. As shown in
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Fig. 1(a) the real potential is an adiabatic potential
of molecular type with a potential minimum of
-14 MeV at ~ = 3 fm. The bound and quasibound
states (solid lines) and virtual states (dashed lines)
of the potential are presented in Fig. 1(b).

The imaginary part of the optical potential U(r)
is chosen the same as in Ref. 20 and has %oods-
Saxon form with surface absorption:

intrinsic coordinates of the two colliding nuclei,
we assume that the intrinsic structure of the "C
nuclei ean be described by multipole deformation
coordinates a,"of their density distributions
and shapes. For separated nuclei the nuclear
density distributions and shapes are given by

p, ( r, ) = [ (r, ) + Q a(,"p, (r, ) 1',* (D,.),
W,exp[(r —[))/a]

(1+exp[(r —b)/a J)' ' (8) 2'(Q, )=R(( Q n",„'2; (();)),
12m

The parameters are taken as a = 0.6 fm and b
= 2(12)' 2ro (r2= 1.35 fm), whereas W2 is varied.
The strength 5', can be set to zero in the inelastic
channe1. s to simulate an angular-momentum-depen-
dent imaginary potential. The idea behind that
procedure is discussed in Refs. 22 and 25. The
gross and intermediate structures in the cross
sections of "C+ "C, "C+"0, and "0+"0 are
caused by grazing partial waves which resonate
nearly unabsorbed with the resonances in the quasi-
molecular nucleus-nucleus potential. These quasi-
molecular resonance states, with high angular mo-
menta, lie near the yrast line of the compound
system and, therefore, have only a small over-
lap with the states of the compound nucleus. Since
the inelastic channels are mainly excited via the
grazing partial waves, the inelastic partial waves
feel only a small absorption potential which ean be
set to zero in first approximation.

B. Coupling potentials

The coupling potentials in E(ls. (2) depend sen-
sitively on models for the scattering process and
are not so well known as the direct potential U(r).
Since the transition potentials are functions of the

1=1~ 2.
The coordinates r, , 0, are measured with respect
to the centers of the nucleii =1, 2. 9 is the spher-
ical radius.

The transition potentials depend strongly on the
nuclear density distribution and shape of the over-
lapping nuclei. Various methods may be used in
order to extrapolate the definition of the multi-
pole deformation coordinates into the interaction
region. The simplest method is the folding
procedure in which the densities of the nuclei are
added up in the interaction region. In that case,
which we denote as sudden approach, the asymp-
totic definition of the multipole coordinates can
be kept also in the interaction region. " In the
adiabatic approach the definition of the multipole
coordinates has to be taken as r-dependent as
pointed out in Ref. 26.

Independent of the definition of the multipole
coordinates in the interaction region, the transi-
tion potential in E(l. (2) can be expanded in powers
of the multipole deformation coordinates. Up to
second order we find the general form for identi-
cal nuclei:

L( )[ (-)'&LI(+&L)(]+ g ~» (r)[(~L) a) oL'")„'L]+ (-)'(o(2) (8 o((2))[']]
2

(r)[((r(1) (8 ~(2))[L]+ ( )L((2(2) (8 ~(1))[L]] (10)

Since the interaction potential in E(l. (1) vanishes
asymptotically, She transition potentials I~, J~ +~,
and K« ~ approach zero for large internuclear

1 2
separations. The matrix elements of Q~ in Eq.
(5) contain the reduced matrix elements (&, [[a,~[f2)
of the multipole coordinates which can be related
to the experimental electromagnetic transition
probabilities or calculated in the framework of
nuclear model, e.g. , by applying the rotator model
for "C in Ref. 18. In our calculations, where we
study the excitation of the first 2' state in "C,
we only take the transition matrix element to the
first 2' state into account using the following rela-

tion with the experimental B(E2) va.lue:

with B[E2,2+(4.43 MeV) - g. s.]= 8.453 e2 fm' from
Ref. 27.

