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Analyzing-power measurements for the 3 He( r, d )4 He reactions

R. F. Haglund, Jr. , G. G. Ohlsen, R. A. Hardekopf, Nelson Jarmie, and Ronald E. Brown
Los Alamos Scientific Laboratory, Los Alamos, New Merico 87545

(Received 20 April 1977)

%e report analyzing-power angular distributions for the 3He(t, d)4He reaction at bom-
barding energies of 9.02, 12.86, and 17.02 MeV, and an excitation function at 90' c.m.
from 9.02 to 17.27 MeV. The angular distributions show marked deviations from the
antisymmetric shape predicted by a simple particle-transfer model incorporating charge
symmetry. Reaction mechanisms and violations of charge sy~rrletry which might account
for the data are discussed.

NUCLEAR REACTIONS 3He(t, d). Measured A~ (8), 8~~ =16'-159, E= 9.02,
12.86, 17.02 MeV;A„{E), E=9.02-17.27 MeV„8=90.0 c.m.

I INTRODUCTION

Conzett has recently suggested' that analyzing-
power measurements on reactions of the form
C'(C, A)B, with charge-symmetric partners C and
C' in the initial state can yield information on the
reaction mechanism. In particular, the vector an-
alyzing power 3, should be antisymmetric about
90' c.m. if the reaction proceeds via a simple iso-
spin-conserving particle transfer and if C and C'
are charge-symmetric.

In this paper, we present measurements and sug-
gest an interpretation of A, data for the reaction
'He(t, d)'He. In Sec. II, we describe our experi-
ment, in which angular distributions of A., were
taken at 9.02, 12.86, and 17.02 MeV bombarding
energy (corresponding to a range of excitation en-
ergies from 30.31 to 34.31 MeV in the 'Li system).
An excitation function at 90.0 c.m. was also mea-
sured, from 9.02 to 17.2V MeV. The A, angular
distributions show pronounced deviations from
antisymmetry, and the magnitude of the deviations
increases with energy. As we point out in Sec. III,
the deviations from antisymmetry in A. , for 'He(t,
d)'He are much larger than those observed for
'He(d, t)'He. But, as we show using the spin-de-
pendent scattering matrix for this reaction, there
is no reason why the deviations should be compar-
able.

The interpretation of the observed deviations
from antisymmetry is somewhat complicated. To
clarify the situation, we give in Sec. IV a brief
review of analyzing-power symmetry theorems
based on charge symmetry alone. In our discus-
sion, we take charge symmetry to hold when C and
C' are exact isospin multiplets and when the total
isospin T is conserved in the reaction, irrespec-
tive of the reaction mechanism. %e then present

in Sec. V a simplified derivation of Conzett's' sym-
metry theorem for A„which is based both on
charge symmetry and on a specific model of the
reaction.

Because the result of Conzett is the one directly
applicable to the 'He(t, d)'He reaction, the devia. -
tions from antisymmetry which we have observed
are due, a fortiori, either to violations of charge
symmetry, or to reaction mechanisms not in-
cluded in Conzett's model, or to both. However,
as we argue in our conclusion (Sec. VI), the size
of the deviations measured in this experiment sug-
gests that the effects are due primarily to the re-
action mechanism. %e believe that our results
may be traced to the excitation of a state (or
states) in 'Li, and we propose ways in which cur-
rently available calculations might be used to test
this hypothesis.

II. EXPERIMENT

Our measurements were carried out using the
LASL polarized-triton source' and FN tandem
Van de Graaff accelerator. The target was a 9.7-
cm-diam gas cell, with an entrance window and 300'
exit window of 2.5-pm Havar foil. The nominal
pressure of the gas cell was 300 Torr of 'He. Fur-
ther details of the target system may be found in
Ref. 3. Detector telescopes containing three sili-
con surface-barrier detectors were mounted at
equal angles right and left of the incident beam.
The lab scattering angles could be set to a relative
accuracy of +0.02; the zero-angle settings for the
left and right counters were known to +0.05 (Ref.
3). The collimation system for the detectors con-
sisted of a front slit 3.33 mm wide, two antiscatter
slits, and a rear slit 3.33 mm wide and 11.4 mm
high. The slit separation was 190 mm, and the
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target-center-to-detector distance mas 241 mm.
For a given energy and angle, yields in the left

and right detectors mere accumulated for a preset
amount of integrated charge both with triton spin
up and triton spin down at the target. The spin mas
flipped by reversing the spin-quantization axis in
the polarized-triton source. The spin-up and spin-
domn data mere then combined according to the for-
mulas of Ref. 4 into geometric mean left and right
yields r and A. In terms of these quantities, the
analyzing power is

