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Statistical model calculations of radiation widths are made on the basis of the Axel-
Brink hypothesis with two free parameters for the normalization andA dependence of the

low-energy tail of the giant electric dipole resonance. The two parameters are adjusted
to fit known radiation widths with a standard deviation of about +25@ for s-wave neutron
resonance levels in nuclei with 75 &A &130. The resulting E1 strength functions are con-
sistent with known values over a large mass region for transitions to low-lying states.
The M1 transitions are included, The level densities or nuclear temperatures for the

analysis are deduced by fitting the backshifted Fermi-gas model to the total number of
states near the ground state and to the s=wave spacings at neutron binding. The low den-
sity of levels for A = 90 gives rise to statistical enhancement of p -wave relative to s-
wave neutron radiative capture. The sum of calculated radiation widths for p-wave res-
onances plus calculated radiation widths for p-wave valency capture agree well with pub-
lished experimental values.

[NUCLEAR BEACTIONS Calculated (I'„),75&A &130]

I. INTRODUCTION

In neutron capture the dominant radiative transi-
tions occur statistically with no correlation with the
details of the initial state or the manner in which
it was formed. Many data are available On radia-
tion widths for decay from the states formed by
neutron capture. The aim here is to describe ob-
served average radiation widths by the statistical
model. The chosen mass region, V5&A&130, is
a small part of the Periodic Table but is large
enough to give nontrivial parameters. AJ.so it in-
cludes a region near A, = 90 which is of special in-
terest, as discussed below. Such a study is. im-
portant not only for evaluating the role of statisti-
cal processes but also for practical applications
to (n, y), (p, y), and other reactions. Y ttehere 'is
a dearth of such studies in the journals. Per-
haps that is because there must be several as-
sumptions and the data needed for the parameters
in these assumptions are often fragmentary. In-
volved are a basic assumption that all final states
have the same energy-dependent y-ray strength,
the form of that strength, its parameters for each
nucleus, and the relative El a.nd Ml strengths.
Also involved are the assumed form of the level
density function, its parameters for each nucleus,
and the details ( Z' and energy) of the low-lying
final states which are not described by a contin-
uous function. An ideal treatment of each of the
foregoing items would be exhaustive. The present
treatment states the assumptions, deduces the pa-

rameters from available data, and combines all in-
to a useful whole. In the process two free param-
eters are adjusted to fit the average total radiation
widths for 75&A, &130, and the resulting param-
eters are found to be consistent with the rather
limited data available on partial widths for a broad-
er mass region. Throughout, approximations are
tentatively introduced to illustrate the essentials
that might otherwise be buried in the details. The
role of nuclear temperature is particularly em-
phasized.

An important reason for this study is to better
understand the interesting nonstatistical effects
that may occur. ' The valency model"' introduces
an amplitude proportional to ~„8&,i.e. , the pro-
duct of the neutron dimensionless reduced widths
in the initial and final states X and f. If valency
capture occurs, the partial radiation width I'„&is
correlated to 8„'8&', and the total radiation width
j.„may have a large entrance-channel correlation
coefficient p(8„',I'~). Near A = 90, in particular,
E1 valency transitions can occur from initial states
having relatively large 3p components to low-lying
final states having large contributions from the 3s
and 2d orbits, which fallow closure of the 50-neu-
tron shell.

Other amplitudes proportional either to ~„orto
~& may be present. '" In fact, the early evidence
for nonstatistical transitions in this mass region
was found"' from four p-wave resonances in
"Nb(n, y) which showed correlations to final but
not initial states. These were interpreted as par-
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ticle-hole annihilations. "'
In the first observations"' of valency capture in

this mass region three of the four p-wave res-
onances for neutron energies be1ovr 1 keV in
"Mo(n, y) showed significant enhancements for
transitions to lour-lying final states. Later data'
up to 5.3 keV' showed only the two resonances at
429 and 612 eV to be correlated to 8„'8&'and two
or three of the remaining 15 correlated tp 8&'.

Further measurements'0 up to 15 keV of the total
radiation vridths for p-wave neutrons, I'», showed
the average initial-state correlations to be quite
small.

More pronounced valency transitions or entrance-
channel correlations vrere found in the immediate
vicinity of the 50-neutron shell (A=90). Early low-
energy data' for "Mo(n, y) indicated valency tran-
sitions to two final. states having large d, f, and d, &,

components. Although later high resolution data
over a wider energy range" confirmed the valency
transitions only to the d, &, state, the I » for res-
onances up to 50 keV showed" significant en-
trance-channel correlations. Entrance-channel
correlations for I'» have been observed" "also
for "Sr, "Y, and '"'""Zr. For Zr, earlier
measurements" on the inverse "Zr(y, n) reaction
showed correlations for ground state transitions
to levels corresponding to p-wave neutron reson-
ances below 225 keV.

