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We find that the three-body two-pion-exchange currents lead to an effect very singar to that of the two-

body one-pion-exchange currents on the charge form factors of 'H, 'He, and 'He. Most of this effect is,
however, canceled by similar p-mesoncxchange currents. The four-body thrcc-meson-exchange currents are
of negligible importance for the a-particle charge form factor.

NUCLEAR REACTIONS ~Hes H, He(e, e); calculated charge form factors with
2-, 3-, and 4-body nMson-exchange operators; pion exchange with/without p

exchange; simple wave functions; effects of correlations, vertex factors.

I. INTRODUCTION

Knowledge of meson-exchange current phenom-
ena in electron-nucleus scattering has advanced
rapidly over the last few years. For example, the
effect of the two-body one-pion-exchange current
contribution to the nuclear spin current in inelas-
tic e-d scattering and the magnetic form factors
of the three-nucleon ground states has been firmly
established. ' '. That there is a beneficia'i effect
due to the one-pion-exchange current en nuclear
charge form faqtors as mell seems to be gener-
ally ggcognized, 4 ' although there remains some
uncertainty as to the form of that pq, rt (i.e. , the
charge component) of the one-pion-exchange cur-
rent. s

The large effects associated with two-body one-
meson-exchange currents suggest the question of
how important the three- or many-body exchange
currents might be. This question is particularly
relevant now that calculations have been performed
of nuclear charge form factors with account of
two-body currents and including three-body two-
meson-exchange forces in the construction of the
nuclear wave functions. '9. In this paper we ad-
dress ourselves to this question and explore the
effects of three- and four-body currents on the
charge form factors of the three- and four-body
nuclei. The models used for the exchange current
operators are the same as those commonly used
for the two-body one-meson-exchange current op-
erators and for the three-body forces." The
reader who has accepted the models for the two-
body currents and the three-body force wiQ have
to accept the three- and four-body currents that
we derive below as well, as no additional level of
assumption nor approximation is introduced.

One result of the present investigation is that
the effects of the three-body and four-body pion-
exchange currents on the charge form factors of

the three- and four-nucleon nuclei are qualitative-
ly similar to those of the two-body one-pion-ex-
change current, although their magnitude is some-
what smaller. On the other hand, we also con-
sider p-meson exchange in addition to pion ex-
change and find large cancellations to occur be-
tween these exchange mechanisms. Hence the net
effects of the combined pion and p-meson three-
and four-body currents are rather small.

The quantitative importance of the three- and
four-body currents as compared to the one-body
currents grows rapidly for momentum transfers
of q'&10 fm '. At smaller values of momentum
transfer they are completely insignificant. The
sign of the most important three- ancf four-body
current matrix elements is the same gs that of
the two-body current. Consequently they tend to
amplify the beneficial two-body exchange current
effect on nuclear charge form factors first pointed
out by Kloet and Tjon' and. later emphasized by
Fii~mel Luhrmann and Zabolitzky

In Sec. II of this paper we present the three-nu-
cleon two-meson-exchange current operators and
the similar four-nucleon three-meson-exchange
current operators. In Sec. III we study the effects
of these operators using the simple harmonic os-
cillator model for the nuclear wave functions. The
use of the simple wave functions allow us to pre-
sent the exchange current matrix elements in
simple closed form and to illustrate the general
features of the matrix elements in a, as it turns
out, qualitatively correct way. In Sec. IV we illus-
trate how correlations in the wave functions affect
the exchange current effects. In Sec. V we give a
summary of the conclusions.

II. THREE- AND FOUR-BODY EXCHANGE CURRENTS

The two-body pion-exchange current operator
that leads to the most important effect on nuclear
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charge form factors at values of squared momen-
tum transfer q'» 20 fm ' is the one first consid-
ered by Kloet and Tjon. ' They obtained the ex-
change current expression by considering the
lowest order limit of the charge component of the
four-current caused by the "pair" diagram in Fig.
1a. This diagrammatic identification of the op-
erator is associated with the use of the pseudo-
scalar model for the rN coupling. If the pseudo-
vector coupling model is used, the exchange cur-
rent operator arises as a relativistic correction
to the part of the relativistic pion photoproduction
amplitude with a positive energy nucleon iater-
mediate state. Since at the level of the tree-graph
approximation the use of pseudovector coupling is
easier to justify, "we prefer that interpretation
and the corresponding representation by the sea-
gull diagram in Fig. 1(b). The exchange current
operator has the form

(1)

Here F~'~ are the nucleon isoscalar and isovector
vector form factors" [E,(0) =E",(0) =1], g is the
vN coupling constant (g '/4v =14.5), m is the nu-
cleon mass, and p, the pion mass. The momentum
delivered to the nucleon which absorbs the photon
is denoted k, and that to the second nucleon k, .
By momentum conservation we have q=k, +k, . The
nucleon spin and isospin matrices are denoted 0
and T.

