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New method for triton calculations in momentum spaces'
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A new method for a solution of the bound-state Faddeev equations in momentum space is presented. The
method takes advantage of an expansion of the Faddeev amplitude into a suitable set of basis states and uses

the potential directly. To demonstrate the practicability we have recalculated the triton binding energy for
the Reid soft-core potential including all partial waves up to a maximal subsystem angular momentum j = 2.
%e found E3 ———7.56+0.10 MeV. The Reid potential truncated to the 'So and 'S,-'D, states yields

Eff ———7.53 +0.08 MeV.

NUCLEAB STBUCTUBE H; calculate binding energy; include all partial waves
of Bead potential up to J «2; Faddeev approach.

I. INTRODUCTION

Meson theoretical potentials are naturally given
in momentum space and can be transformed to
coordinate space only after appreciable approxi-
mations. ' The same holds for modified versions
of the Faddeev equations taking care of relativistic
effects."Therefore a simple and economic algo-
rithm to calculate the three nucleon bound state in
momentum space is desirable for allowing an easy
test of nuclear interaction models and dynamical
equations.

The starting point of our method, which has been
briefly described in Ref. 4, is the Faddeev equa-
tions' in differential form

(1"+ 1'- E) I+&(2, 3} 1'(P1P23 P13P23) lq'&(2, 3}

(1)

which directly contain the two-body nuclear inter-
action V». The high number of partial-wave am-
plitudes together with the dependence on two con-
tinous variables, namely, the subsystem momen-
tum p and the spectator momentum q, prohibits a
direct discretization at least for most of the pres-
ent day computer facilities.

As proposed by Kim' ome might gain a reduction
of the dimension if the p dependence of 4 can be
incorporated using a few suitably chosen basis
functions q}„(p) taken from a complete set:

+(p, q) = g m. (p)t}.(q) . (2)

Since the variable p describes the relative motion
of two interacting particles, one should incorporate
into the basis functions q}„(p) the specific features
of the two-body interaction, especially the short

range repulsion. Furthermore, since we are in-
terested in a bound-state problem and because of
technical simplifications we would like to deal with
a discrete basis of square integrable functions.
Therefore we suggested' the use of eigenfunctions
of the Wo-nucleon Hamiltonian supplemented by a
harmonic-oscillator potential:

h = T+ V+ Vho .

This choice should be much more convenient than
pure harmonic-oscillator functions, ' although the
basis functions are no longer given analytically. A

similar technique has been used to calculate the
Brueckner 6 matrix. '

Using the expansion (2) in Eq. (1) one ends up
with a set of coupled integral equations in one vari-
able for the unknown functions b„(q) This set i.s
tractable since it turns out that the convergence
with respect to the number of basis functions is
rather good.

We wish to emphasize that the decomposition (2)
does not correspond to a finite-rank expansion of
the interaction. This is obvious from the repre-
sentation

Got(P12P23+P13P23)e

of Etl. (1). Here t is the two-body t matrix and G,
=(z -p' q') '. Obviou-sly, the presence of G, pre-
cludes simultaneous finite-rank expansions for 4
and t. Nevertheless, one can handle separable inter-
actions by our method as we'll, though in that case
there exist more economic methods. In fact we
recalculated the three-body binding energy for
some separable interactions for the sole purpose
of testing our computer code (see Sec. IV).

In Sec. II we define our notations and describe
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our choice of basis functions. The representation
of the Faddeev equation (1) in that basis is given in
Sec. III. Section IV is devoted to numerical de-
tails, including test calculations with separable
interactions and three spinless bosons interacting
by the Reid-'5, potential only.

In Sec. V we present our results for the full
acid soft-core potentiale together with a detailed
analysis of the p- and d-wave contributions. There
is a striking difference from results found by other
groups, " "who quoted a value of 7.0 MeV for the
truncated Reid potential. %e want to stress that
we also get a value close to that, namely V.1, if
we erroneously change the sign of the 3= 0, l= 2
potential matrix elements. Perhaps this is the key
to the stiQ unbalanced results of triton calculations
with the Reid potential. '

xlPImf)(&)&»)&pfmq)()&kl =1. (9)

In complete analogy we introduce states (r p%)&»)
by

(X,x,x,(r j%}&»&=5(r —(x, -xg)
x ()(p- (2/~)[x, ——,'(x, +xg])
x()(%- ,'(x,-+x, +x,}) (10)

and the corresponding partial-wave states
Imp%&), 'N)(23.) by

II. NOTATIONS AND CHOICE OF BASIS FUNCTIONS

For the convenience of the reader and for the
sake of clearness we briefly describe the notations
used. In terms of the states [k„k„R,) describing
three free particles with momenta R„k„and k,
we define momentum states of relative and center
of mass motion by

&kf,kgpqk)&»& =(6 — (k, —k,))
x ()(q —(1j~)[f, —,'(k, +kg])
x ()(k —k, -k, -K3} (5)

and the corresponding ones for the subsystems (12)
and (31) in a cyclic way. Assuming the states
) (t,k,k, ) to be normalized to () functions and ful-
filling the completeness relation without additional
factors one finds

(23)(rp%~r'imp')(p, %')=, p, p r, ($')r p

x 1'~„(p)5(%—5'), (11)

where x„%„x3 denote the positions of the three
particles. As a consequence of (5), (V), (10), (11),
and of

TABLE I. List of partial waves in 8 (total angular
momentum 5=2, parity+) which come into play, if the
interaction Vfp = 0 for j &2.