The diagonal reduced matrix element (2'~(a2((2')
measures the quadrupole moment of the first 2'
state and is not included in the present calcula-
tions. It would lead to additional diagonal poten-
tials in the inelastic channels in the coupled equa-
tions (5) with the effect that the undisturbed poten-
tial resonances would have different positions in
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(2) In Ref. 22 a real transition potential was ob-
tained by applying the folding procedure. It was
assumed that a 5 force of strength V, acts between
two equal nuclei with homogeneous densities po
and with surfaces given by Eq. (9). The real and
transition potentials result as

I,(x)dx (r 2-Z) (14b)

86 2 4 6 8 0

FIG. 2. (a) Radial dependence of three different types
of the coupling potentials. The coupling potential (1)
{full line) is the derivative form of the real potential
V(y) of Fig. 1(a). The coupling potential (2) corresponds
to a 6 force between the two '2C nuclei with strength e
=- 60 MeV and 2R = 7.5 and 8.5 fm (dashed lines). The
corresponding real potential is shown in Fig. 2(b). The
coupling potential (3) is calculated with the two-body
potential given in Eq. (15) which is composed of two
terms of Yukawa form with V, =-1061 MeVfm, V2
=400 MeVfm, p&

——0.6 fm, and J(f2=1.2 fm, zo=1.35 fm
(dotted-dashed lines). {b) Comparison of the real poten-
tial of Fig. 1(a) (solid line) with potentials calculated
with a & force (dashed lines) and with Yukawa potentials
(dotted-dashed line}. The parameters of the potentials
fitted on the potential of Fig. 1(a) are given above.

the various inelastic channels.
Restricting the expansion of Q» in Eq. (10) to

the first order terms in a», we have examined
three different types of transition potentials I,(r),
which are assumed as real. Then Eq. (10) is sim-
plified:

Q~ =I,(r)(u'~t + u~~2') . (12)

The three different types of coupling potentials
I,(r) are studied in detail in Refs. 22 and 2S-30.
Here, we only state the main results:

(1) The usual form of the transition potential is
obtained by expanding the potential V(r}= ReU(r) in
a Taylor series with respect to multipole deforma-
tion coordinates. The result is independent of the
I. value of the multipole deformation:

dV=-A —.dr '

The potential is depicted in Fig. 2(a). The value of
g is about the radius of the colliding nuclei and
chosen as B= 4.25 fm. Such a potential was initi-
ally used in the treatment of o,-particle scattering
by deformed nuclei" and later in the coupled chan-
nel calculations for the "C-"C system by Garvey,
Smith, and Hiebert'8 and by Imanishi '8

with u = V,p, '4w/3R'.
Figure 2(a} shows the transition potential I, cal-

culated according to Eq. (14b) with the radii'Il
= 7.5 and S.5 fm and the strength u = -60 MeV
which was obtained by fitting the real potential
V(r) in Fig. 1(a) with the potential given in Eq.
(14a) [see Fig. 2(b)]. In such a simple procedure
we cannot describe Coulomb-nuclear interference
effects since the potential (14a) produces only the
nuclear part of the nucleus-nuc1eus interaction.

(3) As discussed in Refs. 22 and 30 and also by
Krappe and Nix, "analytic expressions for the po-
tentials can be obtained in the folding procedure
when homogeneous density distributions are folded
with two-body potentials of Yukawa type. In Fig.
2(b) we have fitted the real potential of Fig. 1(a)
with a potential in which two two-body potentials
of Yukawa type were folded in the homogeneous
spherical density distributions of two "C nuclei
with the density p, = 3/(4vr, ') (r, = 1.35 fm). The
two-body potential has the form:

-alP 1 e-a/I" 2

v(r, yr2, r)=V, +V, y0 Q
(15)

Here, r, and r, are measured from the centers
of the "C nuclei and r is the internuclear separa-
tion. The fitted parameters result as V, = -1061
MeVfm, V', =400 MeVfm, p, , =0.6 fm, and p. ,
= 1.2 fm. With this parameter set we calculate
the transition potential I,(r) according to the ana-
lytic method outlined in Ref. 22. The resulting
coupling potential is shown in Fig. 2(a).

The coupling potentials differ considerably
from one another in the interior region. Near the
overlapping nuclear surface region the coupling
potentials (2) and (3) have a similar radial depen-
dence whereas the potential (1) increases much
more steeply.