Consider now the three-body currents in Fig. 2.
The vertex on the first nucleon in Figs. 2(a) and
2(b) is the same as that considered above and pre-
viously for the two-body current. The vertex on
the intermediate nucleon in Fig. 2(a) represents
an S-wave rescattering of the meson off the second
nucleon, whereas the vertex on the intermediate
nucleon in Fig. 2(b) represents a P-wave rescat-
tering of the pion (visualized as being mediated by
the n„resonant intermediate state). The presence

&„„=- 4v(~, /u) XV4 AX
—4~(g/0 )X 0 r' 0 xA)f (2)

Here ft) is the pion isovector field operator and ~
it canonicaOy conjugate momentum operator. The
nucleon spinor is denoted g and the isospinor )f.
The two coupling constants & can be determined
in terms of the 8-wave mN scattering lengths as

X, =&p[(m+ p)/m](a, +2a,),
X =~8@[(m + p)/m](a, —a, ) .

(3a)

(3b)

With the values for the scattering lengths a, =

=0.17 p,
' and g3=-0.092 p ' givenby Bugg,

Carter, and Carter, "we obtain ~g

+=0.050. The value for &, would, if the isospin-
+ interaction were viewed as p exchange, corres-
pond to a pN coupling constant value g, '/4v = O.VV,

which is somewhat larger than the conventional
values" (g,'/4v = 0.55).

of a diagram of the type shown in Fig. 2(b), but
with the order of emission and absorption of the
exchanged mesons by the & reversed, should be
inferred. We do not display such permuted dia-
grams explicitly in the subsequent figures.

The general three-body exchange current op-
erator involves an off-shell pion-nucleon scatter-
ing amplitude for the intermediate nucleon with
the Born terms omitted. This vertex is the same
as that appearing in the three-body force. The
main part of the S-wave rescattering amplitude
can be viewed as being due to p-meson exchange
between the pion and the nucleon. Compared to
the P wave -rescattering contribution (through the
&» resonance) this is of small importance in the
three-body force. ' We shall show below that,
similarly, only P-wave rescattering leads to an
important many-body exchange current operator.

To describe the S-wave mN scattering amplitude
we choose not to try to construct a dynamical mod-
el but rather to use the phenomenological Lagrang-
ian of Koltun and Reitan":

/pe'gp ~ ~~~()

PEG. 1. Diagrammatic representation of pion exchange
current in (a) the pseudoscalar coupling m,odel and (b)
the pseudovector coupling model.

PEG. 2. Three-body bvo-meson-exchange currents
with pion rescattered by an intermediate nucleon in (a}
the $ wave and {b) the p ~ave as represented by a 6
resonance.
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Using the phenomenological Lagrangian (2), we
may now construct the three-body charge operator
associated with the Feynman diagram in Fig. 2(a}
if the first y&NN vertex and the final pion absorp-
tion vertex are described in the same way as in
the derivation of the two-body charge operator
(1}.We obtain

g(~ »~(~ ) 7Tg o 'QO' 'k~
mig (p,'+p')(p~+k, ')

x(y [EsP'T +E r ] f5(&d~+(d )

x [E~p r'x P +E"(r' x j'),]].

Here we denote the momentum add energy of the
first exchanged meson p and v~. The momenta
imparted to each of the three nucleons are denoted

~e'

k&k, and k . By momentum conservation q
=k, +k, +k, . The momentum and energy of the
final pion are then k, and (d„.

More than 90% of the ground-state configuration
of the three- and four-nucleon systems is assumed
to be a spatially symmetric S state. For this wave-
function component the part in (4) which contains
k, has no matrix element because of the antisym-
metric isospin operators. Consequently the three-
body operator (4) will be rather unimportant, as
the remaining part is multiplied by the very small
coupling constant ~, .

