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Threshold two-body electrodisintegration of 3He and H is investigated within the con-
text of exact three-body theory. The calculations performed are based on the formalism
of Gibson and Lehman. Careful consideration is given to the singularities of the disinte-
gration Born amplitude for this case, since the momentum transfer is not zero, to assure
validity of the numerical methods. Calculated results are compared with all the latest
threshold ~He electrodisintegration data which sample a range of scattered-electron
angles, 92.6'- &e «180', and incident electron energies, 40 MeV —&0 —120 MeV. Pre-
dictions are made for H electrodisintegration for some of the same kinematics. The
mechanism for the sharp rise as a function of excitation energy in the (e, e') cross sec-
tion for 8e-90' due to the S S monopole transition from Coulomb scattering is singled
out by examination of the contributions to the Coulomb doublet amplitude. A similar
analysis is carried out for the doublet and quartet transverse amplitudes where the
S I' magnetic quadrupole transition dominates for excitation energies less than 20

MeV.

NUCLEAR REACTIONS Electrodisintegration of 3He and 3H, Faddeev calcula-
tion, separable interactions.

I. INTRODUCTION

Thr ee-nucleon calculations involving continuum

processes have not progressed as rapidly as
bound-state calculations due to the difficulties in

handling the Faddeev equations for bvo- and three-
body breakup amplitudes. The formalism recently
introduced by Gibson and Lehman' ' (and applied
by them to 'ffe photodisintegration) is convenient
for finding bound to continuum amplitudes for
transition operators which can be treated pertur-
batively. The electromagnetic, weak, and low

energy pion interactions fall into this class.
One of the most useful aspects of the Qibson-

Lehman approach is the separation of the matrix
elements of the transition operator of a specific
reaction from the three-nucleon dynamics. In

practice, one need only calculate the transition
to the appropriate asymptotic three-particle final
state. For example, in two-body disintegration of
'He, the state would be a noninteracting proton and
deuteron. This Born amplitude is then inserted
into an integral whose kernel involves the three-
nucleon final-state interactions. This integral plus
the Born term gives the full transition amplitude.
Therefore, for a given three-nucleon excitation

energy, the three-nucleon continuum problem need
be solved only once to consider different disinte-
gration processes. Only the Born amplitude for
each process must be computed. In the remainder
of this Introduction, we give a prose road map to
provide the reader with an orientation to the mathe-
matical development of this method for two-body
electrodisintegration of 'He and 'H.

The formalism leading to the two-body breakup
amplitude for a, general breakup operator and a
general nucleon-nucleon potential is developed in
Sec. II. The two-body scattering wave function Eq.
(10) is expressed in terms of a resolvent and NN
potential. A noniterative derivation of the equa-
tions in the Gibson-Lehman approach is made by
use of the Alt-Grassberger-Sandhas transition
operators Eqs. (14)-(16).' The full two-body dis-
integration amplitude Eq. (23) is then written in
terms of the Born amplitude and the matrix ele-
ment of a disintegration operator which connects
particle-plus-correlated-pair states. A diagram-
matic representation of the amplitude equations
(Fig. 1) is given which illustrates the separation of
the reaction Born term from the final-state inter-
actions.

Section III becomes specific as to the form of the
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FIG. 1. Diagrammatic representation of the integral

equations: {a) Eq. {32), the full amplitude; {b) Eq. {35),
the off-shell transitions amplitude —the first term on
the right-hand side is a one nucleon exchange amplitude;
fc) Eqs. {A6) and {A7), the Born amplitude. The wavy
line is the disintegration mechanism which for {e,e') is
the virtual photon. Cross-hate'hed double lines indicate
an off-shell correlated pair {plus nucleon).

transition operator for a ¹Vseparable potential
Eqs. (26) and (27). The two-body transition ampli-
tude Eq. (31) is symmetrized and written as an on-
sheG Born amplitude and an integral over the off-
shell Born amplitudes and nucleon-pair scattering
amplitudes. These latter are themselves expres-
sed.as integrals Eq. (35) over one-particle ex-
change amplitudes constructed from free-particle
resolvents and pair form factors Eq. (36).

Next the standard electromagnetic current inter-
action with a single nucleon is introduced Eq. (37)
and the Born amplitude for 'He- p+d computed
for the charge, current, and magnetic moment
operators Eqs. (38)-(46). The triply differential
inelastic electron scattering cross section, Eqs.
(47) and (48), is given.

Beginning with Eq. (49) of Sec. III, an explicit
form for the 'He ground-state wave function is de-
veloped for the spin-dependent, s-wave separable
potential of the Yamaguchi form. The actual poten-
tial and wave function parameters are given in Ap-
pendix B. A discussion of the spin and isospin de-
pendence of the doublet and quartet pd final state
completes the classification of possible transition
matrix elements. The Coulomb Born term is

given explicitly in Eqs. (64)-(68). The application
section ends with the partial-wave expansion of the
transition amplitude into angular momentum multi-
poles Eqs. (69)-(78). The mathematical machinery
is now complete to compute the 'He(e, e')Pd cross
section.

In Sec. IV, our numerical results for the partial-
wave amplitudes are given together with a com-
parison of the electron scattering cross sections of
two recent experiments. A short discussion is
given of the important features, particularly the
dominance of the Coulomb-monopole transition in
charge scattering. Cross section predictions for
'8 two-body electrodisintegration are made based
on the charge independence of the assumed NN

force. A concise list of conclusions we have
reached in this study forms Sec. V.

In Appendix A, we treat the numerically import-
ant topic of the singularity structure of the ampli-
tude. The integrals over intermediate momenta
are performed by contour rotation to avoid the
poles and cuts on the real momentum axis. All
complex poles and cuts are located and plotted in
order to find an optimum rotation angle. Examples
of the sensitivity of this choice are given.

II. FORMALISM

In this section, we review the formalism of Gib-
son and Lehman'' for the disintegration of a three-
body nucleus by an interaction which can be treated
perturbatively. The total Hamiltonian is written as

where H' is the interaction to be treated pertur-
batively and P is the nuclear Hamiltonian composed
of kinetic-energy and pair-interaction operators;
specifically,

H =Ho+& ~ (2)

3

V Q Va = V, + V~+ Vs
—= Va q+ Vs r

+ Vi 2 (3)

where n represents quantum numbers 1ike spin and

The nuclear Hamiltonian is assumed to have eigen-
states corresponding to a three-body bound state,
a scattering state of a particle plus bound pair,
and a scattering state of three unbound particles.
For these states, respectively, we have

(4)
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isospin, p~ is the relative momentum of particle
e with respect to the center of mass of particles
p and p E ~ ls the two body blndlng energy& the
reduced masses m„and p. 8& are expressed in
terms of the individual-particle masses as G(z) 6z Gz(z) G8(z)Uz (z)G (z) (14}

Equation (10) can be written in terms of the Alt-
Grassberger-Sandhas transition operators' Us„(z)
by means of

M (Mz+My)
M +M8+M~

MS My
"'&=M +M '

s
(6)

where

U = —5 G '(z) -Q5 „T„(z)G (z)U„
7

or

&+amp I =&@~p I 1 Q 6~8~8G(z) (10)

with aa Pe ye a and each index permitted to have
the values I to 3.