We use real coupling potentials since the cou-
pling to excited states in heavy ion scattering
happens mainly in the touching region of the two
nuclei, especially at low bombarding energies,
where only a few direct reaction channels are
usually open. The "C-"C scattering is an examp1e
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in which there exist very few open direct reac-
tion channels. 6 t 2 0 10 S 6 I 12 1()

IV. ANALYSIS OF THE RESONANCES

In the following we illustrate information about
quasimolecular resonances which can be obtained
from coupled channel calculations. It is useful to
consider the absolute values of the 8 matrix ele-
ments instead of excitation functions in which the
effects of resonances are partly averaged out.

In the low energy region (E, ~ 14 Me&) with
which the present work is primarily concerned,
the simultaneous excitation of both target and
projectile "G nuclei is only possible by exciting
deep-lying quasibound states in the relative mo-
tion, in which case the transmission coefficients
are nearly zero. Only smaller effects in the
elastic 8 matrix elements are caused by the simul-
taneous excitation for E, ~ 14 MeV. Therefore,
in the present calculations we restrict ourselves
to the single excitation of the first 2' state at
4.43 MeV in either the "C target or the "C pro-
jectile.

As pointed out in connection with Eq. (7), four
channels have to be coupled for each total angular
momentum I. Therefore, the matrix 8' ~ is of
dimension 4x4. Using the abbreviation K= (I,I„
I„Z}we introduce the square of the S matrix ele-
ment of the elastic channel as the reflection coef-
ficient

))i = l~(oooo),(looo)l (16a)

We denote the squares of the transition matrix
elements from the elastic channel to the inelastic
channels as transition coefficients, defined as

12 IQIOOO), (I' =I -2,202) I',

93 I (IOOO), {l = I o202) l

~4 ~ (1000)o(.l =I + 2o202) l

(16b)

Since the inelastic cross section for the excitation
of the 2' state is proportional to q2 3 4 resonances
in the transition coefficients lead to resonances in
the inelastic excitation function.

A. Reflection coefficient without coupling

Figure 3 presents the reflection coefficient for
the optical potential U(r), with the real part as
drawn in Fig. 1(a) and the imaginary part as given
in Eq. (6} with Wo= -1.5 MeV. In the case that the
imaginary part is set to zero, the resultant reQec-
tion coefficient would be one. Large absorption
happens at the position of the resonances of the
real potential. Around the resonance energy the
relative wave function has a large amplitude in-
side the potential well which considerably enhances

L 0

L*10

0.2I- L.O

Q~
6 8 S

E {MeV)

FIG. 3. The reflection coefficients lq)[= [e 'o)l. They
are computed with the real potential of Fig. 1(a) and the
imaginary potential of Eq. (8) with W'0=-1.5 MeV. The
positions of the potential resonances are drawn above
the minima in the reflection coefficients.

the absorption since the absorption is proportional
to the expectation value of the imaginary potential
with the relative wave function. Therefore, we
fix the position of the resonances (E, & 5 Mel)')
by the minima in the reflection coefficient (see
Fig. 3}. The resonance energies are listed in Fig.
l(b) and Table I and are distinguished as bound,
quasibound, and virtual states according to
whether they lie under or above their correspond-
ing Coulomb barriers.

Table I and Fig. 1(c) give an overview of the
energies and angular momenta of all possible
resonances which can be generated from the reso-
nances of the real potential when the single and
simultaneous excitations of the first 2' state in
12C are coupled to the relative motion. The reso-
nance energies are obtained by adding the excita-
tion energies to the resonance energies of the real
potential. They become shifted by the coupling po-
tential which also removes the degeneracy because
of its angular momentum dependence.

B. Relation between the reflection and transition coefficients

In Fig. 4 the full set of the coefficients q, is
drawn for the choice of the coupling potential of
type 2 with a = -60 MeV and 2R = 7.5 fm. The
strength of the imaginary potential is set equal to
TV0= -1.5 MeV in all channels. In Table II we com-
pare the minima in the reflection coefficient and
the maxima in the transition coefficients with the
unshifted resonances of Table I and Fig. 1(c}. The
correspondence between the unshifted resonances
and the maxima in the transition coefficients can
easily be resolved because the total and orbital
angular momentum of the maxi~a are known for
each transition coefficient. On the contrary the
minima in the reflection coefficient are specified
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TABLE I. Position of the unshifted resonances in the C- C system. The first two columns
give the energy and angular momenta of the resonances of the 2C- C system where the 2C