The valency transitions enhance the average
(1 „)~but not the s-wave average (1;)„for which
no valency transitions are expected in this mass
region. For 88 «A «100 Musgrove et a1.'0'6 and
Boldeman et al."""observed enhancements ranging
systematically, except for odd-even effects, from
a maximum for "Sr to a negligible value for '~No.
For all but "Zr the enhancements were larger than
the authors predicted on the basis of the valency
model"' from knovrn 8„'and 8&'. Although the ob-
served and predicted enhancements were consistent
within the uncertainties in about half of the cases,
the observed values were significantly larger than
predicted for ~Zr and "'~ ~'98Mo. The authors
concluded that other nonstatistical effects must be
present, probably doorvray transitions to the single-
particle final states.

A major point of the present paper is that such
conclusions cannot be made on that basis; the ex-
cess p-@rave widths beyond the valency predictions
are expected from the statistical model simply be-
cause the El dipole strengths are larger than M1
and the low-lying states near A = 90 are mostly
even parity. The excess is particularly large near
A, = 90 because the level densities at neutron binding
are small; thus, the partial vridths for transitions
to given lovr-lying final states are distributed
among fewer resonant states.

where E~ and l'~ are the GDR energy and width in
MeV and o is the peak cross section in mb. The
strength is in MeV '. The obser'ved" E, in the
present mass region are about 16 MeV and vrell de-
scribed by

E,= 76/A'" MeV. (3)

The integrated cross sections are consistent with
the electric dipole sum rule, which in the absence
of exchange forces can be written"

e'8 NZ

= 3SNZ/A MeVmb. (4)

However the extrapolation to lovrer energies is
not expected to be reliable because the Lorentzian
does not describe the GDR exactly and because
only about 1% of the dipole sum is distributed be-
1ow 8„=8 MeV. Also deviations such as the "pig-
my" resonance" may be present. Nevertheless,
since neutron capture spectra have shown that the
energy dependence of the Lorentzian tail is about
right and certainly better than a constant strength
function, a reasonable procedure is to retain the
Lorentzian form but to parametrize it in order to
describe average radiation widths. The param-
etrization could be formulated in various vrays.
My procedure is to retain Egs. (3,4) for E and

II. y-RAY STRENGTH FUNCTION

The partial width for electric dipole radiation of
energy E„from initial states X of given J' at ex-
citation E„averaged over X, to a final state f at
E, —E„is given by's

(I'„~)~ = Ss,(E„)Ey'/p~(E, ), (1)

where pz(E„)is the density of levels with spin Z

and given parity, even or odd, and Ss,(E„)is the
El strength function. The final state must satisfy
the dipole selection rules. Implicit is the basic
Axel-Brink hypothesis'"" that each final state f
has built upon it the same giant dipole resonance
(GDR) as does the ground state. Rosenzweig" has
justified this assumption in terms of a hydrody-
namic model. Thus Ss,(E„)is assumed to be a
function only of the y-ray energy.

A less fundamental assumption of the Axel-Brink
hypothesis is that the classical Lorentz form that
describes the GDR for photon energies well above
the photoneutron threshold ean be extrapolated
down to the low energies of the capture radiations.
If that were strictly valid the strength functions
could be deduced at once from the observed" photo-
nuclear resonances by use of the expression"
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cr I' but to introduce a function for I', namely

I' =8&A/NZ MeV. (5)

Although this function is presented here for the
sake of completeness of this section, its justifi-
cation is deferred to Sec. IV, where its choice in
conjunction with the level densities of Sec. III is
shown to give good fits to the average radiation
widths for s-wave resonances for 75&A &130. Es-
sentially the parametrization is designed to de-
scribe the multitude of low-energy radiations to
high-lying states but, as shown in Sec. VII, it also
leads to strength functions consistent with published
values for energetic primary transitions to lower
states. As discussed in Sec. V and the Appendix,
different parameters would be required if the den-
sity function were changed.

The resulting 0 and 1", so chosen to fit observed
radiation widths and to satisfy the sum rule limit,
generally disagree with the observed" 0 and I'~.
The essential disagreements can be illustrated by
an approximation to the strength; since the average
capture y-ray energies are much less than E,
typically EJ5, we have approximately

S„(E„)(o,r,'/E, ')E„. (6)

Substituting from Eqs. (4) and (5} we find the coef-
ficient of 8»

1 2/E 4 cg413 (7)

where c is a given constant. The quantity o 1" '/
E ' is plotted in Fig. 1 along with points deduced
from the observed" GDR. %e see that the em-
pirical curve for fitting the radiation widths de-
viates considerably from the extrapolated GDR
except near A= 90. Basically the use of the curve
constitutes an analysis with two free parameters
corresponding to the magnitude and slope of the
curve.