In two-body electrodistintegration of 'He and 'H,
only two-body disintegration amplitudes are need-
ed:

A, (a, n, p) =&4 „+~IH'Iqz&, (9)

where the superscript (-) denotes the outgoing
state which asymptotically corresponds to an in-
coming wave, and the label for possible momentum
dependence of II' has been suppressed. The two-
body scattering state is obtained from

Ug„= —58 G, '(z)-Q~y USING, (z)T„(z) . (16)

The significance of the Ua„(z) is that their on-shell
matrix elements between states of the form given
in Eq. (12) yield the S matrix, e.g. , from an initial
configuration characterized by I4 „p & toafinalcon-
figuration IC 8 z,). In our case, they permit sep-
aration of the particular disintegration mechanism
from the final-state, three-particle rescattering.
When Eq. (14) is substituted into Eq. (10) and some
operator algebra performed, Eq. (10) becomes

1

&+.'.'; I
=&cmI '+2 U y(z}G.(z)T (')G(z}

where

~a8 1 5a8& g 0 z =g~+gg,

G(z) =(H- z)-',

where the two-body transition operator T„(z) is
defined by

(12)

and &4 „p I
denotes an asymptotic scattering state

composed of particle a moving freely relative to
the Py bound pair:

H. I4 „„-,& =d „ Ie

T, (z) G,(z) = V, G„(z),

G„(z)=(H~-z) ',

G.(z) =(H. -z)-'.

(16)

with

&a =Ho+ ~ ~

Therefore, the two-body disintegration amplitude
becomes

A.(~ n p) =&4', IH'I+ &+2 &4 . I
U (z&G.(z}T (z}G.(z}H'Iq' & (21)

where z =E' +iq. The equations of Gibson and Lehman are recovered by defining the XB„(z}amplitudes
which lead to Lippmann-Schwinger type equations; in detail,

so

XB (z)—= -G,(z)U& (z)G,(z), (22)

A, (a, n, p) =
& 4 ~ I

H'
I @z} —g & 4 „~ I G, '(z)X „(z)T,(z)G, (z)H'

I
4 z)

X, (z) =O~G, (z) -g G,{z)5„T,(=)X„„(z) (24)
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or

X() (z) =5() G,(z) —Q Xs„(z}T„(z)5„„G,(z) . (25)
V

The X transition operators connect the so-called
particle-plus-correlated-pair states, i.e.,
& 4 -, ( G,-'(z).

The above constitutes a noniterative derivation
of the Qibson-Lehman equations. ' The usefulness
of expressing the two-body disintegration ampli-
tu'de in terms of the X transition operators is im-
mediately apparent by inserting a complete set of
states between the 6, and P' operators in the sec-
ond term on the right-hand side of Eq. (23): the
final-state three-particle dynamics are separated
from the disintegration process of the bound state
due to H'. The continuum three-body problem
need only be considered once for a given excitation
energy to calculate all perturbative-type disinte-
gration processes.

III. APPLICATION OF FORMALISM TO TWO-BODY

ELECTRODISINTEGRATION OF 3He AND 3H

Application of Eqs. (23}-(25)to two-body electro-
disintegration of 'He and 'H requires knowledge of
7 (z) and II' We sha. ll specify the two-nucleon in-
teraction model first, then manipulate and simplify
the equations as far as possible without an explicit
H'. Finally, Il' will be given, the partial-wave ex-
pansions defined, and the equations actually used
written down.

The two-nucleon transition operator in the three-

where

r, (z)=2" 1-2 &g..lG.(z)lg
A.„A„

2 jL t2 2 P.~

The lower-case letters s and t denote singlet and

triplet spin, respectively, for the interacting nu-

cleon pair, while the upper-ease letters S(I)
represent the total spin (isospin} of the three-nu-
cleon system obtained by coupling the spin (isospin)
of the noninteracting particle o. to the spin (isospin)
of the interacting pair Py. The strength of the in-
teraction is given by A„, and the form factors ~g „)
determine its range. This form of the two-nucleon
interaction corresponds to a separable, nonlocal
potential which, if it can support a bound state of
binding energy e„, has the bvo-nucleon bound-state
wave function

&X. f=z.&r. IG',"(-~.), ~.&O, (28)

where IV, is chosen such that &)(„(y„&= 1 and G'o') (z)
is the free-particle resolvent for two particles.
The states of Eq. (12) are

( (I) ~„p ~

= N2& g~„p ( Go(p /2 m~ —e „}
with (g „p~=&g „~(p(. Then Eqs. (26) and (29)
can be substituted into Eq. (23) to obtain

particle Hilbert space is taken to be separable,
attractive, s-wave, spin dependent, but charge in-
dependent:

T (z)=-2 lg &r..(z)&g I(l»&&»l)... (25)

A, (a, n, p) =IV, &g~„p(G,(z)II'~4, &

t'2 2 f ' g' gg.(. l gg~ )(lggga') s. (*-g"/g, ) (ga. g'Ig. t )g'Ig, )
S=& n'=S

where J(f'P'(p'&&p' ~= 1 has been used, the spin-isospin projection operator has been suppressed in the sec-
ond term, and z =Z"„'+sg.