To construct the three-body charge operator
that corresponds to P-wave pion rescattering
through the n» resonance (which we treat in the
sharp resonance approximation), we employ the
mN4 coupling

a =-a
}t,*P vy, q}f+H.c., (5)

with g and X being the vector-spinor and isovector
spinor describing the d resonance. For f~ we use
the value obtained from the decay width (f~'/4v
=0.35}. Treating the other two vertices in Fig.
2(b) as before, we derive the three-body charge
operator

2 2

p (k,k, k )= ~ ' p [(p'k )~sr+' —3''(o pxk ).r r x r ]Qms p, (m~- m)(pm+P~)(p~+0 ~)

+E", [(p k,)r,'+ —,'(o' p xk, )(r2 x r'), 0+permutations,

We may construct in a similar &ray the four-body charge operator due to bvo successive P-wave rescat-
terings illustrated by the diagram in Fig 3. The. result is (we exhibit only the isoscalar part)

P ' qo' 'k~
4 0 1 &4& 3& 4 glm3 ~ 1 (m m)2( pR+p 2)(~2+p 2)(p2+y 2)

x g, 'pmp k4P 7~+ 4(p, p~)(o~ pm xk4)v~ r3 x r4+4(p ' k~}(a' 'p, x p~)i~'7

+„(o'p, xp, )(o'p, xk, )(r x r') (r'x r')]'

FIG. 3. Four-body exchange current involving a
double p-wave rescattering of the exchanged pion.

Here the momentum of the pion emerging from the
photon vertex is denoted p,, and that of the second
pion is denoted p, . By momentum conservation
j=Z&k„where k, is the momentum delivered to
the zth nucleon.

The four-body charge operators obtained when
one or both of the rescatterings are due to S-wave
interactions are of negligible importance compared
to those due to two successive P-wave rescatter-
ings considered above, and we shall not deal with
them here.

It is known that the inelastic one-pion-exchange
interaction between a NN and a N4 state is strongly
damped by the similar interaction due to p-meson
exchange. "'" We therefore expect the unmodified
pion-exchange charge operators above which in-
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volve intermediate &'s to overestimate the three-
and four-body effects. Therefore we find it nec-
essary to consider the p-meson-exchange currents
as well.

We first construct the two-body charge operator
associated with p- meson exchange. The diagram-
matic representation of that exchange current is
given in Fig. 4(c). To describe the ypNN vertex
we first write down the relativistic Born term for
the yN- pN reaction amplitude including the four-
point vertex necessitated by the derivative in the
pNN tensor coupling and gauge invariance. Then
we separate out that component of the operator
which is associated with the positive energy inter-
mediate state and which is singular in the soft
photon or soft meson limit, and take the static
limit of the remainder. The resulting charge op-
erator is

'~1+» '
pP(k k )= ' ' [E vr+F,"r']

iP'a j2'k —o'k om'j
s +(1-2).

m, '+k, ~

Here g, is the pN coupling constant, g,» the pN
tensor coupling constant, and m, the p-meson
mass. For the p-coupling constants we use the
values g,'/4v = 0.55 and «= 6.66 given by H5hler
and Pietarinen. " The approximations involved in
the derivation of (8) are similar to those used in
obtaining the two-body pion-exchange charge op-
erator (1) (i.e. , neglect of nonlocal operators and
terms of the order q/m compared to 1).

In addition we have omitted some unimportant
terms from the charge operator (8). Among these
is a group of isovector operators which have zero
matrix elements for wave functions that separate
into a product of spatial and spin-isospin factors.
The contribution due to the four-point ypNN vertex
necessitated in principle by gauge invariance is of
this type. Furthermore, we have left out terms of
less than second order in (1+»)~ specifically,
those ievolving the nucleon anomalous moment

. /p

FIG. 4. Two-body p-meson-exchange currents. The
pair diagram (a), the relativistic correction to the for-
ward-going nucleon diagram (b), and an explicit seaguQ
term in the relativistic Lagrangian, contribute in their
static limits to the two-body p-exchange operator repre-
serked by (c).

form factor E, and those associated with the time
components of the p-meson field. This approxi-
mation we motivate by the fact that j. +a is large
(= 7.66).

It is worth noting that both the "pair" diagram in
Fig. 4(a) and the positive energy nucleon inter-
mediate state diagram Fig. 4(b) contribute to the
p-meson exchange operators. In fact, the latter
diagram is the more important one, being of order
(1+«)', whereas the pair diagram considered by
Gari and Hyuga" is only of order (1+«).