I, (8) —R (8)
T(8) ft(8) ' (l)

where P is the average beam polarization. In our
experiment, P mas computed as the arithmetic
average of quench-ratio polarization measure-
ments' taken before and after each spin-up and
spin-down run. This method of data acquisition
eliminates all first-order errors due to instru-
mental asymmetries and random beam-wander ef-
fects. '

The measured angular distributions and the 90
c.m. excitation function are shown in Figs. 1 and
2. Relate"e errors are shown where they exceed
the size of the plotting symbols. The sources of
relative and scale error are discussed at length in
Ref. 3. The relative errors of the data are of or-
der +0.010-0.015, and the scale error is approxi-
mately +2% of A„. Multiple scat-tering effects
were computed from the formula for solid-target
multiple-scattering corrections to A„(Ref. 3), and
found to be negligible. A tabulation of the data is
available from the American Institute of physics. '

III DEVIATIONS FROM ANTISYMMETRY
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FIG. l. Analyzing-power angular distributions A„{e)
for the 3He(t, d)4He reaction, measured at triton bom-
barding energies of 9.02, 12.85, and 17..02 MeV. The
circles are data where the outgoing deuteron was de-
tected; triangles are used where the recoil 4He particle
was detected. Helative errors are smaller than the
plotting symbols.

D(8) = A, „(8)+A, (v —8), (2)

From the experimental data, me computed the
quantity

O.I2-

I I I I I I I

~He (t,d)"He

which gives the deviation from antisymmetry about
90 (c.m.). D(8) was calculated for 5' c.m. inter-
vals by a linear interpolation of the experimental
data The as.sociated error ~(8) is

~D(8) = ([~A,(8)I'+ [d, A„(v —8)]'}". (3)

The error due to the interpolation procedure mas
neglected. The calculated values of D(8) are
shown in Fig. 3.

The deviations D(8) derived from the present ex-
periment are much larger in magnitude than those
found in the reaction 'He(d, t)'He at E~ = 32 MeV
(22.8 MeV excitation in 'Li) by Dahme et a/. ' This
difference is not necessarily surprising, since the
scattering-matrix elements contribute in entirely
different mays to the vector analyzing power for
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FIG. 2. Analyzing power A„ t,
'8) for the He(t, d)4He

reaction, measured at 90.0' c.m. angle for triton bom-
barding energies from 9.02 to 17.27 Mev. Only rela-
tive errors are shown.
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1

He(t, d) He

Et=9.02 MeV

trix are labeled by the spin projections

(l)(0), (0)(0), (-l)(0) .
The M matrix for this reaction, then, has dimen-
sion 3 &&4, and has the form (see the Appendix to
this paper and Ref. 6)

~ -Q2-C)

O. l—

(=) 0.0
I—c -O. l—

02
C)

Et =12.86MeV

()i)f(f((

Et =17.02 MeV

(4)

where A. ,B, . . . , I" are amplitudes for transitions
between various spin configurations.

The analyzing power for 'He(t, d)'He is

oA, (8) = Tr(Mo, IM )

= 4 Im(AD* + BC*—EE+ ),
where g is the cross section, A., is the vector an-
alyzing power, and g, I is the direct product of the
2x2 identity matrix and the 2&&2 Pauli matrix g„.
The vector analyzing power for He(d, I) He, on the
other hand, is given by

oA, (8) = Tr(MM'P„)

-0.4-
0 30 60 90 120 150 180

e.m. ANGLE ( deg )

FIG. 3. Deviation of the analyzing power from exact
antisymmetry, expressed in terms of the quantity B{e)
defined in Eq. {2). Only relative errors are shown.
All the physicaE information is contained in the points
between 8=0 and 8=90'. The points beyond 8=90' are,
by construction, the image of points with 8 ~ 90 .

'He(d, t)'He. This can be shown explicitly from a
knowledge of the spin-dependent scattering matrix,
or M matrix, as it is often called.