In our application of Eq. (30}to trinucleon electrodisintegration, the three nucleons will be taken as three
identical particles of mass M. Therefore the amplitudes of interest must be symmetric in the three nu-

cleons. %e define symmetrized amplitudes as follows:

X/2

M",(z, p)= — g A, (a, n, p)2 ' 3 a=I

where

=S.(z p)+g d'P'&pl&. . (z)IF&r. ~ (z-3p"/4M%. (z, p'),
ffg=S

I/2
g„(*,p) g(g Q =(g , p)G()g')g, )g,

%~1
(33)
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&pl& (z) lp'&=8K Z &g~51&.s(z)l g8 'p &

0(=1 8=1
(34)

The amphtudes in Eqs. (82)-(84) are written in off-shell form to emphasize that z and Ipl need not be re-
lated, nor is I/I necessarily equal to lp' I. For two-body electrodisintegration of the trinucleons, the am-
plitude M, (z, p) is required with z =8P /4M- z, +iq, where ~z is the deuteron binding energy. The main in-
gredients in this amplitude are the half-off-sheQ three-particle transition amplitudes which satisfy

&pl&~(z) I p'& =&5 I &.. (z) IX+Q Jtd'P &p I&,(z) Ip"&r.(z - 8p"/4M)&p' l&~(z) Ip'&, (35)
Nt"-8

where the one-particle exchange amplitude is

&ply'~(z)Ip'&=8 ZZ 5.()&g plG0(z)lg(). p'&
f8.1 6=1

Equations (35) and (36) follow directly from Eqs. (24) and (25) with Eq. (34). The physics embodied in Eqs.
(32) and (35) is more apparent if they are represented graphically as in Fig. 1.

To this point, the formalism has been developed to include all two-body disintegration processes of a
trinucleon caused by a perturbative Hamiltonian 0'. In our case, H' is taken to be the electron-nucleon
Hamiltonian developed by Mccoy and Van Hove. ' This involves a reduction to the nonrelativistic limit of
the nuclear electromagnetic current for interactions with a single nucleon. This gives for the jth nucleon

pe
& IF ( g) 4q gy i 1//(C(( )

{p I() x ()) xy ~
)

2

F»(q„')+z„F»{q„'~ic, {qxa).e " '*&+ ", (F»(q„')+2K„,F,„(q„')) e " lui&, (37)

where x& and P& are four-vectors denoting the nucleon position and momentum, cr& is the nucleon spin op-
erator, a is the electron's Dirac operator which operates on the free-electron spinors ls)& and lu~&,

&„"&0 is the exchanged four-momentum squared, I;» and F~ are the nucleon Dirac and Pauli form fac-
tors, ~„ is the nucleon static anomalous magnetic moment, q 7& is a four-vector scalar product, and M
is t e nucleon mass.

To find the electron-nucleus interaction operator, the operator in Eq. (37) is summed aver the three nu-
cleons. This implies the assumption that the nucleons behave in a nucleus as free nucleons.

This form of 0' is put into Eq. (88) to find the Born amplitude B„(z,p) to obtain [note that we suppress the
variable Q i.e., B„(z,p) =B„(z,-p, q)]:

~
1i23

B.(z, p) = —, Z ~.&g,p IG.(z) Z ff; I~,&
a"-1 5=1

(&syIN(& 0- &uI lo( lu(& &)
~P 3 e1 (39)

3

() =)e.' (( e„'/()I')(f g e ""'i-',() +e,), ee +«L(')Mee+' /BfQ)e "'i-,'(1-e ), e, ,
g "1

(41)

J"=(/ Q(ee /2M)()i, e " ' i+e "'*i)i,)-', () ~ e, ), e ))=1
3

+ F,"„2M &e
" '"&+g ~' '",sp» $-g (42)

3 3

J "=()/eM)»' (f Q e " '
ie x))-'.() e), e, ~ (/mee)e'" / pe-"'iri xi('((-,,), e ) (ee)

X=1
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In these equations

(44)
(Pp, Ep) (Pd, Ed)

7, is the nucleon isosyin operator, and E,& and I'
are the nucleon charge and magnetic form factors,
defined by

F~=F, +(qq /4M )a'F2,

=I, +~E

(45)

(48)

[The superscript s on F,„and F ~ refers to the neu-
tron and should not be confused with the subscript
on B„(z,p).] The analytical fit to the nucleon form
factors given by Janssens' et al. is used for the
calculations. Ultimately, the charge form factor
of the neutron is taken to be zero, but it is re-
tained in the derivations. In this manner, the '8
cross sections may be obtained from the 3He cross
sections merely by exchanging neutron and proton
labels.

In place of a single term for B„(z,p), we now

have three terms: Q, X", andf ~, which are kept
separate because of their differing dependence on
electron and nucleon spins. Transitions caused by

Q will be called Coulomb transitions and those
caused by f" and X~ will be called electric-cur-
rent and magnetic-moment transitions, respect-
ively.

It may be seen from Eqs. (31) and (32) that the
total amplitude M",(z, p) has the same structure as
B„(z,p). Therefore, corresponding to the Born
Q and S there are rescattered Q's and J's from
which the cross section can be calculated. Sum-
ming and averaging over electron spine give the
result for the coincidence cross section

FIG. 2. Kinematics of the electrodisintegration of
He. The momentum and energy transfer to the three-

nucleon system are q= K&- K&, (d —-E& -E&. The rela-
tive momentum bebveen proton and deuteron in the final
state is $=

3 p &
—3p

4e =g t +(O'C'-0" 5'), (49)

where
1

$'=~p ~[X'~l -X"q'j,

1(' =~~ [x'n" +x "n'l, (51)

tained both because of large expected interference
terms in the analysis of coincidence data and be-
cause it was necessary in order to maintain ortho-
gonality with the final nuclear state. The D-state
component of the ground state was neglected both
because of the greatly increased complexity it
would add to the problem, and because the Cou-
lomb transitions which dominate most of the kine-
matic regions we studied do not allow interference
between the 8 and D states.

Explicitly, the form of the ground state is

e'cps-,'8
Nt 2E 218

[XO X (52)

F'= g'+ Z' tan'(-'8) ——,
' sec'(-,'8)(Q 'S+J'Q) ~ (K; +K~)

+, sec(-,' )8P.K,-S' K~+I Eff' K, }, (48}

where the electron is scattered through the angle
8 to a final energy E~, p~ and p, are the laboratory
momenta of the outgoing proton and deuteron, and

M~ is the deuteron mass (see Fig. 2).
To solve these equations and calculate a cross

section, explicit forms of the wave functions are
needed. For the ground-state wave function 4 ~
we included both the spatially symmetric S and the
mixed symmetry 9' components. The relatively
small S' component in the ground state was re-

The P's are functions of momentum only, and the
$ contain the spin (X) and isospin (q) dependence.
The first term on the right-hand side of Eq. (49)
forms the completely symmetric part of the ground
state (g'is symmetric), and the terms in paren-
theses together form the S' part of the ground state.
X'(1, 2 3) is the spin--,' function obtained by first
coupling the spins of particles 2 and 3 to spin 0,
and X"(1, 2 3) is the spin--,' function obtained by
first coupling the spins of particles 2 and 3 to spin
1. The g are the corresponding isospin functions.
The symmetry classifications of the various func-
tions are indicated by their superscripts: s indi-
cates symmetry to an exchange of any two par-
ticles; a indicates antisymmetry to an exchange of
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any two particles; and the single and double prime
indicate, respectively, antisymmetry and sym-
metry to an exchange of particles 2 and 3.