Small corrections must be made for M1 transi-
tions. Here the Axel-Brink hypothesis is assumed
also for M1 radiation. From average-resonance
capture measurements Bollinger" and his co-work-
ers found the average E1/M1 ratios to be remark-
ably constant, 7 +1, over the mass region of their
work, about A = 105 to 240. Although this constant
is not valid for light nuclei it can reasonably be
extrapolated from 2= 105 to 75 for use in the pres-
ent analys'is. The energy dependences for the M1
strengths are poorly known but are not critical be-
cause the M1/El ratio is small. Bollinger and
Thomas" found evidence in ' Pd for an Ml giant-
resonance peak near 7.8 MeV but, in general, Bol-
linger" concluded that the E1 and M1 energy de-
pendences for capture radiations are about the
same. Even for '~Pd the dependences are similar
below the 7.8-MeV peak. Therefore, I assume the
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FIG. l. Experimental values of the combined Lorent-
zian factor, g~I'~2/8~4, from german's (Ref. 22)
tabulation of El giant dipole resonance parameters. The
curve shows values assumed in order to fit radiation
widths for the present analysis, where E~, 0 ~, and I'~
are given by Eqs. (3), (4), and (5). The abscissa indi-
cates that the parameters apply to neutron-capture
compound nuclei.
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Ml dependence is approximated by the El depen-
dence;

Ssi(E,) = Sag«, )/7. (8)

III. LEUEL DENSIES

The total dipole radiation width averaged over
states of J' at E„canbe expressed as the sum of
two terms;

&1'i &~, = 1'g~, + 1"c~,

where I"«, is the sum over the "discrete" states
below E„allhaving known I', and I', ~ is an inte-
gral over the closely spaced "continuum" of states
from E, to E„.

For the discrete states,

Z„,= g S„(E„)E„'+gS„,(E„}E„'/p„(E.),
fZ1 fjI1

(10)

This assumption for the capture radiations does
mt imply that the Ml maximum actually occurs at
the same place as the E1 maximum near 16 MeV.

In summary, the strength functions for the follow-
ing analysis are defined by Eqs. (2}-(5)and (8).
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FIG. 2. Assumed A dependence of the Fermi-gas con-
stant a based on the empirical evaluations in beefs. 29
and 30.

where S(E„)= Sz,(E„}+S»-(E„)This ter. m is inde-
pendent of parity because the final states include
elually both parities; it depends on the sum S(E„}
rather than on the E1/M1 ratio.

The literature" includes many studies of the en-
ergy and J dependence of level densities. For lev-
els of given 7 and parity, odd or even,

p~(U) = p(U}(Z+ &)(2a') ' exp[- (J+ &)'/2a'], (l2)

where a' is a spin cutoff factor and p(U) is the total
density for all J' and both parities at an effective
excitation energy U. The pairing energy is ac-
counted for by measuring U from a fictive ground
state d; U= E —6 where E is the actual excitation
energy.

The Fermi-gas model is used here. Of two ex-
pressions often used for the model, the following
gives" the slightly less accurate description of a
two-fermion gas with equidistant nucleon spacings,
but it is simpler for computations:

~p[2~aU]
12' 2 a'14U'~'a (13}

where a is the gas constant. The expression for
a' used below is from Gilbert and Cameron" and
corresponds to about V5% of the rigid body moment
of inertia:

o = 0.0888(a U}'I'A'~' ('14)

In recent studies~'29 "both a and b have been

where E„=E, E& for each final state f and the
summation subscripts fE1 and fMl indicate final
states that satisfy the selection rules. Although the
level density p~(E) is assumed to be independent
of parity, the v subscript is included as a reminder
that the selection rules apply to a definite initial
Jf

For the "continuum" states

E E I a J'+j.r„=I

* 'S(E„)E„Pp,(E. E„)dE„/p,(E,),
0 p

treated as free parameters for fitting observed
level densities. This is called the "back-shifted"
~odel because the fictive ground state is generally
below the conventional pairing energy. " A common
procedure'"" for determining the mass dependence
of a and b is to fit two data for each nucleus,
namely the total number of states observed in some
interval near the ground state and the spacing of
s-wave neutron resonances at the separation ener-
gy. A slight modification of that procedure is used
for most of the present analysis in that the smooth
empirical curve in Fig. 2 is assumed for a. I
drew the curve visually to fit values deduced em-
pirically by Dilg et al."(for a'corresponding to
75% of the rigid body moment of inertia) and by
Holmes et al. 3P

With a given, I deduced the d 's in Table I by fit-
ting fp(U}dU to the total number of levels in se-
lected energy regions near the ground states of the
adopted level schemes in the Nuclear Data Sheets, "
supplemented by a few recent references. '"" The
selection of these samples of "total density" is
somewhat subjective because each sample should
be from an energy region far enough above the
ground state to be representative of the "continuum"
and yet low enough to ensure that few levels have
been missed. The region must begin above b to
avoid the singularity in p(U) and should be above the
nonphysical minimum in p(U). On the average I
chose samples with 24 levels beginning O. V MeV
above b, . Actually, 6 is not too critical for pre-
dicting I',~ even though it is critical for level den-
sities. A change in n, corresponding to 10% of U„
a rather large change, would alter the densities
at neutron binding by a factor of 2 but would alter
I;~ only -20%. On the other hand, since the dis-
crete term varies directly with the lqvel spacings,
it is sensitive to 6, as well as to a.