We now turn to the three- and four-body charge
operators associated with r and p-exchange. The
additional three-body diagrams are shown in Fig.
5. There are seven four-body diagrams in addi-
tion to that in Fig. 3. We treat the ypNN vertex as
in the construction of the two-body operator and
use the usual model for the coupling of the p-me-
son with a nucleon and an isobar"

&», = "X*.8'(& && p.)IX+H c.
The coupling constant g, ~ is related to the pNN

coupling constant by the static quark model as
g,~=ass%(1+»)g , The combiPnPed pion and p-meson
three- and four-body exchange charge operators
are then

(10)

Pt(P„P., P. ,P)= .(~) (
)Pl&A P,.(t(P) &.,'P,.(P) T 'P. (P) P'~, '.

Here we have only exhibited the isoscalar part of
p, . The spin-isospin tensors T' in (10) and (11)
are defined as

ab jk ab jk abc c jk1 (12)

The meson exchange tensor functions 4 are de-

fined as
qp pq-1 p'q

@„~(QPP&
=

2+pa
—5

P

~~(» — 2,p2+ & 2,pa
P

4', (p) =4'„(p, 0).
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The coefficients E and $' for the p-meson contri-
butions are

g ddg (d1+ Z) }1 —1 80
2' o m

guh, 2 ~(}q3 (14)

The operators (10}and (11) contain parts which

lead in configuration space to & functions of the
relative separations of the nucleon pairs 2, 3 and

3,4. It may well be argued that the wave-function
correlations will as least eliminate the contribu-
tions from these 6-function terms. The &-function

components may be removed from the operators by
subtracting from the tensor 4'~~ a term 3(1-4t' ') 1

and from the tensor 4)~ a term —,'(1+ 2$) 1 .

7T

FIG. 5. Three-body currents involving p-meson as
well as pion exchange.

III. THREE- AND FOUR-BODY NUCLEI

For the. evaluation of the matrix elements of the
many-body operators derived in the previous sec-
tion we use the general formula for the matrix
element of an N-body operator in an A-body nu-

cleus:

(d )= dk~, fd(1)d(2). . .d(d)d~{(. . .d)f 3
', e+rki d(l) — k )P„(k, , . . . , k )Il((. . .d),

1=1 fN

Here g is the nuclear wave function and k~ is the
momentum delivered to the jth nucleon. The sym-
bol d(j ) denotes the differential of all coordinates
of the jth nucleon, including the position r~. If the
harmonic oscillator model is used for g, the cen-
ter of mass correction is trivially taken into ac-
count in the usual way. "

%e proceed now to the calculation of the matrix
elements of the many-body operators under con-
sideration for the three- and four-nucleon nuclei.
%e shall only consider the dominant spatially sym-
metric S-state configuration in the ground-state
wave functions. For this configuration the wave
function factorizes into a totally symmetric spatial
function y and a totally antisymmetric spin-iso-
spin vector @,. For Q, one may use the usual ex-
plicit form, ' ' but in fact the spin-isospin matrix
elements may be obtained directly once the total
spin and isospin and the corresponding z compo-
nents are known.

Below we give the spin-isospin expectation val-
ues of the charge operators presented in the pre-
vious section.

For the two-body pion- and p-exchange charge
operators (1) and (8) we obtain the spin-isospin
matrix elements

wave 11N rescattering (4) we obtain the radial op-
erator

r 2A. —'y'v )YOP3 'Y'O m3p ( 1 3 1 (p2+p2)(i12+ y 2)

The spin-isospin matrix elements of the three-
body pion- and p-exchange operators with the 4
intermediate state [(6},(10)] can be combined into

the following expression:

X ((1'h3p k3 - 3$3 (l p)

p, '+p' m '+p' p,'+k ' m '+k '

(18)
The p-meson exchange coefficient $ is defined in

(14}. For the a particle the F," term in Elis. (1'l)

and (18) should again be dropped.
The spin-isospin matrix element of the four-body

operator (11) is

' 4 ' 162m' ( — )'
h

(15)

(16}

2
S 1 V 9 k2

40P24 8 3(F1 +3+1} 2 y 2)m P. +02

For the 0( particle the E, term in the bracket
should be omitted.

For the three-body charge operator due to S-

~2+ p
2 ~ 2 +p 2 yh&q& Pl i j

3 p 3

X 4 ~d.(P2)2, U 12, .