The functions g are further decomposed as fol-
lows:

metric to exchange of particles 2 and 3. g„(k}
=—(%~g„) =1j(k'+tc) in our parametrization.

The final state in Born approximation consists of
a deuteron plus a plane-wave nucleon. The deu-
teron wave function is of the form [see Eq. (28)]:

g' =g(1, 2 3) +g(2, 3 1)+g(3, 1 2),
g' = &[h(3, 12)-h(2, 31)],
g" = -h. (1, 2 3) +-,' [h(3, 1 2) +h(2, 3 1)],

(53 }

(54)

(55)

q, (k) =W, g, (k)(k'+y') ',
where y is found from the calculated deuteron
binding energy e~ by

(62)

y -Mc„. (63)
g(1, 23) =v(1, 23) +u(1, 23),

h(1, 23) =v(1, 23) —u(1, 23),

a (k)n~(P)
v(pg k) N3 2 3 pm

„~ k) ~ g. (k). (t)
E +~p +k

(56)

(57)

(58)

(59)

K MB (60}

a, (P) and a, (P) are solutions of two coupled one-
dimensional integral equations' [similar to Eq.
A4)], and are parametrized in the form

ai(P) =&;(1+a~P'+Pi P'+r;P') ',
where i=s or t. u, v, g, and h are each sym-

The notation g(1, 23) indicates that g is a function
of p„k», and the permutations are defined ac-
cordingly. N, is the ground-state normalization
constant, and K' is defined in terms of the three-
nucleon binding energy I3, as

See Appendix 8 for potential and wave function
parameters. The spin-isospin of the final state
is determined by the requirement that a deuteron
be formed. This allows only the spin doublet (y "q')
and quartet Q'q') as physical final states, and they
may rescatter through one other intermediate
state, the singlet Q'q"}.

Since both the doublet and quartet are possible
physical final states, amplitudes for both must be
calculated. The total cross section has contribu-
tions from both. The singlet amplitude is not a
possible physical final state, and contributes only
as an intermediate state through the rescattering
part of Eq. (32); i.e. , through B„.(z, p').

Now that the initial and final states have been
given explicit form, they may be substituted into
Eqs. (41) to (43). Once the spin and isospin pro-
jections are made, the Born matrix elements may
be given in a form appropriate for calculation.
Thid gives for the Coulomb matrix elements

Q, =~~2~ 0 s„'/BM') &'& z. & M IN'i —0"1" O' —K

+~ (1+v„'/8M') 'k
2 ~ a I ]4u

—Su+~3 ku

q, =0,

(64)

(65)

M2 8M2 K2+ P —zM

d'k

The functions g, and g«are defined by

rP )
= g(k, p —

~ q ),
tu=4% 24p+s q) ~ (68)

All the terms which depend on the form factor of

the proton correspond to the virtual photon inter-
acting with the proton, and likewise for the neu-
tron. In the Born approximation, all the terms
which depend on the wave functions g, correspond
to scattering from the nucleon which is ejected;
tl1e terms which depend on P„correspond to scat-
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tering from a nucleon which remains a part of the
residual pair. Similar expressions were found for
fel and flllsg

The equations as given above completely define
the problem of two-body electrodisintegration of
the trinucleon. One further step is necessary for
ease of calculation and to provide further insight.
The amplitudes are expanded into partial waves.
Partial-wave expansion eliminates the vector de-
pendence of (pIX .(z)I p'), making Eq. (35) easier
to solve; and, by obtaining the transition results
multipole by multipole, greater insight is given
into the dynamics of the process.

Following Gibson and Lehman, ' (y IX„„(z)I p')
and (p I Z~(z}Ip') are expanded in Legendre poly-
nomials

(p Ix.~(z) I
p'&

=g (2L+1)X'.~(P. P', z)I'. (P P'), (69)I ~0

(pIZ„.( ) Ip'&
~u

=g (2f +1)Z~(P, P'; z)p, (P P'). (VQ)

When this is done, Eq. (35) becomes

t
x~~ (P, P'; z) = Z„'~ (P, p'; z) +4w g P"*dP" Z'„i„(P',P"; z) 7 (z —3P"'/4M)x'„(P, P'; z),75&$0 (71)

and Z~~ (P, P'; z) has the explicit form

Z„(P,P'; z) =C„~ dx
Ca

Ctt C tS

3
4

(75}

(76)

where

~2 ipse +p12+ppI+

0"=P'+4P +PP'& ~

(72)

(V3)

(74)

for doublet and quartet, respectively. A similar
partial-wave decomposition is made for B„(z,p),

B.(z, p) = g (2L+1)B'.(z, P)& (P q),
i, =o

where q is the momentum transfer due to the dis-
integration process. Then Eq. (32) has the yartial-
wave form

M",(z, p}=g (2L+l)P Q ~ q) B„(z,p)+4m gL~0
P"~P'X'. (P, P'; z)r.(z- 3P"/4M}B.'(z, P') (V8)

The process of calculation proceeds as follows:
Eqs. (Vl) and (72) are used to generate the three-
particle half-off-shell partial-wave amplitudes.
As a separate calculation, the components of
B~(z, P) (Q and J) are found. [See Eqs. (64) to (68)
for the explicit form of Q.] Equation (78) is then
used to combine the results into rescattered ampli-
tudes, and Eq. (47} gives the cross section.

moment operators, the partial-wave expansions of
Eqs. (41)-(43), into Eq. (78) to form the full am-
plitude for each multipole: Mz(z, p, q). After in-
tegration over the nuclear angular distribution the
Coulomb form factor is

IEc „g(q, (d)
I

=7r(2I, + 1)MP IMc,„,(z, P, q) I, (79)

and the transverse is

IV. RESULTS AND DISCUSSION

A. Amphtudes for proton p1us deuteron breakup

I&T„(q', ~) I'=
2&

P
IMT (z, p, q}I'. (8Q)

The electron scattering cross section is then
2 =,g [Iso„, I'+ (-,'+ tan'-,'e) IF,'„„I']I

As pointed out at the end of the previous section,
the transition amplitudes for inelastic electron
scattering are constructed by inserting the Barn
amplitudes for the charge, current, and magnetic where

(81)
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TABLE I. Coulomb doublet amplitudes (fm3~2).