The validity of the smooth curve for a and of the
selection of total densities can be judged by com-
paring the predicted and observed s-wave reso-
nance spacings listed in Table I. The related
back-shifted neutron separation energies, U„,are
also listed. The observed spacings are from the
tabulation of Dilg et al."and from the more re-
cent data"'" ' for 88~A ~ 100. Generally the
agreement is within the experimental uncertainties
of measuring (D), and deducing h. Of course, the
agreement to about +30% with Dilg's tabulation is
not surprising since those data were used original-
ly to deduce the smooth curve for a. Nevertheless,
it shows that a smooth curve is valid for most nu-
clei. Furthermore, the fits to the more recent
spacings for 91~A —j.00 are predictions because
many of the values available to Dilg had mixtures
of 8 and p waves.

%e might expect the predicted spacings to be
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TABLE I. Level density parameters: back-shifted
energy 4, 0' at neutron binding energy, calculated and
observed average 8-wave neutron resonance spacings,
lower limit E~ for integrating 1~&.

U„
Target {Mev) {Mev)

Calc.
&D&,

{eV)

Exp. ~

&D),
{eV)

Ec
{Mev)

778e

"Se
78gr
85Rb

88sr
8&@

90zr
as&
92 Zr

Mo

94Zr
94Mo

SM0

Mo
8~Mo

Mo
99gu

'"Mo
'oia.u
'"Rh
i 05Pd
i OYAg

io8A

iiocd

ii3Cd
ii31n
ii5yn

"'Sn
i2 isb
i23Sb

i23Te
i24Te
125Te

"'Te
i28Te
i29xe

1.10
0.70

-1.25
-0.4

1.2
0.3
0.35
1.6
0.6
1.0

-0.9
1.2
0.7
1.35
0.4
0.95

-0.1
1.5

l.35
1.3
1.15

-0.7
1.1
0.15
1.45

-0.15
1.55

-0.3
-0.7

1.7
-1.0
-1.0

1.2
-0.5

1.35
-0.15

0.0
1.1

9.4
6.28
9.13
9.05
5.30b
6.56
6 90
7.04
6.16
7.07
8.13
5.28
6.68
7.80
6.42
7.69
6.03
8.17
6.59
7.87
8.30
8,46
7.97
7.90
6.83
7.95
6.69
7.49
7.61
7.48
7.63
7.81
7.47
8.22
7.08
7.76
6.44
6.09
8.15

95
2 880

57
91

3OOOO'

4 400
5200'

650
4 000
1 710

91
5432
1 260

67
988
46

1 055
29

42O'
19
25

7
23
23

147
21

176
36
ll
13
32
11
15
17

130
31

280
440

2l

120
1 000

60
&130

48OOO'
2 200~
8 600'

640'
40OO'
24OO'

64
45oo'
1 150

8O'
95O'

95O'
34'

420
18
27
9

23
18

26
198

25
11
10.7
45
12.5
25
26

147
38

207
262

35

1.75
1.00
0.25
1.20
2.70
1.70
2.15
2.00
]
2.00
1.35
1.90
1.90
2.30
1.15
1.80
1.16
1.70
0.50
1.50
0.15
1.90
0.19
0.10
0.50
1.80
0.20
1.80
0.30
0.30
2.10
0.10
0.01
2.00
0.50
1.60
0.05
O. l
1.6

*Spacings not noted otherwise are from Dilg et al. {Ref.
29).

b Calculated for 140-keV neutrons.
AAECBE-ORELA OI',efs. 10 and 12-16).
Recently Camarda {Ref. 33) found (D)s=4.0 keV.' Calculated for 50-keV neutrons.
The shift Q chosen to fit (B)~.

least reliable in the critical region very near mass
90. Indeed, the table shows large discrepancies
for the 50-neutron nuclei "Sr "Y and "Zr.
However, those experimental values could have
large errors because of the poor statistics inher-
ent in large spacings. In fact, Camarda" recently

found a spacing for Y of 4.0 keV in agreement
with the prediction but almost a factor of 2 larger
than the listed measurement.

Further comments on level densities are given
in Sec. V and in the Appendix.

IV. S-WAVE MOTHS FOR 75(g&13P

Assuming the strength functions from Sec. D and
the density parameters from Fig. 2 and Table I,
I calculated radiation widths by numerical integra-
tion of E|Is. (10) and (11) using a subroutine from
a general Hauser-Feshbach program HELGA writ-
ten by Penny. " (The routine integrates the ex-
ponential terms accurately for each BE of the nu-
merical integration. ) Table I includes the bound-
ary energies E, between the discrete and continu-
um terms. The energies and J' values for the
discrete levels were taken from the adopted
schemes of the Nuclear Data Sheets" supplemented
by recent references""" for "Rb, "Nb, and "Mo.
I assigned uncertain and unknown J' values con-
sistently with neighboring levels.

The resulting (I"„),for s-wave neutron reso-
nances are shown by open symbols in Fig. 3(a).
The circular experimental points are taken from
the tabulation of Mughabghab and Garber" for those
nuclei where at least four widths have been mea-
sured; the values are averages weighted by the
quoted errors. The triangles are quoted averages
from the recent work o' ~~ for &8 «A ~ 100. The
experimental and calculated points are connected
for each nucleus.

