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Two-nncleon transfer reactions in the SU(6) boson model
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We suggest that two-nucleon transfer reactions be treated within the framework of the SU(6) boson model.
We derive the corresponding intensity rules in the vibrational, SU(5), and rotational, SU(3), limit. We show
that the failure of the pair vibrational model in accounting for the observed intensities is due to the neglecting
of the finite dimensionahty of the proton and neutron shells.

NUCI. EAR REACTIONS Trvo-nucleon transfer, boson model, intensity rules
given in vibrational and rotational limit.

Only a small fraction of the available data on
two-nucleon transfer reactions (those in the spher-
ical region) has up to now been interpreted in
terms of a simple unified model, the pair vibra-
tional model. ' The remaining body of data, es-
pecially those in the transitional (spherical-de-
formed) region, remains to a large extent unex-
plained. Moreover, the pair vibrational model ac-
counts only qg@litatively for the observed cross
sections. For example, ground state to ground
state cross sections are predicted to increase in
the ratio 1:2:3:4:.. . as one moves away from the
closed shell, in contrast with experiment where
the cross sections increase much slower, if at all.
In this note we point out the following: (i) The
SU(6) boson model recently proposed by us' pro-
vides a natural framework for a unified descrip-
tion of toro-nucleon transfer reactions, including
those in the spherical, deformed, and transitional
regions and including states with J'= 2' in addi-
tion to 4 ~ 0', (ii) the failure of the pair vibration-
al model in describing the data is due to the neg-
lecting of the finite dimensionality of the proton
(neutron) shells, and a crude (but simple) treat-
ment of this effect brings the predictions in agree-
ment with experiment.

To begin with, we note that, to the extent that
the spectrum can be described by the SU(6} model,
in order to calculate transfer strengths from the
ground state of a given even-even nucleus to any
J'= 0', 2' collective state in the adjacent nucleus,
one needs only to specify the form of the pair ad-
dition (removal) operator in terms of the basic
creation and annihilation operators st(s} and d (d).
In addition to proposing a description af the collec-
tive states in terms of a system of interacting bo-
sons, we have identified' these bosons with fermi-
on pairs coupled to I = 0 (s) and I = 2 (d). Then,
by equating corresponding matrix elements in the

boson and fermion spaces, it is possible to trans-
late any operator in the fermion space into an op-
erator in the boson space. " For the L = 0 two-
nucleon transfer operators (to which we restrict
ourselves in this note) we obtain

Here P, (P ) denote addition (removal) operators,
the superscript (0) denotes the transferred angular
momentum and the subscript w(v} refers to protons
(neutrons). Finally, 0, (0„) are the effective pro-
ton (neutron) pair degeneracies, which, for the
purposes of this note, we take equal to the degen-
eracies of the major shells [for example, 0= &

(82-50) = 16 in the 50-82 shell], N, (N„) are the
proton (neutron) pair numbers, and n~, (n~„) are
the proton (neutron) d-boson numbers.

The addition (removal) operators in (1) are
written in terms of the individual creation (an-
nihilation} operators for proton and neutron bo-
sons. We have shown in Ref. 3 that the separate
dependence on the proton and neutron variables
can be removed in the case in which the combined
proton-neutron system is invariant with respect
to proton-neutron transformations (a variable
called E spin in Ref. 3). Then the states of the
system are labeled by the symmetry character
of the wave functions, determined by the E-spin
Young tableaux [n„n,], with the totally sym-
metric representations [N] being the lowest in en-
ergy. In this simple case, corresponding to the
SU(6) boson model of Ref. 2, the transfer opera-
tors P, of (1) can be written as
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@+1 ~~2 1/2

P „~=u„Q„-N„-~n»+1 s —"

a(N„N„+ 1) = a„'(N„+ 1)(Q„-N„) (4)

and a similar expression for two-proton transfer.
Transitions to excited 0+ states are forbidden in
this limit since the wave functions of these states

which is now expressed in terms of the operators
s~ (8)l N = N + N and n~ = 5'~ '(dtd) "' of Ref 2

We remark here that the factor [Q, -N, —(N,j
N)n~]'~' in (2) is somewhat reminiscent of the
Holstein-Primakoff' factor (Q -N)'~' introduced
by Jolos, ' although not identical to it because of
the additional term (N, /N}n~. We also remark that
this factor arises from the finite dimensionality
of the shells (Q 0 ~} and it is the only (and major}
difference between the transfer operators (2) and
those used in the pair v'brational model. ' As it
will be shown below, it is the neglecting of this
factor which is responsible for the failure of the
pair vibrational model in describing the data in
the spherical region.