Consider a reaction of the form

spiny + spiny ~ splnl+ splno ~

The entrance channel may be described by four
possible spin projections, the exit channel by
three. The spin-dependent observables in the en-
trance channel are best treated in the so-called
"uncoupled basis, " in which the four-dimensional
spinors and operators for this channel are direct
yroducts of the two-dimensional spinors and oper-
ators appropriate to each particle. Hence, the
columns of the M matrix are indexed by the spin
projections

(2),(2)„(2),(-~2)., (-2),(k)„(-k),(-2)2,

where the subscript labels the particles and the
quantity in parentheses is the spin projection for
particle 1 or particle 2. The rows of the M ma-

= 4 Im(DF* + EC ~ AE* EB-*), — (6)

where P„ is the @pin operator of rank 1 appropriate
to the usual Madison-convention coordinate sys-
tem. Hence, the observed deviations from anti-
symmetry in 'He(t, d)'He and 'He(d, t)' He would be
expected to differ, for example, according to the
sensitivity of the individual matrix elements to
violations of charge symmetry.

IV. GEOMETRIC SYMMETRY T'HEOREMS

Before further discussion of the present experi-
ment, we review the so-called geometric" sym-
metry theorems, which are derived solely from
considerations of charge (or mirror) symmetry.
The adjective "geometric" is used because these
theorems rest on assumptions about quantum-
mechanical symmetries and not on any dynamical
models. As we shall see in Sec. V, these theo-
rems do not apply directly to the 'He(t, d)'He po-
larization observables, and it is important to see
just why these theorems are inapplicable.

In a reaction of the form B(A, C)D, the c.m.
cross section cr, the analyzing powers 7.'I„, and the
polarizations tI„satisfy the following conditions

v[8;B(A, C)D] = o[v —8;B(A., D)C], (6a)

Tg [8;B(A,C)D] =( )'T~[v —8;B(A-,D)C), (6b)

t~[8;B(A, C)D] =(-)'t~[v -8;B(A)D)C) . (6c)

Here an arrow denotes a particle whose polariza-
tion is under consideration, and we have followed
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the Madison convention in choosing the coordinate
system in which the Ti„and t& are measured. It
is to be emphasized that these equations foQcer
simply from the choice of a particular c.m. coor-
dinate frame, apd have nothing to do ith proper-
ties of the particles A, 3,C, D.

The symmetry theorems for the cross section o
(due to Barshay and Temmer') and for the analyz-
ing power T~ and polarlzattons fg, (due to
Stmontus and Btlen kit ef Ql ~ ) give relations of
the forxn

c[8;B(A, C)C'] = o[8;8(A, C')C],

T~ [8;B(A,C)C'] = T~ [8;B(A, C'}C],

t~[8;B(A, C)C'] = t~[8;B(A, C')C],

(Va)

(Vb)

(Vc)

where the exit-channel particles C and C' are
members of an isospin mu)tip)et. Naively, these
equations fo))ow because, in the isosyIIn formal-
ism, C and C are identical. This intuitive ex-
pectation can be verified by applying full-fledged
isospin invariance (as in Ref. 9) or the weaker as-
sumption of mirror symmetry (Ref. 10).

If we combine Egs. {6a)-(6c)and (Va) (Vc)p we
arrive at the symmetry relations

c[8;B(A,C)C'] = o[v -8;B(A, C)C'],

T„[8;B(A,C)C'] = (-)'T„[v—8;B(A, C)C'],

f„[8;B(A,C)C ] = (-) f„[v —8;B(A, C)C'].

(Sa)

(Sb)

%e emphasire that these theorems are bgaed on
the isospin symmetry of the particles and conser-
vation of isospin in the reaction. The assumption
of definite isosyin symmetry in turn constralnS
the allowab)e space-spin configurations Of the par-
ticles and leads to symmetry relations for the ob-
servables. Because these symmetry theorems are
based on the al)owed symmetries of quantum-
mechanica) wave functionsy they are Qlode)~inde-
pendent. Deviations from Eqs. (6a}-(8c)must be
)aid to violations of charge symmetry either in the
nature of the isospin partners C and C' (Ref. 12),
or in the reaction, or both.

instead of Eq. (Sc), the polarization-asymmetry
equa)ity~ would lead immediately to a relation for
A„( iT») analog-ous to Eci (6b):.