(z} ig Born
{Mev} {fm ') L {on shell)

Triplet
(on shell)

Triplet
(off shell)

Singlet
{off shell)

Full
amplitude

IF'(q' ~)l'
(Mev-')

12

20

0.637 0
1
2

O. 630 0
1
2

0.614 0
1
2

0.582 0
1
2

+ 3.45
+ 0.024
+ 0.026

+ 3.01
+ 0.086
+ 0.092

+ 2.30
+ 0.145
+ 0.129

+ 1.41
+ 0.124
+ 0.094

-0.058 —io.131
+ 0.000+ i0.004
+ 0.000 —i0.039

168 i2 62
+ 0.001+ i0.006
+ 0.008 —i0.145

-3.02 —i1.49
+ 0.009 —i0.004
+ 0.039 i0.150

-2.02 —io.Q75
+ 0.009- io.007
+ 0.033- i0.067

-3.55 + i0.137
-0.006 —i0.004
+ 0.001+ i0.039

-1.44 + i2.64
-0.007 —io.014
—0.003 + i0.150

+ 0.737+ io ~ 996
-0.022 —i0.003
-0.040+ i0.162

+ 0.961 —io, 522
-0.014 —io.013
-0.039+ i0.075

-0.869+ j0.054
+ 0.011—i0.000
+ 0.000+ io.ooo

-0.444+ i0.244
+ 0.034 —i0.003
+ 0.002+ io.ooo

-0.197+ i0.701
+ 0.051+ i0.041
+ 0.005+ i0.005

-0.383+ io.693
+ 0.004+ i0.061
-0.001.+ i0.009

-1.03 + i0.060
+ 0.029 —io.ooo
+ 0.027+ io.ooo

-0.557+ i0.256
+ 0.114—io.olo
+ 0.099+ i0.005

-0.178+ io.206
+ 0.183+ i0.035
+ 0.133+ i0.018

-0.030+ i0.097
+ 0.123+ i0.041
+ 0.087+ i0.017

O.101(-1)
o.24s( 4)
O.355( 4)

O.807(-2)
O.S41( 3)
0.106(-2)

O.256( 2)
o.35s(-2)
0.311(—2)

O.526( 3)
O.263( 2)
o.2ol( 2)

2E, sin'-,'8 MH,
(82)

Representative partial-vrave amplitudes are
tabulated in Tables I and II. Table I has kinematics
appropriate to E, =90 Me&, 8, =92.6' and gives
ampl. itudes of the charge operator. The Coulomb
Born term is an on-shell spin triplet in the in-
teracting s-vrave pair, and is taken to be real. The
triplet rescattering amplitude can be further de-
composed into its on-shell and off-shell compon-

ents. ' The on-shell part is related to the elastic
N ddouh-let scattering amplitude Xzt,(p, p; z) and
the Born transition amplitude Bf(z,p, q}, viz. ,

,' HX, 'PX—'„(p,p; z)a', (z, p, q)

The on-shell Xz« is computed from Eq. (71) using
the single-nucleon exchange Z«(p, p; z) as the in-
homogeneous term and Z«(p, p'; z} and Z„(P,P";z)
under the integrals. The singlet rescattering am-
plitude is purely off shell.

TABLE II. Transverse amplitudes (fm ).

(M."v} (fm ) Born Triplet Singlet
Full

amplitude
)F~(q', (u)('

(MeV-')

12

0.587

0.573

0.557

0.578

0.573

0.557

-23.776
-0.731
-0.129

-21.235
-1.356
-0.494

-16.849
-1.448
-0.715

-4.209
-5.271
+ 0.224

1.614
+ 9.392
+ 0.886

+ 0.465
+ 9.773
+ 1.308

Doublet

+ 25.661 —i0.119
+ 0.103+ i0.026
-0.006 —i0.000

+ 22.425 —i0.277
+ 0.074+ i0.119
-0.026 —i0.027

+ 16.603+ i3.588
+ 0.144+ i0.140
+ 0.005 —i0.066

Quartet

+ 2,721+ i0.949
+ 3.745+ jl.244
-0.021 —i0.000

+ 1.270+ j1.847
+ 1.648+ i5.931
-0.088 —i0.074

-0.118+ i1.291
-1.608+ i5.203
-0.031+ iQ.205

+ 6.331—i0.402
-0.107+ i0.002
-0.004 —i0.000

+ 3.045 —i1.703
-0.347 —i0.030
-0.021 —i0.002

+ 1.147 —i5.342
-0.467 —i0.429
-O.041 —i0.047

+ 8.212 —jo.522
-0.734+ i0.029
-0.141—gO. 000

+ 4.232 —i1.979
-1.630+ io.151
-0.542 —go. 029

+ 0.900 —i1.753
-1.771 —io.290
-0.752 —io.114

-1.488+ i0.949
+ 9.016+ i1.244
+ 0.203 —i0.000

-0.344+ g1.847
+ 11.040+ i5.931

+ 0.798 —i0.074

+ 0.349+ il.291
+ 8.165+ i5.203
+ 1.277 —i0.205

0.831{-4)
O. 199( 5)
O. 122( 6)

O.536( 4)
O. 197( 4)
0 ~ 361(-4)

0.140( 4)
0.349(-4)
o.lo4( 5)

O.382 (-5)
0.305(-3)
O. 253( 6)

o.s64( 5)
O. 115( 2)
0.786(-5)

0.644( 5)
0.101{-2)
O.3O2( 5)
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The following features may be noted from Table
I about the doublet Coulomb two-body breakup
amplitudes. All amplitudes are zero at threshold
except the s wave whose ful. l amplitude has a finite
real part. %e note that a great deal of cancella-
tion goes on among the s-wave Born and triplet
amplitudes at the lower excitation energies, leav-
ing the singlet off-shell rescattered amplitude as
the governing term.

The I &0 partial waves have less of a rescatter-
ing correction to the Born amplitude than the s
wave. The singlet rescattering is usually more
important than the total triplet rescattering be-
cause of internal cancellation in the triplet be-
tween on-shell and off-shell components. This
feature was also present for the photodisintegra-
tion calculation of Ref. 1.

'Table II has kinematics appropriate to E, = 60.63
MeV, 8, = 180'. The amplitudes are dominated
by the magnetic-moment operator. Two spin states
of the nucleon-plus-deuteron final state contribute
to the cross section, the S = —,

' doublet, and the
S= & quartet amplitudes. Note the quartet has no
singlet amplitude. The transverse triplet has not
been separated into bn- and off-shell components.