nuclei are in the ground state (g.s.) or one of the C nuclei or both are excited to the first 2'
state at 4.43 MeV. In the third and fourth columns we have listed the energy and state of the
intrinsic excitation of the C nuclei. The last three columns state the energy, angular mo-
mentum, and type of the resonance in the radial motion of the nuclei (B =bound, QB =quasi-
bound, V =virtual). The energies of the 2C+ C resonances in column 1 are obtained by add-
ing columns 3 and 5. The angular momenta in column 2 result by vector addition of the angu-
lar momentum in column 6 and of the angular momentum of the intrinsic excitation of the ' C
nuclei. The resonance states are depicted in Figs. 1(b) and 1(c).

Position of the
resonance

Energy Angular
(Me V) momentum

Intrinsic excitation
of the C+ C system
Excitation

State
Energy
(Mev) State

Excited bound, quasibound, and
virtual state of the

C + C potential
Angular

momentum

4.08
4.27
4.95
5.03
5.66
5.68
6.01
6.27
7.26
7.63
8.30
8.34
8.51
8.89
9.34
9.38
9.46

10.11
10.18
10.44
10.70
11.28
12 ~ 00
12.06
12.73
12.94
13.32
13.50
13.77
13.81
13.91

6
0, 2, 4, 6
4
0, 2, 4
0, 2, 4
2

2

0

2, 4, 6, 8, 10
6, 8, 10
10
0, 2, 4, 6, 8
4, 6, 8
8
6
2, 4, 6
0, 2, 4, 6
0, 2, 4

0, 2, 4
2

2

0
4, 6, 8, 10, 12
8, 10, 12
2, 4, 6, 8, 10
6, 8, 10
12
4, 6, 8
0, 2, 4, 6, 8
10

0
8.86
0

8.86
0
4.43
0
8.86
4.43
0
8.86
4.43
0
0
4.43
8.86
4.43
0
8.86
4.43
0
0
8.86
4.43
8.86
4.43
0
4.43
8.86
0

g.s. + g.s.
2 +2
g.s +g s
g.s. + 2
2'+ 2'
g.s. + g.s.
g.s ~ + 2

g.s.+ g.s.
2'+ 2'
g.s. + 2

g.s. +g.s.
2 +2
g.s. + 2

g.s. + g.s.
g.s. + g.s.
g.s. + 2
2 +2
g.s. + 2

g.s. + g.s.
2 + 2

g.s.+ 2

g.s. +g.s.
g.s.+ g.s.
2 +2
g.s. + 2

2 +2
g.s. + 2

g.s. +g.s.
g.s. + 2
2'+ 2'
g.s. +g.s ~

4.08
-4.59

4.95
0.60

-3.20
5.68
1.58
6.27

-1.60
3.20
8.30

-0.52
4.08
8.89
9.34
4.95
0.60
5.68

10.18
1.58
6.27

11.22
12.00
3.20
8.30
4.08
8.89

13.50
9.34
4.95

13.91

6
2

2
0
2

0
0
6
8

10
4
6
8
6

2

2

4
0
0
2
0
8

10
6
8

12
6
4

10

QB

QB
QB
B
QB
QB
QB

QB
QB
B
QB

B
V
QB
QB
QB

QB
QB

QB
QB
QB
QB
QB
V

QB
V

only by the total angular momentum and, therefore,
no unique classification of the minima can be
reached unless the transition coefficients are
analyzed.

The results shown in Fig. 4 are an illustrative
example for the double resonance mechanism sug-
gested in Ref. 19. The double resonance mechan-
ism explains the enhancement of certain transition
coefficients by the effect that for certain energies
and total angular momenta a virtual orbital state
in the elastic channel and a quasibound state in an
inelastic channel are simultaneously resonating.