A„[8;C {C,A)B] =-A„[v -8;C'(C,A}B]. (10)

The geometric symmetry theorem for the cross
section [Eq. (Ba)] is valid whether the isospin part-
ners C and C' are in the exit or entrance chan-
nels. And, if the vector polarization P, (-ii»)
could be shown to satisfy

I'„[8;B(A,C)C'] = -I;[v —8;B(A, C}C'] (6)

However, Eti. (9} cannot be shown to hold true
solely on the basis of charge symmetry, because
the po)ariaation measurement distinguishes the
otherwise-identica) particles C and Q'. Hence
there appears to be no model-independent way of
deriving Eq. (10). Conzett circumvents this diffi-
culty by using both charge symmetry and a "Eeroth-
order" rgode) of the direct-reaction mechanism. "
The mathematica) proof is given in detail in Ref. 1.
Here we present a simple derivation of Eg. (10)
based on Gmuett's model.

Consider a reaction of the form C'(C, A)B where
C and C' are isospin partners, and suppose we ob-
serve yarticle A at a c.m. angle e. Conzett as-
sumes that only two processes contribute to the
total direct-reaction amy)itude:

C+ C' = (Ae s,)+C'-A+ (C' n,)

C+C'=C+ {AesJ-A+(Ce sg

where n, and n, are the transferred particles or
clusters. These two amplitudes are shown sche-
matically in Fig. 4.

In the first case, partic)e C is stripped to yield
particle A at the angle 6}. The M matrix describ-
ing this process is denoted by

M'"[8 C'(C, A)B] .
In the second process, yarticle C' is stripped,
producing particle 8 at the angle m-e, and particle
A recoils at the angle e. The M matrix for this
process is

M&'&[v -8;C'(C, B)A].
However M'" i,s defined in a coordinate system
with the y axis parallel to 5, x Kz (see Fig. 4), while
M~~ is referred to a system in which the y axis is
parallel to $, & (-kz). Since we wish to add the ele-
ments of I"~ and M&'& coherently to obtain the
total reaction amplitude, we must describe them
in the same coordinate system. A rotation about
the z axis (k&} accomplishes this change, and it.
can be shown" that, in this common coordinate
system, the elements of M~" becoxoe

(-) Mt~e[v -8;C'(C, B)A],

ns = p —v = (mc + mc ) —(m„+ ms) (12)

equals the difference in the spin projections for the
entrance and exit channels.

If charge symmetry holds, the amplitudes for
transferring n, and e, must be equal, since they
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c asn, (k, )

a (k, )

c' (-i, )

TABLE I. M-matrix elements for the 3He(t, d) He

reaction, assuming a two-component direct-reaction
amplitude. The rows are labeled by the exit-channel
spin projection p=m&, the columns are labeled by the
spin projection v =m&+ ms in the entrance channel. The

He
matrix elements are related by X™(e)—= X(~- 8). The ex-
pression for the M-matrix elements is derived in the
text [Eq. (I4)).

e c'sa, (-k, )

a(i, )

d- He spin
projections

t-3He spin projections

p p 1
(2)(2) (2)( 2) ( 2) (2) ( 2) ( 2)

0 0 ~1

e (TT, )
' ~ as~ (-Tl, )

(1)(o)
(o)(o)
(-1)(o)

a+a
-(e —e)

5+5

6f

f+f
C —C

-(c-c)
f+ f

-{e-3)

b+b
e-e
a+a™

s csnz (-k, )

FIG. 4. Schematic diagram of the two components of
the direct-reaction amplitude for a simple particle-trans-
fer reaction. The symbols and I-matrix amplitudes are
defined in the text.

are isospin partners. Hence

M ' [8 C (C'A)B] = M'"[8.C'(C B)A]

If the direct reaction amplitude is
a= I&'&+ I&'&

7

then Eq. (11) and Eq. (13) together yield

M [8;C'(C, A)B] =M'„'„'[8;C'(C, A, )B]

+(-) Mi~~[v -8;C'(C,A)B],
(14)

It is apparent from E'q. (14) that, in this model,
every I matrix element is either symmetric or
antisymmetric about 90 . Thus the symmetry for
a particular analyzing power T&(8) depends on
which matrix elements ax'e selected by the spin op-
erator v&, in the observable

oTa (8) = Tr(Mra, M').