%e see from 'Table II that at threshold the doub-
let magnetic dipole ('S -'S) competes with the quar-
tet magnetic quadrupole ('S -'P}, but the quartet
M2 soon dominates all other multipoles by two
orders of magnitude. 'The dominance of 'S -'P
in the transverse and S 'S in the longitudinal
low energy two-body breakup can be traced to the
constructive (or destructive} interference in each
multipole of the two diagrams that make up the
Born term. The relative sign between the two dia-
grams in Fig. 1(c) is determined by the multipole
order I. and the parity of the transition operator.

At the excitation energies treated in our calcula-
tions the Born amplitudes become dominant for in-
creasing values of J. This effect can be seen in
Table III, in which the charge amplitudes for the
coincidence reaction 'He(e, e'p)d are listed for
each partial wave at approximately 60 MeV ex-
citation energy. ' 'The fully symmetric ground state
wave function was used in this calculation.

t

(c)

N
E

C)

Al
Cy

~ . (a)

0.4-

0 2

15

ddd d
d d d

d ddd ~
d

de

dOed

dd
0

Oo Nd
a 6 a

I'

Born Full amplitude

TABLE III. Coulomb amplitude for quasielastic scat-
tering He (e, e'p)d (al bitrary units).

S

6 8 l0 l2

EXCITATION ENERGY (MeV )

0.1571+01
0.7888+ 00
0.7527+ 00
0.4277+ 00
0.3152+ 00
0.1914+00
0.1271+00

0.7840+ 00+ i0.3784+ 00
0.7958+ 00+ j0.1920+ 00
0.6920+ 00+ i0.1044+ 00
0.4324+ 00+ j0.6313—02
0.3116+00+ i0.1026 —01
0.1923+ 00+ i0.3444 —03
0.1268+ 00+ j0.9042 —03

FIG. 3. Comparison of the p+d breakup calculation
with the data of Kan et al. (Ref. 8): (a) Ep ——60 MeV,

8+ 92 6 s (b) Ep= 75 MeVs 8e = 92 6 & (c) Ep= 90 MeVs

8e =92.6' gower curve for H); (d) Ep=110 MeVs 8~
= 92.6', Ep~120 MeV, 8~ =127.7 . Statistical error bars
have been oxnitted from the data points.
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B. Cross sections

The two inelastic electron scattering experiments
with which we want to compare our two-body calPP

culations include three-body breakup. In principle
only the interval between (d = 5.5 and V. '7 MeV is
pure two-body breakup in the experimental spec-
trum.

'The kinematics of the measurement of Kan et.
al. ' (8,=92.6' in most cases) stresses the contri-
bution of the charge scattering to the breakup cross
section. Figure 3 shows a comparison of the p+d
calculation with the measured cross section at
five values of E,. A decomposition of the calculat-
ed cross section into longitudinal and transverse
partial waves is given in Table I (and Fig. 2 of Ref.
9 for the Z, =90 MeV curve). The rapid rise of the
data at the two-body breakup threshold is account-
ed for in our calculation as due to the two-body
Coulomb monopole transition 'S-'S. We did not in-
clude a final state Coulomb interaction between
the proton and deuteron, which would tend to re-
duce the slope of the cross section at threshold.
Although our calculation is only for p+ d breakup,
the curves follow the data far beyond the three-
nucleon breakup threshold at '7. 7 MeV.

The kinematics of the measurement pf Jones'
and others (8,= 160') stresses the contribution of
the magnetic moment operator. Figure 4 shows
a comparison of the p+d calculation with measured
cross section at three values of E,. A decomposi-
tion of the calculated cross section into partial
waves is given in Table II (and Fig. 3 of Ref. 9
for E,=60 MeV). We note that the p+d calcul, ation
has a good fit to the data between the two- and
three-body thresholds but, unlike the Coulomb
breakup data, deviation of the two-body calcula-
tion begins. immediately after the opening of the
three-body channel.

By assuming charge symmetry'of the two-nucleon
force we are able to modify our calculation to yield
the cross section for tritium 'H(e, e')Nd by inter-
changing neutron and proton labels in the charge
and magnetic moment form factors. The results
are shown in Figs. 3(c) and 4 (curve 2). Since the
threshold for n+d breakup is 0.8 MeV higher in
excitation energy than p+ d, the theoretical curves
should be shifted by this amount. We note the 'H
Coulomb monopole is depressed relative to the
'He case. The enhanced monopole amplitude at
threshold in 'He arose from the constructive in-
terference of the type I and type II Coulomb doublet
amplitudes shown on the right in Fig. 1(c). In 'H
only the type II diagram (coupling to the charge
of the dueteron) contributes, hence no constructive
inter ference.

In 180 scattering the tritium cross section has

(b)
gp 4 ~ Iee eee 6"II66

3
al ~

O

(c)

P

8 8 Io l2
EXCITATION ENERGY (M eV)

FIG. 4. Comparison of the p+d breakup calculation
with the 8, =180' data of Jones et al. (Hef. 10); (a) Eo
=60.63 MeV; (b) E,=50.58 MeV; (c) E0=40.44 MeV.
Statistical error bars have been omitted from the data
points. Curve 1 for 3He(e, e')pd, curve 2 for ~H(e, e')-
Ref .

V. CONCLUSIONS

The primary conclusions of this paper are:
(1) The Gibson-I ehman formalism for calculating
bound-state disintegration with nonzero momentum
transfer is a practical scheme for numerical com-

approximately the same shape as that of 'He, but
with half the magnitude. In both eases the domin-
ant transition is the magnetic quadrupole '$ -4P.
The ratio of magnitudes can be understood in terms
of (pr/p, „)'=2.1.
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putgtion providing the singularities of the disin-
tegration Born amplitude are considered and avoid-
ed in the momentum integrals. (2) The Coulomb
scattering at the pd breakup threshold is dominated
by the monopole transition 'S -'8, which causes
a sharp rise in the (e, e') cross section as a func-
tion of excitation energy. However, a few MeV
above threshold C1 and C2 transitions are equally
important. (3) The transverse inelastic two-body
form factor is dominated by the magnetic quad-
rupole '8 -'P transition in the energy range thresh-
old to 20 MeV. No sharp rise at threshold is pre-
dicted (or seen experimentally}. (4) The 'H cross
sections are roughly half those of 'He with the ex-
ception that the sharp rise at threshold in charge
scattering is absent.