Here the tensor U is defined as

Uiikl il( P32P31 P3 21} '2( P3 P31 P3 1l'
—86ik(2POAi &3 5(i) . (20)
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E('He) = ,'(SE -+E")8 ' ' (1+ 5 + 6 )

E('H) =-'(SE' —E')s ' "" (1+6 +6 }

E( He) Eg& (1+f6gg+36«g+ 6gv) ~

(21)

The calculation of the radial matrix elements of
the operator above is very simple if the harmonic
oscillator model is used for the radial wave func-
tion. %ith that model it is possible to express
the charge form factors of the three- and four-
body nuclei in the following convenient, form:

27 4m' 4m rn m m~-~

y, gp gP S q, p; p,)- )Sx

x [S,(p, k", p. ) —)S,(p, k, m, )].

Here the auxiliary function S, is defined as

(26)

/2V'» ~~ &+2 P+ 2 pk' 5 /2 22

Here a is the oscillator parameter(meo}'~2, which
for the three-body nuclei we take to be 0.59 fm '
and for the u particle to be O.V fm '. In (21) we
have neglected the difference between the vector
form factors I', and the electric form factors G~
which properly ought to be associated with the
impulse approximation expressions.

The first term in the brackets in Eqs. (21) rep-
resents the impulse approximation result and the
coefficients ~r„~rr„and ~rv in the other terms
represent the contributions to the form factor of
the two-, three-, and four-body currents.

The enhancement factor &» due to the r-, and
p-meson-exchange two-body charge operators (1)
and (8) may be written in the form of an integral
as

81 4m 4m' ns p. m m~-m '

~~1~~2IN SJ qp~, ; pt —$S, qp~l
0

x[S,(p& P2 P}-$ S2(p& Pa, m, )]

x [S,(p»k; g)- tS,(p„k;m, )]. (28)

The fact that the function S, in the integrand in
(26) only contains a modified Bessei function of
order & is owing to the fact that the intermediate
4 resonance must be in a relative D state together
with the third nucleon (Fig. 5).

The enhancement factor 6,v due to the charge
operator (19) caused by two successive meson re-
scatterings through the 4 intermediate state has
the form

ce

x — dk [S,(q, k; p)+qS, (q, k;m, )].
Vl 0

(22)

Here we define the function S, as

y4 g~R 1/2
"q '"}=.a;+I," qf

qk qkx I (, 2
—I(2 2 ~

'
(28)

The coefficient g for the p-meson contribution is

g = 2(g Jg)'(I+ ~)' = 4.45 . (24)

The enhancement factor ~«, can only be reduced
to a double numerical integral. For the contribu-
tion due to the three-body two-pion-exchange op-
erator (17}arising from S-wave rescattering we
obtain the enhancement factor

x dk dpS qp p)S»k p, . &5)
Pl P,

The three-body operator (18}which is associated
with the 4„ intermediate state leads to the en-
hancement factor

The coefficients $ and $' are given in Eq. (14).
The effect on (28) of removing & functions from
the operator (19) is to subtract —,'S,(p„k, 0) from
S,(P„k, p, ) and 2S,(p„k, 0) from S,(p„k,m, ).

%e now turn to a presentation of the numerical
results. %e first consider the enhancement fac-
tor 6«due to the two-body charge operators (15}
and (16). In Fig. 6 we plot 6«as defined for the
three-body nuclei in Egs. (21) and (22) as a func-
tion of momentum transfer. The dashed curve is
the result obtained with neglect of the p meson
(i.e., rl=O}. The relatively large effect of the p
meson in increasing ~» is associated with the
presence of the modified Bessel function of order

~2 in the function S„as that Bessel function en-
hances the effect of high-momentum components
or short-range effects. Kith the conventional val-
ue 3.7 for the p-tensor coupling constant I(: rather
than the value 6.6 given in Ref. 16, the p-meson-
8xchange coefficient q would be =1 rather than
4.45, leaving a far less notable p-exchange effect.
In the earlier work of Gari and Hyuga" on the p-
exchange contribution to the two-body current in
the deuteron, the effect appeared smaller because
of the omission of the effect of the positive energy
nucleon diagram in Fig. 4(b).
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In Fig. 7 we plot thy enhancement factor &&«
relevant for the a particle as defined in (21).
Again, the dashed curve is the result obtained with
omission of p exchange. Evidently, the two-body
exchange charge operator has a relatively smaller
effect in the case of the o. particle than in the case
of the three-body nuclei.