Quasibound states can only be excited with suffi-
cient strength if the feeding partial wave of the
elastic channel has an enhanced amplitude inside
the potential well. This condition is fulfilled for
elastic partial waves which resonate, in addition,
with a virtual state of the molecular-type real po-
tential. For the appearance of the double reso-
nance effect it is necessary that the difference in
energy and angular momentum between the reso-
nating virtual and quasibound orbital states can be
matched with the excitation energy and angular
momentum of the intrinsic nuclear states, i.e. ,
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transition coefficients g& 3 4 belong to the transitions from the elastic channel to the excited channels with I = I —2, I,
I+2, respectively. The coupling potential used is of type 2 with e =- 60 MeV and 2g = 7.5 fm and is depicted in Fig.
2(a). The strength of the imaginary potential is set equal to g 0=-1.5 MeV in all channels.
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FIG. 5. The elastic excitation function (do~&/dO)/(do. ~tt/dQ) 'at 8~~ =90 for ' C-' C scattering. The experimental
data are repres'ented by the crosses and are taken from Ref. 7 for g, ~ ~ 7.5 MeV and from Ref. 34 for F.,
2 6.5 MeV. The theoretical excitation functions are computed with the type 2 coupling potential with n = -60 MeV and
2p=8.5 fm for various strengths Wo of the imaginary potential. The following choices are made: (i) 8'0=-1.5 MeV in
the elastic and inelastic channels (solid line); (ii) 8'0= 8"~&=-1.5 MeV in the elastic and Wo= ~&~& = 0 in the inelastic
channels (dotted-dashed line); (iii) 8;&=-0.5 and 8 &~,j = 0 (dashed line).
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tion coefficients are produced by the elastic par-
tial waves resonating with the virtual states of
group 2. A wide valley appears in the reflection
coefficient between 8 and 11 MeV in which the in-
elastic resonances are embedded. Analyzing the
transition coefficients we find that the states of
group 1 are most strongly excited in the inelastic
channels between 10 and 11 MeV. As shown in
Figs. 1(b) and 1(c) the energy difference between
two following molecular states with the same angu-
lar momentum is of the order of 5-6 MeV, and,
therefore, the "C excitation energy of 4.43 MeV
matches the energy difference for a double reso-
nance event in all cases where the orbital states
in the elastic channel have a width of about 1-2
MeV.

The same effects as discussed for the states of
group 2 are repeated in the energy range between
13 and 16 MeV by the orbital states of group 3
acting as doorway states for inelastic excitations.
The molecular states excited in the inelastic
channels are the states of group 2 and, in addition,
the state with I=8 at 8.89 MeV. Since the states of
group 2 already lie above their corresponding

FIG. 6. The 90' differential cross section for the ex-
citation of the first 2' state in the C- C scattering.
The experimental data are represented by the crosses
and taken from Ref. 34. The theoretical. cross sections
are computed with the same choices of parameters as
used for the elastic excitation function in Fig. 5. The
following strengths 5 0 of the imaginary potential are
chosen: (i) W', &= W&~&=-1.5 MeV (solid line); (ii} g, &

=-1.5 MeV, W'(~(= 0 (dotted-dashed line); (iii) 9 «
0 5 MeV Wimpy 0 (dashed line).
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of the 2' (4.43 MeV) state of "Cin our calculations.
In the investigated energy range between 5 and

14 MeV three distinguishable groups of molecular
states in the elastic channel lead to double reso-
nance effects, namely the states [see Figs. 1(b),
1(c), and Table I]:

1. I = 2, 0 at 5.68, 6.27 Mev;

2. I=6, 4, 2, 0 at 9.34, 10.18, 11.22, 12.00 MeV;

3. I = 10, 8, 6 at 13.91, 14.70, 16.18 MeV.
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These three groups can be clearly observed in
Figs. 3 and 4. The first group around 6 MeV
shows effects in the reflection coefficients only
since the relative kinetic energy in the inelastic
channels is too low to permit an appreciable
amount of the flux to tunnel through the barriers.
Although the orbital states of group 1 are quasi-
bound, their widths are wide enough (see Fig. 3)
to overlap with inelastic resonance states.