Without further assumptions, using the opera-
tors (2), we ean now calculate a. ll L = 0 two-nucleon
transfer strengths between collective 0' states, in
a major shell. Let in fact

I [N],y, & be any 0' col
lective state in the nucleus with 2N particles (or
holes) outside the closed shells (N=N, +N„) In.
the SU(6) boson model of Ref. 2, this state is char-
acterized by the partition [N] of SU(6) and by the
quantum numbers X needed to specify uniquely the
state. Let

I [N+1],}('& be any 0' collective state in
the nucleus with 2N+2 particles (or holes). The
transfer intensity ean be defined as

f(N-N+» = l&[N+1],}( I IP."'I
l [Nl, x&I',

where P,"' is equal to P,',"(P,'„") for two-proton
(neutron) transfer, respectively. In calculating
matrix elements of P+' two simple situations may
occur:

(i) In the vibraffonal limit, wave functions are
characterized by the group chain SU(6) & SU(5)
& 0'(5) and labeled by'

I [N](n~)vn~LM&. In par-
ticular, ground state wave functions [N], n~=o,
v = 0, n~ = 0, I = 0, M = 0) are obtained by applying to
the closed shell lo) the creation operator (st) N
times, i.e. , st lo). Using these wave functions
and the definition (2) we obtain the ground state
to ground state two-neutron transfer intensity

are of the form s~" "&dt"&
I
0). From the structure

of the boson Hamiltonian' it also follows that bind-
ing energies are quadratic functions of the number
of proton (neutron} bosons N, (N„),

Ea (N„) = E~+A+„+B„gN„(N„—1), (5)

where E~,A„,B„are constants characteristic of
each major shell. Thus, this limit is character-
ized by two-particle separation energies S,(N„)
= Ea(N„+ 1) -Ea(N„), which are linear functions of
X„,

Sv, "(N„)= A.„+E„N„

and by transfer intensities with a bell-shaped be-
havior, symmetric with respect to the middle of
the shell, as shown in Fig. 1(a). This behavior
may be compared with that predicted by the pair-
ing vibrational model, ' S, (N„)=A» I (N„N„+ 1)
= a„'(N„+1), also shown in Fig. 1(a). The available
data appear to be in agreement with (4) and (6) and
not with the predictions of the pair vibrational
model. An example is shown in Fig. 2.

(ii) In the rotaffonal limit, wave functions are
characterized by the group chain SU(6) & SU(3) and
labeled by'

I [N](X, p)ELM& In par. ticular, the
ground state wave functions are given by I [N], (a
=2N, p, = 0),E=O, L= 0, M= 0&. In this case, the
ground state to ground state transfer intensities
cannot in general be calculated analytically. An
analytic expression (accurate within few percent)
can only be given if one replaces the operator g»
in (2) by its expectation value in the ground state
&ng. We then obtain for the ground state two-neu-
tron transfer intensity

4 (N —1)9„-N„--
1 N„7

and a similar expression for two-proton transfer.
Equation (7) has been obtained by using the iden-
ti

(sg = ([N) (2N, O)L = 0
I
s ~a

I [N] (2N, 0)L = 0)

= &[N](2N, 0)z, = ol s'I [N —I](2N -» 0)L = o&

x ([N —1](2N —2 0)I'= olsl [N)(2N, O)z, = o)

N(2N+ 1)
3{2m-1) '

where the notation for the SU(3) representations is
the same as in Ref. (2). The expected behavior of
the two-neutron transfer intensities in the SU(3)
limit, Eq. (7), is shown in Fig. 1(b). Comparing
the previous Eg. (4) with (7), one can see that, in
going from the vibrational to the rotational limit,
one expects a drop of a factor =3 in the two-nu-
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FIG. l. {a) Schematic behavior of the two-neutron separation energies gv2 pl„) and of the ground state to ground state
transfer intensities I~~(jV„+„+1){both in arbitrary units) in the vibrational limit of the SU{6) boson model. The re-
sults of the pair vibrational model {dashed lines) are shown for comparison. {b) Schematic behavior, for fixed proton
number iV, , of the twmneutron separation energies 3pr pr„) and of the ground state to ground state transfer intensities
I~7(g„+„+1){both in arbitrary units) in the rotutkmcl limit of the SU{6) boson model.