APPENDIX A: NUMERICAL METHODS —SINGULARITIES

tion. Inclusion of the mixed-symmetry component
introduces nothing new.

The spatially symmetric triton wave function
ha, s the form

qs(k ~) g y(() (A2)

where

4( & ~ g(& $)a(p )
3k +3p +K2S

a(P) is the spectator function, g(k) is the s-wave
two-nucleon separable-potential form factor, N,
is the normalization constant, and F.~ =K'/M is
the three-nucleon binding energy. ' The spectator
function is obtained from the homogeneous integral
equation

a(p) = 27(M7 [ —(Es+ 3 p'/4M))

The coupled integral. equations for the half-off-
shell nucleon- correlated-pair amplitudes, Eq.
(71), are solved numerically by standard contour-
rotation methods. " The variables p' and p" are
rotated from the real axis into the fourth quadrant:
p'- p'e '" and p" —p"e '". The contribution to the
integral from the arc at infinity is zero, but the
rotation angle y is limited by a singularity in the
inhomogenous term Z~„, (P, P'; 3P'/4M es) from
the energy denominator, i.e. , p'+ p" + pp'x —M~
= 0. To avoid this singularity, the rotation angle
must be chosen such that

(( & tan '(2y/p}, (A1)

where y' —= M&„.
Once the amplitudes X~„,(p, p'e ";3p'/4M- e, )

are available, M,'(3p'/4M —y'/M, p) is computed
from them by rotating the p' integration in the in-
tegral terms of Eq. (78). This is useful because
the bound-state pole of 7., is avoided and the

X(„.(p P'e ";3p /4M —s,) amplitudes can be used
directly. Again, there is no contribution along
the arc at infinity. Nevertheless, this rotation is
possible only if no singularities of T„or I3„ inter-
fere. The fact that v„has no such singularities
is implicit in our statements above about the solu-
tion of Eq. (71). Unfortunately, the B~ are more
complicated and they cause difficulties of two
types. Firstly, the B~ depend on the ground-state
spectator functions which have been fitted to an
analytical form for ease of computation. Can this
parametrization be analytically continued into the
fourth quadrant? Secondly, Bz(z, P', q) is obtained
by an integration over cPk. %hen p'-p'e '", does
this introduce singularities in the d'k integration~
For simplicity, these questions are answered for
the case of spatially symmetric triton wave func-

x P' QP' Z P p' g g p')

a(p) = 1
1+ o(p'+ Hp'+ yp' (A5)

where e, P, and y are real constants. Equation
(A5) works very well and eliminates the need for
continually solving Eq. (A4). Does Eq. (A5) still

TABLE IV. Results of computed a{p) compared with
empirical fit, for p rotated 45 into the fourth quadrant.
a(p) = ~((~ exp(ie). () is in radians.

Empirical form
)a) e

Computed

0.019
0.054
0.106
0.179
0.279
0.414
0 ~ 596
0.843
1.186
1.679
2.414
3.577
5.574
9.441

18.588
51.050

1.000
1.000
0.999
0.995
0.969
0.873
0.653
0.390
0.197
0.'793 —1
0.200 —1
0.264 —2

0.202 —3
0.870 —5
0.150—6
0.349 —9

0.141 —2

0.106—1
0.411—1
0.118
0.282
0.582
1.009
1.470

-1.186
-0.562

0.215
0.885
1.280
1.469
1.544
l.567

1.000
1.000
0.999
0.995
0.969
0.874
0.662
0.403
0.197
0.724 —1

0.182 —1

0 ~ 310—2

0.294 —3
0.108 —4
0.152 —6
0.348 —9

0.139-2

0.105—1
0,408 —1

0.117
0.279
0.574
0.996
1.475

—1.137
—0.541

0.464 —1
0.609
1.213

—1.489
—1.504
-1.562

where subscripts on 7 and Z' have been dropped
since the spatially symmetric triton wave function
is generated from a spin- independent two-nucleon
interaction. Equation (A4) implies that as p- ~,
a(P) -0 as P '. Furthermore, since Eq. (A4) is
homogeneous, we can define a(0) = 1. This suggests
that a(P) may be parametrized as
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fit the solution to Eq. (A4) when P-Pe '" without

altering the a, 'P Pes—this has been checked by
solving Eq. (A4) for P-Pe "and comparing with
Eq. (AS)." This comparison was made for 0
~y~85'. For 0~@&45', the agreement is ex-
cellent. Beyond y =45' the discrepancies grow
until, at y=85, the fit is poor. The results for
y = 45' are given in Table ~." In the actual com-
putation, y is always &45', so Eq. (AS) is valid.

Two types of integral. expressions occur in the
evaluation of B„(z,p, q) for electrodisintegration:

I", (z, p, q) = d'k, , ", i(,'(k, p- f q) (AS)

(A7)

when I(t,
' is replaced by Eqs. (A2) and (A3), I", and

I," can be written as

g (k) g(k)&(i p- sql)
~k (k, ,*"p M. ) [k, -(y y), z ]

g (Ik+zp() g((z k+P —zq()a((k+ 3q() q

(k+ z p)'+ ~ p' —Mz (k+ z p) + —,'(p ——', q) + ff' (AS)

g„(k) g(lk- zq l)s( lp+-,'q()

g„(l k+ —,
'

PI ) g(l z k+ p I )a( I k- —,
'

q I )

[(]t+ a p)'+ a O' —Mz] [(k+z p —zq)'+ ~ (p + ~ q)'+K']

g( I z k+ ~p+ z q I )a(l k+ & p - 3 ql )

[(k+ z q)'+ i(p+-,' qP+K'] (A9)

where these particular forms lead to the easiest
analysis of the singularities. To il.lustrate our
method, we consider the first integral in Eq. (AS).