The largest effects in the reflection and transi-

1D

Ecm (Me@)

'l2 14

FIG. 7. Dependence of the reflection coefficients
) q, ( on the type of the coupling potential. The strength
of the imaginary potential is chosen as W0=-1.5 MeV
in all channels. The coupling potentials are (a) the de-
rivative type; (b) the 6-force type with e=- 60 MeV,
2&=8.5 fm; (c) the Yukawa-potential type with V&

= —1061 MeVfm, p, =0.6 fm, V2 -—400 MeVfm, p, 2=1.2
fm. The coupling potentials are depicted in Fig. 2(a).
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In all the examples presented in the following the
same strength W, of the imaginary potential is
used for the elastic and inelastic channels.

L Dependence on the shape of the coupling potential

In Fig. 7 the reflection coefficients are drawn
for the three different choices of the coupling po-
tentials discussed in Sec. III 8 and shown in Fig.
2(a). The coupling potential of type 1 produces
the largest coupling effects, since the strength of
this potential is the largest of the coupling poten-
tials considered, which is obvious from Fig. 2(a).
The different radial shapes of the coupling poten-
tials are responsible for the resonancesbeingdif-
ferently exhibited in the reflection coefficients.
We note also that the positions of the resonances
are slightly shifted for different coupling potentials.

2. Dependence on the strength of the coupling potential

Figure 8 shows the variation of the reflection
coefficient as a function of the coupling strength
e for the coupling potential of type 2. The case of
no coupling (a = 0) is also depicted in Fig. 3. Two
effects should be remarked: With increasing

FIG. 8. Dependence of the reflection coefficients [qI~

on the strength 0. of the coupling potential of type 2.
The parameters are 2g = 8.5 fm and W'p=-1. 5 MeV in
all channels. With growing coupling strength the re-
sonance minima become more prominent.
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barriers, the peaks in the transition coefficients
are broadened more than at lower energies.

In Figs. 5 and 6 the elastic and inelastic 90'
cross sections are presented for various choices
of the strength S', of the imaginary potential in
the elastic and inelastic channels. In Fig. 5 one
notes three distinguishable groups of resonances
around 6, 8-10, and 12-14 Me&. With the increas-
ing strength of the imaginary potential the reso-
nances get smeared out. The inelastic cross sec-
tion in Fig. 6 reveals the resonance structures in
the transition coefficients around 10 and 13-14
MeV. In Table II we have listed the resonances
in the inelastic 90' cross section obtained with
the coupled channel calculations.

From Figs. 5 and 6 it becomes obvious that the
resonance structures of the cross sections are
sensitively influenced by the strength of the imag-
inary potential (see also Fig. 9).

C. Dependence of the reflection coefficient on the coupling
and imaginary potential

In this section we discuss the dependence of
the reflection coefficient on various parameters.

0.4I-

0.2l-

——.—l= 4
- - - -- --

i = 6

o.sl-

05-

04—

'l 0-

0.8—

MI-

04—

0.2-
oL—

'Al, =-'l.0 MeV

~ .l
I
I

I

It

I I

$ I

I

i I

10 12

E (MeV)

FIG. 9. Dependence of the reflection coefficients
on the strength of the imaginary potential W p

=
= W&~& which-is chosen the same in all channels. The
coupling potential is of type 2 with n =- 60 MeV and
2g = 8.5 fm. In the case of Wp= 0 the absorption in the
reflection coefficient is solely caused by the coupling
of the first 2' state in '2C.
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coupling strength the resonances become more
and more prominent and the positions of the reso-
nances are shifted.

3. Dependence on the strength of the imaginary potential

In Fig. 9 the strength of the imaginary potential
is varied. Since the imaginary potential is sur-
face-peaked, and the quasimolecular resonances
are locabzed more inside the potential well, the
imaginary potential used does not destroy the
resonance structure in the reflection coefficients.
The imaginary potential is weakly absorbing, as
can be recognized by the reflection coefficients in
Fig. 3 which do not deviate much from one in the
energy range between 10 and 14 MeV. &olume-
absorbing imaginary potentials lead to reflection
coefficients which fall above 15 MeV to zero as
shown in Ref. 22. The curves for the zero imagin-
ary potential in Fig. 9 clearly reveal the absorption
in the elastic channel which is caused by the direct
coupling of the inelastic continuum channels.