For the 'He(F, d)'He reaction, the form of the M
matrix is given explicitly by Eq. (4). In Table I,
we have written out the M-matrix elements in the
form of Eq. (14), e.g. ,

A(8) =a(8)+a(v -8),
~ ~ ~

D(8) =d(8) -d(w —8),

where the + or —sign is determined as in Eq. (12).
If we write a G for every symmetric (even-parity)
M -matrix element and a U for antisymmetric ma-
trix elements, the symmetry relatiori for A„can
be determined schematically from Eq. (5):

oA„=Tr(Mo, IM')

Since the product of a symmetric and an antisym-
metric quantity is antisymmetric, it follows that

A, (8) = -A„(v -8) . (15)

Symmetry relations for other spin-dependent ob-
servables could be exhibited in this same fashion.

The assumption of a two-component direct-reac-
tion amplitude is central to the derivation of Eq.
(15), since it is that assumption which gives a def-
inite symmetry to each M-matrix element. Thus,
deviations from Eq. (15) may arise from violations
of charge symmetry, or from a reaction mechan-
ism more complicated than the simple two-com-
ponent model described by Conzett. "

VI. DISCUSSION AND CONCLUSIONS

As we have shown in Secs. IV and V, deviations
from antisymmetry in the angular distrILbutions of
A„(8) must be interpreted differently for reactions
of the form B(A, C)C' and C'(C, A)B

In the fox mer case, the deviations are due to
violations of chaxge or mirror symmetry only,
arising either from isospin impuxities in the par-
ticles themselves or isospin-nonconservation in
the reaction. For example, attempts have been
made to fit A„data for 'He(d, t)'He using a zero-
range distorted-wave Born approximation (DWBA)
calculation with differing neutron- and proton-
transfer amplitudes. ' However, the fits obtained
in this way were not as satisfactory as those given
by similar calculations for the cross section, "
possibly because exchange effects were neglected. "
SchGtte et a/. ' have suggested that isospin-mixing
through coupled-channel effects would better ex-
plain the deviations from antisymmetry for A„(and
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from symmetry in the cross section o). They per-
formed a cluster-model calculation which included
virtual coupling to the mixed-isosyin states of 'He
+ P and 'Li+n, and found reasonable agreement
between their calculated values and the data of
Dahme et al. '

For reactions of the form C'(C, A)B, deviations
from antisymmetry in A„may arise not only from
charge-symmetry violations, but also from reac-
tion mechanisms more complicated than the model
proposed by Conzett. The deviations D(8) ob-
served in the present experiment are much larger
than those seen in 'He(Z, t)'He at comparable ex-
citation energies in 'Li (-0.5 compared to -0.1).
Hence, we believe that a resonance reaction in the
intermediate state is a plausible mechanism, be-
cause charge asymmetry alone would evidently not
lead to such large values of D(8). Such a reso-
nance reaction might proceed through one or more
of the broad excited states of the 'Li nucleus.

One model whose effects can be calculated to
some extent involves isospin mixing in 'Li due to
overlapying T =0 and T =1 levels. This mechan-
ism was first suggested by Muralmmi, "and later
invoked by Noeken et al."to explain deviations
from cross-section symmetry seen in the 'H('He,
d)'He reaction at low bombarding energies. They
demonstrated that interference between two broad
states at E,= 16.2 MeV (J",T = 2, 1) and E,= 17
MeV (Z', T = 1,0) could produce the resonant be-
havior seen in the maximal cross-section asym-
metry. A similar mixing of two broad levels at
higher energies might account for the deviations
D(8) observed in the present experiment. Indeed,
resonating-group cg.culations for 'He+ t elastic
scattering by Thompson and Tang" predict a pair
of levels with T =0 and T =1 at 21.3 and 22.3
MeV, respectively, in 'Li—near the middle of the
energy range covered by the present data. This
prediction tends to support the compound-nucleus
model, since it indicates that the cluster configu-
ration in the 'He+ ( entrance channel would favor
the formation of broad intermediate states in 'Li.
The rapid change of A, (90.0') as a function of en-
ergy above 14 MeV (see Fig. 2) lends additional
credence to this hypothesis.