No.

3

()(p'+ e p+ e~q)

x ()(q'--,'Wp+ eq)6(k-k') . (6)

Furthermore we define partial-wave states by

(2g)(p q kg jmq )Lpk }(2g)

@,q }y,„(p'}r,„(q)&)(k-P) ('I)

which fixes the normalization and completeness
relation as

&»&( p lmq)(pkg 'I'm'q')('p'k')&,
~)

(.
~

)
'

& 0 -g '),

13

18
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{x, ,x,ix,x,x, ) —

(
x exp[i(k, x, +k, x2+k3 xg] (12)

one gets

{ 3)( p lmqhpk~ rl'm'p){ 'p, '5& {„)

x —i"j,(pr&j~(qp)
&

~
e' ' . (13)

We are now able to state unambigously the poten-
tial to be used in the three-particle momentum
space. In the following we use the familiar j-J
coupling scheme where l and the subsystem spin s

are coupled to j and J is the total angular momen-
tum of the spectator particle; t denotes the isospin
of the subsystem. The first 18 partial-wave states,
characterized by these quantum numbers, are
shown in Table I.

The Reid potential is given as a local potential of
the type

(X3X2X31 V231 XI X2X3 &

= II ()(x,. —x,'. ) P V (~x, —x,~)0

(14)

Here 0 are the unit, the spin-orbit, and the ten-
sor operators, respectively. Suppressing the
fixed total momentum dependence we have in the
three-particle momentum space

3 g 1

{»)(p(lsd;q(){z)d&; (4) TI Vlp'(I' s' )j', q'()) '2)~'&;(t'2&T&{23) =
3 ~ » ~~ 33 )3 {{'(p»')

(15a)

with

V",I ', (p,p ') = —i ' ' P r 'drj, (p r) V (r)j, (p
' r) 0„'; '

7r 0
(15b)

and where the geometrical factors are given by

0{{""'=((ts)j; t~ l.s ~(l's)j;t) = ( ()», ——,'[j(j+1) —l(l+1) —s(s+ 1)]
('5,

{t+1 2E +1 l 0~0 0 ~ ~~ 11'

Since we use a different manner of integration and discretization in the Faddeev equations than the
authors of Ref. 11 we need another form of the recoupling coefficient:

{23)(p(ts)j;q(){2)d&;(t2)T IP12P23+P33P23lp'(I's')j';q'())'~z)~'&;(t'2)T&{23) ~

Inserting the completeness relation for the states
~ pqk) and using (6) and (7) it is straightforward but tedi-

ous to arrive at the following result":

{»)(p(ls)j;q(A 2') JF;(t2') T~ P»P»+P»P23~ p'(l's') j '; q'(){'-,') J'F;(t'2) T){»)

d
{)(p—l(1t'~)q+ (3&~&q'I) t)(p' —I(2/W)q+ ( It'W)q'I)

dQ 2+l g2+ l'

where u=q q' and the geometrical factor 9 is given by

and

9,",,'),', ' "(q,q', u) = p g q' "'q' '2"2P,(u)g I,';I,,', '"'(I„l„l,', I,', 0)
t1+l2=l
l f + l)=l'
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1 1

l 's~f 'X~ J~g ~ i i i i~) i e) i 2 (2E+ 1) (2E + 1)9»'z, (i„i i„', , ('„k) =-i ('iii'))'al i'V'Z' (~)„,, (&( ), (&) ), (2( ), (&(,) i) (2» ~ i)I &i )

l s j E's' j'
x g(2L +1)(2S +1) ), E —,

' Z E' —,
' Z'

L, , S S s'
S 5' L S 5'

+1. 2d+1
tE(x & f (((E'„f El& t'E2&' d1 &E d k

ll
E, E, E E', E,'E' L E,'d

2f+1)(2d+1)l(000&l, ooo&(00 0)j,ooo) ~L f E Ld E, E f
(16c)

Having clarified our notation we now want to intro-
duce the basis functions

Due to the hermiticity of the problem the solu-
tion to a fixed set (sf EjEcan be chosen to fulfill