The first integral on the right-band side of Eq.
(AS) has four denominators in the integrand

[ remember g„(k) = (k'+ p„') ' and g(k) = (k'+ ll') '],
two of which depend on P, multiplied by the specta-
tor fun. ction which depends on P and not A,'

(a) k +p„

(b) k'+ f(

(c) k + &pz —Mz

(d) k'+ & (p- & q)2+K'

(e) s '(I p —3 q I) .
In the complex k plane, (a) and (b) introduce sim-
ple poles at +iP„and +iP which are of no concern
for the k integration on the real axis. Denomina-
tor (c) introduces a cut in the complex k plane
which is easily mapped out for p- pe '". (Note:
z always has a small positive imaginary part. )
So far, as can be seen in Fig. 5, none of these
singularities directly interfere with the A integra-
tion; however, (d) does. The envelope of the cut
structure for (d) is illustrated in Fig. S(d). This
envelope is obtained from x~= + 1, ~here x~ =-P g.

q( tan'(v 3K/q). (A10)

In order to avoid the branch point v'Mz from (c),
it is convenient to rotate the k integration into the
fourth quadrant of the complex k plane. Thi.s ro-
tation is limited by the cut (d). It is possible to
show that the maximum allowed rotation angle for
the It. integration is

S = sin '{[-,'(I+ cos g)]'I'j,
where

(A11)

cosy= (If'+ & q'+ —,
'
p,' cos2 y —p, q coscp)/i y i,

( y i
= ([K'+ 3 q'+ 4 p,' cos2q —p,q cos&p] '

+ [ + p,' sin2y —p,q sing]')'i', (A13)

and

2 cosp ~2 |2)

x(I- [1—~q'cos'y(if'+-, ' q')]'i') . (A14)

If q or y are large enough, the cut envelope (x~ = 1
branch) will move onto the real axis and inter-
fere with A integration. This will not occur if y
is chosen such that
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lek

= Rek

Imk

)P fP

=Rek

K +

Xp=l s)& tan'y3
= Rek

(c)

—q+ jc3

2 —q-ic (x = l)2
3 P

(e)
~jea++q2 (x =0)

P

Fig. 5. Pictorial representation of the singularities discussed in Appendix A. The following denominators are re-

sponsible for the respective figures: (a) S 2+t)„t=0; (b) S t+P =0; {c)kt+ gpt -Mz =0; {d)kt+ a
(p -I q)t =0; and (e)

a-~((p-saq]) =0. Arrows on the curves in {c)and (d) point in the direction of increasingp.

6 is shown in Fig. 5(d). Finally, the P rotation is
limited by the fact that a(p) has purely imaginary
poles obta, ined from that value of p' corresponding
to the hvo-body, i.e. , nucleon-plus-bound-pair,
binding energy of the model triton. In Eq. (A4),
this is evident since 7(z) has a pole for z equal to
the two-nucleon binding energy. n(P) has many

other singularities, but they lie farther away in the

complex p plane. If these poles of a(P) are denoted

by sic, then for the argument in (e) they become

the source of branch points for the cuts illustrated
in Fig. 5(e). Ther'efore, p is restricted to

y ( tan '(3c/2q) (A15)

for P-Pe '".
The previous example illustrates the type of

analysis carried out for all. five terms in Eqs.
(AS) and (A9). We found that cp~, cannot be greater
than

2y 3c v 3K 1+12K /&
' 2P

(I()'~„=ming tan '
P 2q q

(A16)
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TABLE V. Limits of rotation determined by singulari-
ties. Restriction number refers to Eq. (A16) from left
to right. Restrictions are for symmetric Tabakin param-
eters.

1.0"

0, 9"

RMALIZEO CROSS SECTION
VS

ROTATION ANG LE

Restriction
number

Angle
{deg)

31.8
52.7

60.5

75.6

60.0

2
0.8-

0.7

0.4a-

0
N

0.5.-

X

2 O.~"

IO a'0 ~ io

I

40 50

L=0

ROTATION ANGLE (4I00 )

TABLE VI. $-wave potential parameters.

Interaction
Strength
X (fm 3)

Inverse range
P {fm-')

Triplet ~

Singlet
0.220
0.14S

1.15
1.15

For the deuteron y=0.232 fm

In practice, we always chose y = & y~. Moreover,
we found that it is either convenient or essential to
rotate the It' integration. contour into the fourth
quadrant as well. In practice, we chose Im|'- ke '",
i.e. , we rotated 0 the same as P. This was actually
required in some cases, but not all„however, it
was adequate for all. As P and q become larger,
the restrictions in Eq. (A16) become tighter and
the results more sensitive to the rotation angle.
A typical case is shown in. Table V, where the
terms in Eq. (A16) are evaluated. Note that it is
the restriction. from the X equation which deter-
mines the size of y.

To check the sensitivity of the results to varia-
tions of the contour rotation angle, we varied y
over a wide range for typical threshold kinema-
tics; E, = 90 MeV, Ef= 80 MeV, and 8, = 92.6'. The
optimal choice of p for this case is 26'. The ratios
of the l = 0 and l = 1 cross sections for 5' ~ p ~ 45'
to those at &=26' are shown in Fig. 6. This graph
demonstrates that the results are insensitive to
p for +5' about the optimum angle. For l =2, the
band is even wider. Furthermore, when p has its
optimal value, the results are essentially in-
sensitive to the integration mesh size. The angu-
lar integrals are performed with six-point Gaus-
sian quadrature and the 0 to ~ momentum integrals

Fig. 6. The cross sections forI =0 andL =1 as a
function of rotation angle. Both cross sections are nor-
malized to unity at the optimal angle of rotation.

with 10-point Gegenbauer quadrature. When these
quadratures are changed to 10and 16points, re-
spectively, the results vary & IVo.

APPENDIX 8: POTENTIAL AND %AVE FUNCTION

PARAMETERS

The nucleon-nucleon potential used in this cal-
culation is of the separable spin-dependent type
acting only in relative S waves,

( p' iv ip) = —g(p') g(p).

The Yamaguchi form

~(P) =(P" t~') ' (»)
is used with strength A. and range P parameters
taken from Tabakin. " The numerical values for
spin triplet and singlet are listed in Table VI.

The 'He ground state wave function 4'~ that re-
sults from solving the Faddeev equations with

these potentials is of the form given by Eqs. (49)-
(61). The binding energy B„normalization con-
stant N„and spectator nucleon parameters are
given in Table VII for the spin-dependent potential.
This wave function was used in all calculations
reported here except for the quasielastic scat-
tering cross section" 'He(e, e'P)d given in Table
III, which illustrates the convergence of the Born
and full amplitude for increasing partial wave
number. A fully symmetric ground state was
generated by taking an. average of the two nucleon
spin-dependent potentials. The parameters of this
wave function, which is of the form Eqs. (A2) and

(AS), are listed on the last line of Table VII.



C. R. HKIMBACH, D. R. LKHMAN, AND J. S. O'CONNKLL 16

TABLE VII. 3He ground state.

Wave function (fm ~}
Spectator function a {p)

C P

Spin dependent
Triplet
Singlet
Symmetric

10.1

9.33

0.2268

0.3235

1.00
0.4907
1.0

4.225
2.989
3.670

1.930
1.117
1.469

0.1538
0.0984
0.1620
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