Figure 3(b) shows the ratio of experimental and
calculated widths from Fig. 3(a). Two-thirds of
the points lie within the limits, 1.0+0.25, as in-
dicated by the dashed lines. Basically this is a
two-parameter fit which has been achieved using
the curve from Fig. 1.

Two comments about the inadequacy of the ex-
perimental widths are appropriate. Firstly, the
error bars on the solid circles represent only the
errors in the weighted means and may not include
much larger systematic errors. The bars on the
triangles represent errors quoted by the authors
and are generally larger than for the solid circles
even though the triangles may be the more accu-
rate.

Secondly, the data are not a complete sample of
the nuclei in this mass region because the even
targets are often omitted for lack of data. For
example, the points from A = 101 to 109 include
only odd targets. The model predicts odd-even
effects. These are confirmed near A, = 98. Also
the relatively high values for the odd nuclei near
& = 105 are consistent with the predictions; the
even nuclei in this region are predicted to have
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Fermi-gas model, for which T is energy-depen-
dent, insight is gained from the constant tempera-
ture model

p(U) = C exp(U/T) .
lf &P is also constant, the Maxwellian-type spec-
trum of y rays is approxximately E„exp(-&„/&)
and has its maximum near E„=4T, Neglecting the
discrete term we have approximately

(rg, = 2.6 x 10-'(o,r,'/Z, ') Z„'e-"»dZ„
0

=4i x 2.6~10'r'a 1 '/8 '.
4J ~
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1
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FIG. 3. (a) Predicted and- observed radiation widths
for 8-wave neutron resonances. The AAECHE-OBELA
data represent cooperative work from the Australian
Atomic Energy Commission Research Establishment
and the Oak Ridge Electron Linear Accelerator {beefs.
10 and 12-16). The BNL-325 points represent averages
weighted inver sely by the quoted variances from the
tabulation in Qef. 35. The predictions are baaed in part
on the strength functions from Sec. II and the density
parameters from Table I and Fig. 2. For clarity experi-
mental and theoretical symbols are connected. The
two-pronged symbols on the abscissa show positions of
isobaric pairs with the lower-g plotted to the left. {b)
patios of experimental to predicted widths from (a).
The BNL-325 error bars represent errors of the
weighted means and may not include large systematic
errors. The AAECRE-OpELA errors were quoted by
the authors, The dashed lines correspond to 1.0+0.25.

This shows the essential role of the coefficient,
o,l ~'/8, ', which was plotted in Fig. 1; and it
shows a T' dependence, which has its -counterpart
in the Fermi-gas model.

The Fermi-gas nuclear temperature is the in-
verse of (a/U)'I' —2/2U but, since dipole radia-
tion populates only states of spin J and J+1, a
temperature T~ is of more interest. Let us de-
fine T~ by analogy with T:

1/T~ = d ln[p~(U)]/dU

a "' 2 (Z- 1/2)'
U U 8g

%e cannot give a simple approximation like Eq.
(1V) but we can illustrate the predictions using
Eq. (1V) if we compute Tz at some average ex-
citation which lies below E„butabove the excita-
tion corresponding to the mean of the y-ray spec-
trum.

In Fig. 4 the solid curves were computed accu-

200

lower values. However the 110 111 112 113cd j
topes do not show the predicted odd-even effects.
The origin of the odd-even effects is related to
the nuclear temperatures discussed below.

V. DISCUSSION OF TEMPERA'nJRES

The strength functions deduced above are inti-
mately related to the level density function. This
section elucidates the role of the densities. Since
only ratios of densities enter into the spectrum in
I', ~, the important feature of p~(U) is its energy
derivative. (The absolute value enters into the
discrete term j.«„which is important for certain
4 values as discussed in the next section. } The
derivative is often expressed in terms of a nuclear
temperature":

1/7 = d in[p(U)] /dU.

Although the foregoing analysis is based on the
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FIG. 4. Calculated radiation widths for average den-
sity parameters fp =13 MeV and 6= 0) with E„
MeV for N, g, and& along the valley of p stability.
The strength function parameters are from Eqs. (3)-(5)
and {8). Solid curves were deduced by integration of
the continuum width, I'~&, and dashed curves were cal-
culated approximately from effective temperatures.
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rately by integration of I;~ for fictitious nuclei
with 8„=7.5 and with N, Z in the valley of P sta-
bility. Each integration was extended to near the
ground state. The parameters included the
strength functions defined in Sec. II and average
density parameters, b, = 0 and a = 13 MeV '. The
dashed curves were then calculated approximately
from Eg. (1f) using values of T~ computed at 2.4
MeV below E„.The widths are predicted to de-
crease with increasing J because the temperature
decreases from about 0.83 MeV for J= 0 to 0.75
MeV for J= 6. The fact that the approximate
dashed curves fall too rapidly shows that the ef-
fective energies for computing T~ should be in-
creased for the higher J values. (The peak of the
Maxwellian shifts to higher excitations. ) For ex-
ample, the curve for Z= 6 would fit better if T~
were computed at only 2 MeV below E,.