The enhancement factor &xri du t e tbre
body charge operators (18) associated with the n,

resonance intermediate state has also been plotted
in Figs. 8 and '1. (For the & particle in Fig. 7 the
relevant quantity 8&», is shown. ) The dashed
curves are the results obtained with pion exchange
alone. These results show that if it were not for
p exchange the effect of the three-body current
would be only 2-3 times less than that of the two-
body current.

The effect of p exchange in cutting down the two-
pion-exchange three-body effect is dramatic —es-
pecial1y in the ease of the more dense e particle
where the short-range p-exchange effect cancels
most of the pion exchange effect. These results
do, however, in some ways overestimate the p-
exchange effect in that if hadronie form factors
were introduced at the meson vertices, the p-ex-
change effect would be reduced more than the pion-
exchange effect. Also, we have used the very
large values for the p-coupling constants given in
Ref. 16. Reducing the p-tensor coupling constant
~ from 6.6 to 3.V would reduce the p-exchange ef-

0

IO

q (fm )

20

FIG. 7. Two- and three-body enhancement factors in
the harmonid oscillator model of He with o, = 0.7 fm
The dashed curves are again the result without p ex-
change.

feet by a factor 2.6. Finally, short- range cor-
relations in a more realistic wave function would
affect the short-range p-exchange effect more than
the long- range pion-exchange effect.

Before turning to a discussion of the four-body
current effects we consider the remaining three-
body charge operator (4) due to S-wave vN re-
scattering which leads to the enhancement factor
P» [(28)]. This operator turns out to lead to a
very small effect as shown in Table I. Compared
with the three-body exchange current associated
with I'-wave rN rescattering through the 4 reso-
nance, this operator is thus of negligible impor-
tance.

In Fig. 8 we plot the enhancement factor ~» for
the c'.-particle charge form factor (21) caused by
the four-body exchange charge operator (19) and
given explicitly in (28). The curve a is the result
with omission of the p-meson exchange effect, and
the curve c the result of the combined m- and p-ex-
change four-body charge operator (28).

IO

q (fm )

20
TABLE I. Enhancement factors (25) coming from the

three-body charge operator (4) due to S-wave rescat-
tering. The effect is inconsequential.

q'lfm '

FIG. 6. Enhancement factors due to the two- and
three-body exchange currents IEqs. (22) and (26)] in the
harmonic oscillator model of 3He and 3H with G. = 0.59
fm ~. The dashed curves give the result obtained with
omission of p-exchange effects; the solid curves include

p exchange.

0
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20

0
6.59 x10 '
8.34 x10 4

8.78 x 10~
8.85 x10~
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As mentioned before, the four-body operator (11)
has &function-type interactions which have non-
vanishing spin-isospin expectation values. [The
6-function parts of the three-body operator (10)
have zero spin-isospin matrix elements. ] The con-
sequences of the removal of the &-function terms
on the enhancement factor &» are also shown in
Fig. S: The curve 5 is the result for pion-exchange
alone after removal of the 0-function term, and
the curve d is the result for the combined r- and
p-exchange effect after removal of the a funetion
terms.

The result in Fig. 8 shows that the effect of the
three-pion-exchange four-body charge operator is
=5 times smaller than that of the corresponding
two-pion-exchange three-body operator. The ef-
fect of the inclus'. on of the p-meson is essentially
to wipe out the whole four-body exchange current
effect. We may thus draw the conclusion that the
three-body exchange effect is but a small correc-
tion to the two-body effect and that the four-body
exchange effect is completely negligible. In the
following section we shall show that the inclusion
of hadronic form factors and short-range correla-
tions does not change this conclusion.

IV. VERTEX FACTORS AND SHORT RANGE

CORRELATIONS

In this section we shall show how the introduc-
tion of hadronic form factors and short-range

correlations in the wave functions affect the pre-
vious results on the effects of two-, three-, and
four-body exchange currents. Within the frame-
work presented in Secs. II and IG, it is simple to
introduce hadronic form factors at the meson-nu-
cleon vertices. With each pion and p-meson ver-
tex in the operators considered in Sec. II we in-
clude a form factor

(29)

where p. is the mass of the exchanged meson and

k is its momentum. We chose the cutoff mass A

as 1.4 GeV/e', which is an intermediate value be-
tween the value 2m corresponding to the vertex
diagrams with NÃ intermediate states and the val-
ue -1 GeV/c' which is the lowest limit for the vp

and ~re vertex triangle diagrams for m and p ex-
change, respectively.