However, the resonating-group calculations"
which predicted these levels mere based only on
elastic-scattering cross sections. Now that ana-
lyzing-power data are available for 'He+ t elastic
scattering, ' it would be useful to try to fit the He
+ F cross section and analyzing power simultane-
ously with a resonating-group calculation (as was
recently done for d-e elastic scattering ) to see
if one still predicts a T =0, T = 1 level pair in the
energy range of the present data. Once the xeso-
nating group calculations hgve provided a set of

starting phases and level. s in this energy range, it
would be possible to test the compound-nucleus
model for the 'He(t, d)'He reaction in detail using
a multichannel, multilevel 8-matrix calculation. "

~(@ P;)(+'Pg)', (Al)

where A is a complex function of the energy E and
scattering angle 8; 4 and 4 are entrance- and
exit-channel spinors, respectively; and P~ and P;
are unit momentum vectors in the entrance and
exit channels, resyectively. To construct the M
matrix„ then, wi need to find an appropriate set
of basis syinors and discard all the products
(4 p, )(% p, )t which are not parity-invariant.

It is convenient to choose spinors in the un-
coupled representation since the calculation of
polarization obsex'vables for the individual parti-
cles is simplest in this scheme. For the g+~ -1
+0 reaction, the uncoupled spinors in the 1+0
channel are the familiar spherical deuteron spinors'

(A2)

The spherical-basis spinors X„x„x are related
to the Cartesian-basis spinors X„x„x,by the
equations

--1X.=- —(X.+fX,),42

XO=Xg r (A3)

For the 1+0 channel, then, we use the Cartesian-
basis spinors

(A4)

Xg =Xo=

APPENDIX: CONSTRUCTION OF THE N MATRIX FOR

SPIN —, + SPIN —,
'

SPIN 1+SPIN 0

The M matrix for an arbitrary reaction is a
sum of parity-invariant direct products of spinors
in the entrance and exit channels. Each term in the
sum has the form"
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where (x', y', z') are the exit-channel coordinates.
The two spin-& particles can combine to form

the singlet state

1
@+ =-~ (4, +i+,),
C, =C, , (A10)

[o (1)I3(2) —P (1)o.(2)j (As)
(4„—f4 „),1

2

and the triplet states

A. = ~(1)~(2),

[ (1)~(2) ~(1) (2)],
1

2

y. = t (1)c(2),

(A6)

o, (1)n(2) = 0
P(1)n(2) =

where o. and P are spin-up and spin-down eigen-
funetions, respectively, and 1 and 2 are particle
labels. The singlet state has a scalar character,
since it is unchanged by any linear transformation
of the coordinate system. " The triplet states, on
the other hand, have the same pseudovector char-
acter as the deuteron spinors of Eq. (A2).

To obtain a matrix representation of the spin-&
+ spin-~ channel, we choose a basis set in the un-
coupled representation as follows:

1 0

so that

4„= (-4, +4 ),1

2

4, = (4, +4 ).
2

(A11)

1

-1
i Q

2 0

0

1 Q

2 0

1 1
2 1

Hence, we find that the spinors for the spin-&
+ spin-& channel, in the uncoupled representation,
are

P'
0

0

(A7)

~(1)P(2) = P(1)P(2) =

(A8)

The scalar singlet state, in this representation, is

Q

where x, y, z are the entrance-channel coordinates.
To construct the M matrix, we now need to

choose coordinate systems for the entrance and
exit channels. Following Ref. 8, we choose the z
and z' axes along the entrance- and exit-channel
wave vectors k, and kj, respectively, the y and y'
axes along k,. x Q, and the x and x' axes parallel
to (tt, xkz)xk, and (tt, xkz)xkz, respectively The.
unit momentum vectors in these directions are

(k, xkg)xk, (k; xkq)xkq
k k kkt f i f

The triplet states are

k) xk~
kkf

p-~ p
k k
k

' ' ki f

(A13)

0

1 1+o= ~2 1
(A9)

Bearing in mind that 40 is a scalar, that 4'„, 4„
4„X„,X, , X, , P„and P, are pseudoveetors
and that p„, p„, p„and p, are vectors, one
readily finds that the M matrix comprises the fol-
lowing parity-invariant terms:

where the notation is chosen to be analogous to that
for the spherical basis set for spin-1 particles.

Pursuing the analogy further, we write

M = a X,.4, + bx„.C „+cx, 4'„+dX„.4,
+ eX. +. +fX. ~. . (A14)

Substituting for the X; and C&t and performing the
implied matrix multiplication, we obtain
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If me noir set

-(d+ia( -(d-(a) ( -c)
&2f Hay &2c

d -sa d+$Q 5+0
we arrive at the I matrix displayed in Eq. (4) of
the text:

(A (( -(: (( )
M=

i

E-I' E E

B C -D A

(A15)
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