The A dependence for these curves results es-
sentially from the A'~' variation in E~"' and is
closely related to the curve in Fig. 1. For the
actual nuclei analyzed in the preceding section
this A dependence combines with the variation of
nuclear temperature to give the variations in l,~.

The expression for T~ is complicated so that the
dependence of I';~ on E„is not obvious. However,
since I';~ varies as T~' and the leading term in

T~ is proportional to U' ', we expect I,~fx U,' '.
Detailed numerical intbgrations show this to be
about right. In contrast, F,~ for the constant tem-
perature model is independent of E„for a given
nucleus, except for minor effects of the spin cut-
off factor.

We see that the important feature of p~(U) is the
effective temperature rather than the actual den-
sity Howe.ver, if the density is small its viue is
significant because it enters inversely into I'«, .
This discrete term may then be large and, as dis-
cussed in the next section, a parity dependence is
introduced because the discrete states are domi-
nated by one parity and El & M1.

The Appendix gives further comments on the as-
sumed density function.

VI. P-WAVE STATISTICAL ENHANCEMENTS

Boldeman 8~ a~ '2 x' and Musgrove et al '0'x'

found the experimental average radiation
widths for p-wave neutron resonances to be larger
than for s w'aves in the mass region 88 —A —100.
The statistical contribution to (I'„)~—(I'~), is given
by the difference in the discrete terms I'«, for s-
and p-wave resonances. Unlike the "continuum"
width, which varies as T~', this term varies di-
rectly with the average level spacing at E,. Since
the predicted spacings in Table I usually agree
with those observed to within the large uncertain-

TABLE II. Back-shifted Fermi-gas constants for
88 «A «100 to fit low-energy densities as well as the
observed s-wave spacings from Table I.

Target u (MeV-') Z (Mev)

88S

89y

$0Zr
9i Zr
92 Zr

Mo
"Nb
942 r
"Mo
95Mo

"Mo
9~Mo

Mo
i0 Mo

7.25
1Q.16+

8.10
9.64

10.33
9.61

11.44
11.82
11.44
11.60
12.17
12.70
12.88
13.20

0.7
07
0.1
1.6
0.6
0.8

—0.8
1.3
0.7
1.4
Q.4
1.0

-0.1
-1.2

Recent data by Camarda (Ref. 33) give a spacing of
4.0 keV for average 130-keV neutrons. For that spacing
c =8.70 MeV and 4=0.3 MeV in agreement with Fig. 2
and Table I.

ties of about +259o, the foregoing calculations of
p-s differences could be quoted at once. However,
the philosophy of the present section is that the
actual s-wave spacings should be used in predict-
ing p-s differences. We could simply correct the
observed spacings for spin dependences and then
calculate the differences directly without bother-
ing to adjust the gas constants or to repeat the
"continuum. " However, the following adjustments
of the gas constants and repeat calculations are
made to show that the strength functions are still
consistent with the s-wave radiation widths.

Table II lists the values for a and d required to
fit both the low-lying bound states and the s-wave
resonant spacings for 88 —A —100 from Table I.
The largest readjustment in a was for "Y. (As
stated in the footnote, the j('. spacing recently
found by Camarda" agrees withthe pr'ediction
based on the smooth curve for a. Camarda's re-
sult, which became available after this analysis
was complete, suggests that spacings predicted
from a smooth curve may be as good as the ex-
periments. )

Figure 5 compares the observed widths with the
newly predicted (I„)for 88~4~ 100. Some of
the predictions differ from those in Fig. 3, par-
ticularly very near A = 90. Overall the predictions
fit the data; the observed variations from nucleus
to nucleus are generally confirmed.

The largest percentage deviation is for ~Zr,
which is predicted a factor of 2 too low. Perhaps
the discrepancy could be due to experimentally un-
resolved resonances. To explore that possibility,
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I deduced the triangular points for "Zr by averag-
ing the experimental widths" in two groups. The
lower triangle, which agrees with the prediction,
is the average of eight resonances between 2 and
49 keV, and the upper triangle is the average of
the remaining five resonances from 44 to 88 keV.

In Fig. 6 the solid bars are the predicted (I'~)»
—(I', ),. Having normalized to the observed s-
wave spacings and having used strength functions
which predict the "continuum" contribution quite
well, we expect these differences to be fairly re-
liable. To these solid bars are added the valency
predictions"' which Boldeman et al.""and Mus-
grove et al xo, x calculated using observed reduce
neutron widths and (d, p) spectroscopic factors.
The suxnmed bars generally agree with the experi-
mental differences 6'xo'x2 '6 Indeed, the agreement
is remarkable in light of the inherent uncertainties
in the theory and in the differences of two large
experimental. numbers. Here as in Fig. 5, the
largest discrepancy is for ~Zr; and that is mostly
removed as shown by the dashed bar by use of the
lower triangle in Fig. 5.