The vertex functions are taken into account by
the substitutions

S, ,(q, k; p,}-S,,(q, k; p}I"'(k') (30)

in the expressions (22), (25), (26), and (28) for
the enhancement factors &. In (30}, p, is either the

pion or p-meson mass, depending on which meson
is being exchanged.

In Figs. 9 and 10 we show the enhancement fac-
tors obtained with the same wave-function models
as before but with inclusion of the vertex factors.
Comparing the results in Figs. 6 and 9, which
show ~» and &„,for the three-body nuclei, indi-
cates that the form factors tend to reduce the p-

0

l5

q (fm )

FIG. S. Enhancement factor from the four-body ex-
change current. Curves {a) and (c) are the result of
(28), (c) with p exchange and (a) without. Curves {b)
and (d) are the result of removing 6 functions from the
four-body operator, as discussed below Eq. {2S) in the
text, (d) with p exchange and {b) without.
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q (fm )
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FIG. 9. Two- and three-body enhancement factors for
three-body nuclei with inclusion of vertex factors in the
operator. Compare Fig. 6.
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meson effect considerably. The result for &« for
m+ p exchange with form factors is very similar
to the result for &» obtained with ~ exchange alone
but no form factor. This result offers a partial
explanation for Why earlier exchange current cal-
culations which only included bare pion exchange
have been remarkably successful: the form fac-
tors serve to increase the effect of the three-body
currents &«, by roughly a factor of 2 over the val.-
ue obtained with bare pion and p exchange, but it
still remains roughly a factor of 3 smaller than
the result obtained with bare pion exchange alone.
The reason for this is the pure tensor character
of the inelastic meson exchange interaction that
creates the intermediate N& state. The tensor
force enhances the importance of the short-range
p-exchange interaction.

The results for the case of the o'. particle are
very similar, as shown in Fig. 10, but the three-
body current here has a relatively smaller effect
than in the three-body nuclei.

In Fig. 10 the effect Oh the four-body current
(24) as modified by form factors is also shown.
This effect remains small despite the increase
caused by the form factor.

In Fig. 11 we show the different contributions to
the o.-particle form factor compared to the em-
pirical data of Frosch et al.'2 The model for the
nucleon form factor used was that of Iachello,
Jackson, and Lande. " The large effect of the two-

IO

t lO

o I5
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lO

q (fm2)
20

FIG. 11. Charge form factor of He in the harmonic
oscillator model (n = O.V fm ~). Curve I: impulse ap-
proximation; Curve II: with inclusion of two-body oper-
ators; Curve IJI: with inclusion also of three-body oper-
ators. The effect of four-body operators is invisible on
the scale of the figure. The data are from Ref. 22.
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FIG. 10. Two-, three-, and four-body enhancement
factors for 4He with inclusion of vertex factors in the
operator. Compare Fig. 7.

body exchange current on the n-particle form fac-
tor has of course been noted before. ' ' The rela-
tive smallness of the three-body exchange current
effect is obvious. The effect of the foui-body ex-
change current is too small to be seen on the scale
of the figure.

The combined exchange current effect obtained
from two- and three-body currents as calculated
above is still about 25% larger than what would
have been the result if p-meson exchange had been
neglected. This is a consequence of the large in-
crease of the two-body effect caused by p exchange
and which well overcomes the corresponding de-
crease of the three-body effect.

We finally turn to the discussion of how short-
range correlations affect the results obtained
above. We shall only treat short-range correla-
tions in the three-body system. In order to have
a compact expression for the matrix elements of
the charge operators discussed in Sec. III for a
general configuration space wave function, we have
to construct their Fourier transforms. We define
the Jacobi coordinates



D. O. RISKA AND MARK RADOMSKI

r=12 r~ q

p=F, —2(r, +r2). (31)
E (B') = -,

'
(BE,*r E,")Bz'fdpdrdz p'r ')(l Zpl P'.

The 8-state wave function y is then a function of
x, p, and z=r"'p. The expression for the impulse
approximation contribution to the charge form fac-
tor of 'He is then

(32}

The two-body pion- and p-meson-exchange cur-
rent operators (15}and (16) give the form factor
contribution

2 2

&«(q') =-~B.(»,'++,") g— ~ »' dpi'«x P~'[i.(-'W)+f'. (-'ep)]

(33)

Here we use the notation

f —(p2+ pox + B ~ 2)l/2 (34)

I', (x) =(1+x)e */x.