1 ~
m").g(p) =

p
s").,(p) dpp'm). , (p)mf„(p) =()„

o
(18a)

for the two-particle subsystem.
They a,re chosen as solutions to the subsystem

Hamiltonian supplemented by a harmonic-oscillator
potential with the strength ~. The corresponding
eigenvalue problem reads

(
h', d' E(E+ 1)
MP & dp2+& p2 ~n s)sy(p)

+ Q dp'vol(p, p')a", ,~(p') =0 . (17)
l' o

E(p -P')
Q m).g(p)m) ., (P') =

p~
n

(18b)

Since the potential is real we may choose real so-
lutions. Assuming the same functions a"„,. (p) for
partial waves differing only in quantum numbers
of the spectator particle, we define our basis
states in the complete three-particle space by

lnsj;q(E). -,') J'8:;(t-,') r)&, „
Here we used

~8Jt(p pi) pp/ySgt(p pi} (17a)
P'dpmg. ~(P) IP(E&)jiq(&k)~&;(Er) 7'&(.s)

l' 0

The coupling occurs only in partial waves Nos. 2, 3
and 11,12 of Table I, where the tensor force is present. which by construction fulfill

(19)

3 I
i »(»i(r(&'-)&()((*-'))'l ' j';q'('»)('W(('»l)T)„„=(& ()„„,()...()», ~, ~ ((„,(),„.()„, (20a)

(
3

q'dql&&j; q(&k) ~&;(E~)&&(„)&ssj; q(&-,') &8:;(E2)& I
= 1

nsf
XJg

(2ob)

In any application we can take advantage of a free
choice of K for dif'ferent partial waves to improve
the convergence with respect to n. Choosing l+ s
+ E odd the states (19) are antisymmetric under
exchange of particles 2 and 3.

III. EQUATIONS FOR THE THREE-BODY BOUND STATE

tude l)1)&„& can be written as

l@)&*»=(~ E f» &I i';»(&l)&(*) iil)T)
nsf

g)( Jt(q) (21)

We now represent the Faddeev equation (1) in the
basis states (19). Using (20b) the Faddeev ampli-

We insert this expansion into (1), project onto the
states (19}and are left with the following set of
coupled integral equations:
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2
—E 5 tst it(q) +g cnn'Osjt, Jt(q)

fi I

'g E Js'*st's.".'i"""'ts,t'~

TABLE II. Comparison of the eigenvalues E„of Eq.
(17) calculated for the Reid-soft $O potential in configura-
tion and momentum space. The oscillator strength
ft; = 0.4 MeV fm demanded a very fine initial step size of
0.05 fm to reach this accuracy in the p-space calcula-
tion.

Cnn' g ~atsf(p)p a»t(p)
l

+ Q 4 4 at t(p)U'ttlt'{p p }at' j(p ') (23)

x $,"', ,~,(q '}=0. (22)

The coefficients c, which are off diagonal only in
the quantum number n, are given as

Z„(Mev)
(r space)

7.038
24.972
42.230
59.252
76.142

E„(MeV)
(p space)

7.036
24.969
42.218
59.223
76.082

1
ntsi pl 6 t's'j'L'J't'( t

)s. I +t jt sk J t
Pl

with

x at'. ; (ps)
pl'+X (24)

(25)

The three-body dynamics is contained in the inte-
gral kernel H(q, q') which couples all nonconserved
quantum numbers s:

diagonalized is not symmetric.
In addition, we did a configuration space calcula-

tion for the 'S,-state Reid soft potential. The cor-
responding Bessel transform of Eq. (17) was solved
using the Numerov method which guarantees high
accuracy. Table II demonstrates the agreement
between both calculations.

The Faddeev equation (22) is turned into an alge-
braic eigenvalue problem by representing the func-
tions ft"„z«{q) at Gauss points. We use an integra. —

tion cutoff q,„and map the interval [O, q „. „]onto
[-1,1] by using

and

dpa"t-. t(p) ~t"t(p,pt) ~ (26)

It is the choice of physically adapted basis func-
tions qt"„t(p) which allows us to truncate the in-
finite sums over n' in (22) to a small and easy
manageable size.