It should be recognized that Fig. 6 is a plot of
differences from the total radiative widths of Fig.
5 and that the fractional discrepancies between the
observed and statistically predicted p-wave widths
are relatively small. For the six nuclej. from Sr
to "Mo, for ample, the predicted P-wave widths
average 85Vo of the observed. It seems possible
that the experimental widths could be fit by ex-
tending the discrete states to higher energies.
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FIG. 6. Observed and predicted differences between
p-wave and g-wave resonance widths. The 8-wave
widths {except 93Nb) are from Fig. 5 and the p-wave
widths can be deduced by summing values from both
figures. The observed difference from 93Nb was found
by summing partial widths {Bef.6). All other experi-
mental values are from AAECBE-OBELA data on total
widths {Befs.10 and 12-16). For +Er the higher ex-
perimental bar corresponds to the lower triangular point
in Fig. 5. The valency predictions are also from Befs.
10 and 12-16 and the statistical predictions are from
Sec. VI.
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Thus, although Fig. 6 shows that the sum of va-
lency and statistical contributions agrees well with
the data, the mere fact that the statistical part by
itself is too small would probably be insufficient
evidence for a nonstatistical contribution.

These statistical p-s differences for A =90 re-
sult from the large level spacings. Far 100&A
&130 the differences are negligible. Below A = 88
there are predicted enhancements for s-wave res-
onances rather than p waves. The difference is
50% for "Se, however, that is based on the large
predicted level spacing in Table I, which is a fac-
tor of 3 larger than the reported value.

FIG. 5. Predicted and experimental radiation widths
for g-wave resonances with fitted spacings. The solid
circles show the AAECBE-OBELA data from Fig. 3.
The predictions {open circles} are made as in Fig. 3
except that the Fermi-gas constants were adjusted
{Table II} to fit the observed s-wave spacings. The two-
pronged symbols are described in Fig. 3. The two tri-
angles for Zr were deduced by separating the observed
widths {Bef.13) into low- and high-energy groups.

VII. EXPERIMENTAL PARTIAL STRENGTHS AND WIDTHS

The strengths defined in Sec. 0 and used in Sec.
IV and VI were designed essentially to describe
total radiations to the many states at about half of
the neutron separation energy. Certainly it could
be that these strengths are quite wrong for the
lower states either because the assumed Fermi-
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FIG. 7. Summary by Jackson {Ref. 36) of observed
average El reduced widths for primary transitions to
low-lying states. The ordinate is %~=9~{8„)A,
where $~(E„)is experimental for the points. The curve
is calculated from the present evaluation of p gf {Eg) for
E = 7 Me& and for nuclei along the valley of P stability
for 75&&&130.
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gas temperatures are wrong or because the Axel-
Brink hypothesis is invalid for the closely spaced
high-lying states, or both. For example, if the
assumed nuclear temperatures were systematical-
ly too high then the assumed strengths would have
to be systematically too low in order to compen-
sate for the T' term in Eg. (1V}. Such possible
errors need to be examined by comparing the em-
pirical strengths from Sec. II with those published
for the low-lying states.

The data on strength functions are limited. Fig-
ure 7 shows Jackson's" recent summary of
strengths, expressed as the usual reduced width

$» and deduced from data on average capture
spectra, resonance capture spectra, and threshold
photoneutron spectra. The ordinate is given by a
standald definition and ls the same as

%» = Ss,(E„}A

where S»(E„}is an experimental strength defined
by Eg. (1) for transitions to a given low-lying
state. The points include only data which average
over a sufficient number of excited states at E„in
order to suppress the statistical effects of Porter-
Thomas fluctuations.

The line for 75&A &130 is calculated from the
present S»(E„)for E„=V MeV for nuclei along the
valley of P stability. The A, dependence for this
curve is essentially A' ' and comes from the 4' '
term in the approximation of Eq. (V). The good
agreement of the curve with the data supports the
present use of the Axel-Brink hypothesis and the
Fermi-gas temperatures for the "continuum"
states.

Since the predicted radiation widths vary directly

with the strength functions, any new information
that might become available and force a significant
renormalization of the strengths would also force
the Axel-Brink hypothesis or the Fermi-gas model
to be modified in order to retain the average fits
to the observed total widths.

No attempt is made here to compare in detail the
predicted and observed partial w'idths for specific
final states. How'ever, the ground state transition
width for p, l, resonances in 90Zr(n, y}"Zr is of
particular interest because Toohey and Jackson"
made detailed measurements on the inverse re-
action. They found an average partial width of 149
eV, of which roughly 87 eV was calculated to be
valency. The predicted width from the preceding
section is 69 eV or about equal to the nonvalency
part (149 —SV = 62 eV}. Both experiment and theory
have uncertainties; nevertheless, this agreement
shows that the observed excess over the valency
contribution can be attributed to statistical pro-
cesses, contrary to the conclusion of Boldeman
et al."that the excess is too large to be statis-
tical.