The p-meson coefficient q is defined in E(I. (24).
The three-body pion- and p-meson-exchange-current operator (18) gives the following contri-

bution to the form factor of 'He:

(35)

x8~2 d ~dz ~'), -', qp +)2-.'qp

(36)

Here we use the notation

3 3 8"
Y,(x) = —,+—+ I —.x'x x (3V)

If vertex factors of the form (29) are introduced
at the meson-baryon vertices, the expressions
(33) snd (36) are modified by the substitutions

Z/2

p=Nf exp —&p Q &B)(

N

=Nf exp ——,'P(2p'+ ~r')'/' (40)

Here N is a normalization constant and f a corre-
lation factor for which we use the form

Y,(pl) Y,(pg) -— Y,(AE) - — ge ~t (38)

+2 p2
Y,(p&)- Y,(p&) — —'[Y,(&&)+ 2/t2

YB(~&)].

(39)

In (38) and (39) p, is the mass of the exchanged
meson (v or p).

As it is not possible to obtain a good fit to the
empirical" charge form factor for 'He at low mo-
mentum transfer with a Gaussian (oscillator) wave
function, we shall use the Irving-type wave func-
tion2' below:

II [1 exp( y2~ 2)P/s (41}
k&l

In (40 and (41) we employ the notation r» = r, —r, .
In Fig. 12 we show the results for the charge

form factor of 'He obtained with the wave function
(40) with no correlations (i.e. , setting f=1). Curve
I is the impulse approximation result (P = 1.23fm ').
Curve Q shows the effect of including the two-body
pion- and p-meson-exchange effect (33) using the
vertex form factor (29). Curve III shows the ad-
ditional effect of the three-body pion- + p-meson-
exchange currents (36). The relative magnitudes
of the exchange current effects are similar to
those in the 0'-particle case given in Fig. 11. The
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FIG. 12. Charge form factor of 3He with uncorre-
lated wave function (40), f=1, p=1.23 fm '. Labeling of
the curves is the same as in Fig. ll. The data are from
Hef. 24.

FIG. 13. Charge form factor of 3He ~ith correlated
wave function {40), P= 1.38 fm ', and y=1.15 fm ~ fEq.
(41)]. The curves are labeled as in Fig. 11. The data
are from ref. 24.

~.(e') l~g((e»)'i]"- (42}

data points in Fig. 12 are from Ref. 24. The mod-
el for the nucleon form factors used is that of
Ref. 23.

The effect of including a correlation factor of
the type (41) in the wave function is shown in Fig.
13. Here we have used the wave function para-
meters P =1.38fm ' and @=1.15' '. While the
impulse approximation (one-body current} contri-
bution to the form factor changes completely, the
magnitude of the two-body effect is reduced by
only -359', and the magnitude of the three-body
effect by -50%. Hence the importance of the ex-
change currents relative to that of the impulse
approximation result is increased. 'The relative
insensitivity of the exchange current effects to
the wave-function details is related to the fact that
they involve smaller momenta than the one-body
currents. In fact, this circumstance is best dem-
onstrated within the harmonic oscillator model,
in which it is possible to obtain the asymptotic
relation between the N-body exchange current
form factor E„and the impulse approximation
form factor

for large q for the pion-exchange currents if the
vertex factors are neglected. '

V. CONCLUSIONS

e have found that pion exchange gives rise to
appreciable three- and four-body exchange cur-
rent effects on the charge form factors of the
three- and four-nucleon systems. Inclusion of the
p-meson-exchange effect enhances the two-body
exchange current matrix elements but strongly
reduces the effect of the three- and four-body cur-
rents. The effect of including hadronic form fac-
tors at the meson-nucleon vertices in the exchange
diagrams reduces the p-meson-exchange effect
much more than the pion-exchange effect, so that
the net result is that the three- and four-body ef-
fects are considerably larger than when bare me-
son-nucleon eouplings are used. The two-body
exchange current effect for m+ p exchange with
form factors is very similar to the previously con-
sidered bare pion exchange currents. 4 '

The effect of wave-function correlations is to
reduce the impulse approximation form factors
strongly but to reduce the exchange effects only
by a moderate amount. Hence wave-function corre-
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lations tend to increase the relative importance of
the exchange currents, as may be seen by com-
paring Figs. 12 and 13. The net effect of the ex-
change current processes that we have considered

is to increase the height of the secondary maximum
in the tri- and four-nucleon form factors, hence
reducing the discrepancy between the calculated
and empirical values.
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