V. RESULTS AND CONCLUSIONS

Many of the resonances observed in the "C-"C
system can be interpreted as single particle shape
resonances in an effective "C-"Cpotential. In
Table II we have listed the experimental reso-
nances observed in various reactions: the mea-
surement of the y yield of the "C-"C reaction by
Spinka et al. ', the "C("C,o.)"Ne* reaction popula-
ting low-lying levels of "Ne by Erb et al. ,

' Basrak
et at. ,' and Voit et at "; the ".C("C,p)23Na* reac-
tion by Basrak et al. '; and the measurement of
the 'Be+ "0 exit channel by Fletcher et aL."and
Eberhardt et a/. '4 Comparing the calculated reso-
nances in the reflection coefficient and their angu-
lar momenta with the experimental resonances we
conclude that the applied quasimolecular potential
and the coupling of the first 2' state of "C are
sufficient to give a semiquantitative explanation
of the observed resonances.

It should be noted that the positions of the reso-
nances depend quite sensitively on the real poten-
tial and excitation energies of the "C nucleus.
The positions are nearly unaffected by special
assumptions about the imaginary potential and the
coupling potentials. Therefore, a classification
of the observed resonances in terms of the molecu-
lar resonances fixes, with some accuracy, the
shape of the real potential. For a quantitative
comparison with experiment o.-transfer channels
and channels to higher excited states in "C
also have to be coupled into the investigated chan-
nels.

A systematic study of the energy dependence
of the reflection and transition coefficients and

their dependence on the coupling and imaginary
potential are useful in the determination of the
character of the resonances in the calculated cross
sections. The widths and shapes of the resonances
in the reflection and transition coefficients are
not yet directly comparable with experimental
data. But extended phase shift analyses of the
experimental data for various reaction channels
as done for the elastic "C-"C and "0-"0scat-
tering by Voit and Helb" would be a valuable tool
for obtaining more precise data about the reso-
nances, which may be directly used for compari-
son with coupled channel calculations.

In Figs. 5 and 6 we compare the calculated elas-
tic and inelastic "C-"C cross sections for o, .„,.
= 90' with the experimental data of Spinka et al. '

and Pelte et aL." Whereas the reflection coeQi-
cients always reveal finer resonance structures„
the resonance structures become partly smeared
but with an increasing imaginary potential in the
calculated cross sections. Intermediate resonance
structures in the experimental cross sections have
two different origins: They may be caused by
compound elastic statistical fluctuations'" or by
inelastic excitations and a-transfer reactions
which both couple very strongly to the elastic
channels. In the "C-"C system most of the inter-
mediate structure, especially the resonance struc-
ture near the Coulomb barrier, is of nonstatistical
origin. The appearance of intermediate structure
in the "C-"C system is closely linked with the
surface transparency of the grazing partial waves.
The surface transparency is caused by the fact
that grazing partial waves have only a small over-
lap with the compound states of the amalgamated
"Mg system. "'" Therefore, a more accurate
imaginary potential depends on the total angular
momentum of the system and lets the grazing par-
tial waves remain unabsorbed. The unabsorbed
partial waves generate the gross structures in
the cross sections and play the role of doorway
states for the double resonance mechanism in
which intermediate structure is produced. "

To obtain a more quantitative agreement be-
tween the measured and calculated cross sections
three nontrivial improvements have to be con-
sidered: (a) The angular momentum and energy
dependence of the imaginary potential has to be
improved in the framework of the theories worked
out in Refs. 22 and 25. The imaginary potential
is the key for the understanding of the appearance
of gross and intermediate structures. (b) The
direct and coupling potentials have to be consis-
tently calculated in the adiabatic approximation by
use of the two-center shell model and the Strue-
tinsky-renormalization procedure. " (c} The n-
transfer channel has to be coupled to the elastic
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channel. This last problem is numerically difficult
to handle since the a transfer generates nonlocal
transition potentials caused by recoil and nonortho-
gonality effects."

It may be noted that our interpretation of the
resonance structures in the cross sections as
resonance states in the guasimolecular potential
depends on whether a double resonance excitation
is possible or not. The double resonance mechan-
ism leads to effects which have sufficient strength
to give rise to intermediate structures in the cross

sections. The discussion of the reflection and
transition coefficients in Sec. IV shows the impor-
tance of the double resonance mechanism in gen-
erating intermediate structures.
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