VIII. CONCLUSIONS

For 75&A& 130 the statistical model can be rea-
sonably parametrized to describe most of the av-
erage radiation widths. The average widths for
s-wave resonances are fitted to a standard devia-
tion of about +25% on the basis of the Axel-Brink
hypothesis using the back-shifted Fermi-gas mod-
el for level densities with parameters chosen to
fit known densities. In general the predictions are
as good as the experiments, which suffer from
limited sample size and systematic uncertainties.
Odd-even effects are predicted and are partially
confirmed by recent data for A =98. The fit is
achieved by adjusting two free parameters to give
the magnitude and A dependence for the low-en-
ergy tail of the giant dipole resonance. The re-
sulting strength functions from this application
of the Axel-Brink hypothesis and the Fermi-gas
model to relatively high-lying states are consis-
tent with those observed for transitions to the low-
er states.

The statistical model is often used to predict av-
erage neutron-capture cross sections. In that for-
malism each term related to z rays is usually ex-
pressed as the ratio (F~)l(D) of average total ra
diation widths to level spacing because, expressed
in that form, the y-ray factors appear in a manner
parallel to the neutron transmission factors. Ac-
tually, (I'„)is not closely related to (D) but, rath-
er, depends on the rate of change of (D) or on the
nuclear temperature. The width varies with the
fifth power of an effective temperature. The re-
sulting dependence of (F„)on mass and excitation
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energy is rather weak, in sharp contrast to the
strong dependence for (D).

Homever, for the partial width to a given final
state the ratio (I'„z)/(D) or partial width per en-
ergy interval is of fundamental physical signifi-
cance. Generally the level densities at neutron
binding are so high that relatively little partial
width is available for any particular final state.
But near the 50-neutron shell at A. = 90, densities
are smaB enough such that a relatively large frac-
tion of transitions go to the lom states, which are
mostly even parity. Thus, for the even parity tar-
gets near A = 90 there is considerable enhance-
ment in radiation widths predicted for P-wave
neutron resonances relative to s waves. [For
"Y(n,y) the p-wave states are even parity and the
low-lying low-spin states are mostly odd parity. ]
Experimentally P-s differences have been found
near A = 90. Valency components have been identi-
fied in the literature by the correlation of neutron,
(d, p), and radiation widths; and these components
added to the statistical components presented here
give a good description of the observed p-s differ-
ences. On average the predicted valency and sta-
tistical contributions to p-s differences are about
equal.
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APPENDIX

We can question whether or not the Fermi-gas
model provides us with a good estimate of the ef-
fective temperature. Fitting the model to two data
"points", one near the ground state and the other
at the neutron separation energy, does not guaran-
tee correct temperatures in the intermediate re-
gion. In principle, intermediate temperatures can
be measured for Stab1e nuclei and certain unstable
nuclei (usually not those from neutron capture) by
observing the boil-off spectrum for (s, n') and (p, n)
reactions. Many such spectra have been ob-
served" and the (n, n') work of Maruyama" is often
quoted. For the present mass region Maruyama

found the elements Nb, Ag, Sb, and I to have tem-
peratures increasing with excitation energies con-
sistently with a Fermi-gas, whereas Sr, Y, and
Sn (nuclei near the 50-nucleon shells) had tem-
peratures increasing- more slowly. For Sr the
temperature mas nearly constant.

However, the actual temperatures deduced by

Maruyama for sty, ble nuclei are about 0.2 to 0.3
MeV less than those deduced here. Therefore,
they are inconsistent with the ratios of the s-mave
resonant spacings to the spacings of all levels
near the ground states for the neighboring neutron-
capture nuclei. This discrepancy in temperature
corresponds roughly to a factor of 50 in the ratio
of s-wave spacings to the spacings near ground.
Th8 reason for the discrepancy is not clear. It
would be reduced if there mere many more s-wave
resonances than observed and if these represented
a smaller fraction of the total density than pre-
dicted by the spin factor. It seems unlikely that
such errors mould account for all of the discrep-
ancy. There can also be serious errors in inter-
preting (n, n') boil-off spectra, as emphasized by
Huizenga and Moretto. "

One might conclude from Maruyama's work that
a model with constant temperature should be sub-
stituted near A = 90 and 120 (near the 50-nucleon
shells} with parameters chosen to fit the two den-
sity data "points. " Naively, me might anticipate
this change to allow the strength functions to fol-
low more closely the pattern of GDR data points
in Fig. 1, with relatively lower values near the
50-nucleon. shells. Actually, the effect is in the
opposite direction; the strengths would have to be
increased near the shells because the width varies
as T' and the constant T would be smaller than for
a Fermi gas. Qn the other hand, the comparisons
of predicted and observed widths in Fig. 3 suggest
that either T or S(E„}should be reduced near A
= 120. The use of a constant-temperature model
with the same strength functions would reduce the
predicted widths a factor of 2 near 4 = 120 and
about 20% or less near A=90. The use of a con-
stant temperature model for all A. values mould

require larger strength functions to restore the
average agreement with the midths.

Bartholomew et al."used constant temperatures
in their review of strength functions. My conclu-
sion is that the back-shifted Fermi-gas model has
both experimental and theoretical support and is
the best simple model for this mass region.
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