cleon transfer intensities. This drop has been ob-
served in the Sm and Gd isotopes. In Fig. 3 we
show the experimental data in Sm superimposed
to the SU(6) predictions, Eqs. (4) and (7). The re-
markable feature of the boson model appears to be
its ability to describe quantitatively the spherical-
deformed transition. Next, we note that from the
structure of the SU(3) solutions it follows that bind-
ing energies in the rotational limit are still given
by a quadratic function of N„N„but that this func-
tion is somewhat different from (5}. For fixed
proton number N,

(N„) = E~+A„N„+B„sN„(N„—1) + a'(4N'+ 6N),

where a is the strength of the boson Q Q interac-
tion, given in Ref. 2, and N=N, +N„. The last
term in (9) is the contribution of the deformation
energy, 4N'+ 6N being the eigenvalue of the quad-
ratic Casimir operator of SU(3) in the state (X= 2N,
it = 0). From (9) we can calculate the separation
energies S," (N„) = Es(N„+ 1) —Es(N„). Noting that
N = N, +N„when 0 —N„& ~ Q„and that N = N, + 0„-N„

when ~Q„—N„&A„, we obtain

S2a (N„) =A„+B„N„+8m(N, +N„)+ 10m,

0 —N„& —.'n„(10)

S2 (N„}= A„+B„N„+8x(N„—0„-N, ) —2tc,

s A„»N„& Q„. (11)

The behavior of Saaor(N) as a function of N is shown
schematically in Fig. 1(b}. The discontinuity at
the middle of the shell arises from the fact that
there one has to shift from a description in terms
of particles to one in terms o'f holes. In contrast
to the vibrational limit, transitions to higher 0'
states are not forbidden in the rotational limit.
However, because the SU(3} quantum numbers of
the pair transfer operator st (s) are (2, 0}, two-
nucleon transfer intensities in the SU(3) limit
satisfy selection rules. In fact, starting from a
ground state representation (X, p, ) = (2N, O) one can
reach only SU(3) representations (2N+ 2, 0) and
(2N —2, 2). As a consequence, for example, (P, f)
and (f,p) reactions leading to excited 0' states have
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FIG. 3. Ground state to ground state (t,p) intensities,
IPf„N„+1), in the Sm isotopes (Ref. 8). The curves
show the vibrational, Eq. (4)„and rotational, Eq. (7),
limits of the SU{6) boson model.
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FIG. 2. Two-neutron| separation energies S and ground
state to ground state (p, t ) transition intensities (Ref. 7),
I+„+1 Ã„), in the Te isotopes. The full lines show
the behavior predicted by the vibrational limit of the
SU(6) boson model, the dashed lines that predicted by
the pairing vibrational model.

asymmetrical behavior, since in the SU(3) limit
the first excited 0; state of a nucleus with X+1
pairs is described by the SU(3) quantum numbers
(2N —2, 2), while that of the nucleus with N —1
pairs is described by (2N —6, 2), or vice versa.
As mentioned above, by adding a pair addition
(or removal) operator to (2N, O) one can reach
(2N —2, 2} but not (2N —6, 2). Since N is related
to the number either of a particle or of hole pair,
the detailed features of the asymmetry will depend
on the particular neutron and proton shells in
question. In general, (t, P) reactions to excited 0;
states ax e allowed if 0 —N„& A„~, while being for-
bidden if gA„—X„&0„. Conversely, (p, t) reactions

to excited 0', states are allowed if ~Q„—@„&Q„and
forbidden if 0~ N„& A„~. Asymmetries have been
observed in the Sm isotopes"' and here they ap-
pear to be in agreement with the predictions of the
SU(6) model. " They have also been observed in
the actinides" but a comparison with theory in
this region must await the results of detailed cal-
culations.

In conclusion we emphasize the importance of
the cutoff factor in (2). This factor arises from
the Pauli principle and it is neglected in the pair-
ing vibrational model. We also stress that the re-
markable feature of the SU(6} boson model is its
ability to cover the transitional as well as the vi-
brational and rotational regions.
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