IV. NUMERKAL DETAILS

The solution of Eq. (17) to determine the basis
functions at,t(p) is not trivial, because the nu-

cleon-nucleon interaction demands a large nu-

merical cutoff for the p
' integration (p,„s 35 fm '),

whereas the second derivative requires a sma11

step length at small p values, where the functions

at,t(p) oscillate (compare Fig. 1). Therefore we

used a variable step length typicaQy of 0.1 fm '
for small p values (s3.6 fm ') and of 1.6 fm ' for
p values beyond 15 fm ' in the realistic domain of
the oscillator strength a between 2 and 5 MeV
fm '. Using five point formulas for the derivative
and the Simpson rule for the integral, equation
(17) is turned into an algebraic eigenvalue problem
which is solved by inverse iteration as described
in detail in Ref. 4. In all our calculations the
orthogonality of the eigenvectors is less than 10 ',
which is not self-evident, because the matrix to be

1+x
1/q, —(1/q —2/q, „)x

(27)

where q, is another free parameter. Calculating
the kernel H(q, q') at the Gauss points we ca.n take
advantage of using a q,„cutoff by first integrating
for 1„„,.(p,) at equidistant points p, and then inter-
polating at the actual positions. The numerical
parameters are as follows:

(1) cutoff momentum q„,„;
(2) number of Gauss points N, for q' integration;
(3) mapping parameter q, ;
(4) number of Gauss points X„for u integration;
and

(5) degree of interpolation polynomial (Aitken-
Neville) N~ for integrals I„„,.(p,}/p,'" and N~, for
functions a,"„(p,)/p,"'.
The dependence on these parameters is given in
Table DI where triton binding energies have been
calculated for the Reid potential acting only in the
'S, and 'S, —'D, channels (Nos. 1-5 of Table I). The
energy E~ refers to a calculation with only one

1
basis function per partial wave, E~ refers to

2

taking three basis functions in the '8„ five in the
'S,-'D, (X = 0), and three in the 'S,-'D, (x = 2} chan-
nels, respectively. Though q,„is the most criti-
cal numerical parameter, the cutoff dependence
actually is negligible for q,„z 4 fm '. Neverthe-
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{o}

2
3
4

5

{b}
/

/

r~i
/

/
/ /

/
I

I !
/

/

/
/ /'

n=f
0=2
9=3
n=4

I

/
P(tm ~)

/
/

/
/

/

FJG. 1(a) l =0 components of basis functions of a»~{p) in the 38~-3D~ channel calculated with the Beid-soft potential and
& =4.0 Me& fm ~. (b) l =2 components of basis functions a&@ (p) corresponding to {a).



NE% METHOD FOR TRITON CALCULATIONS IN MOMENTUM SPACE

TABLE III. Dependence of triton binding energy E& on the numerical parameters as defined
in the text. E& and E& refer to different numbers of basis functions taken into account, as

1
indicated in parentheses.

qm~ (fm } qp (fm ') Np

Eg (Me V)
(1,1, 1, 1, 1)

Eg (Me V)
(2, 3, 5, $, 3)

8
8

10

10
10

1.5
1
1
1

8
10

8
8

8
8
8

10

-7.032
-7.217
-7.215

-7.248

-7.245
-7.247

-7.248
-7.248
-7.248
-7.248

-7.373
-7.546
—7.547

—7.576

-7.577
-7.581

-7.576
-7.576
-7.576
-7.576

less, we used the whole q interval (no cutoff) in
the case of three identical bosons interacting by
the acid 'S, potential. There was no change within
10 keV with respect to a calculation with cutoff.
For that simple system we also expanded the Fad-
deev amplitude in configuration space

determined p„(r) as mentioned above and solved
the coordinate space equation corresponding to
(22). Here one is faced with a set of coupled inte-
grodifferential equations for the functions b„(p).
This set is turned into integral equations and
solved by the method of Naif liet and Tjon." Due
to the fine discretization necessary we could in-
clude only two basis functions y„(r). However,
the three-body eigenvalue problem could be solved

with high accuracy and is compared with the mo-
mentum space calculation in Table IV. The agree-
ment is satisfying.

Purely for the sake of testing our computer code
in problems with the fulj. complexity and to ex-
amine the convergence with respect to the number
of basis functions we did some more test runs with
several separable potentials. In that case the
three-body binding energies are very well known

from calculations making use of the separabj. lity.
The agreement is very good as shown in Table V

and could be reached with a reasonable number of
basis functions.

In order to demonstrate the convergence of E~
in the number of basis functions and the indepen-
dence on the oscillator strength ~, we show in Fig.
2(a) the case of the Graz potential. Here we have
taken along only the first three partial waves of

GRAZ POTEN T)A L (b)

GRAZ POTENUAL

8.5 8,5

80 .

('5) = 1

( 5) = 1, 5 MeVJ'fm~

8.O

~g) =4 A%V/'fm~

o ) = 1.5MeVt'fm&

7.5 75
5 10 15 5 10 15

n ($-Q)
n( 5,-$)

FIG. 2. (a) Dependence of E& on the number of basis functions n and the oscillator strength ~ used in the 3&f J) f

channel for the Graz potential. The angular momentum of the spectator particle is allowed to be X=0 only. In the $p

channel only one basis function with a fixed a&=l.5 MeVfm is used. (b) For the Graz potential the oscillator of the
3S &-3L)& channel is fixed to v=4 MeV fm and the numbers of basis states in the other partial waves are varied.
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TABLE IV. Comparison of coordinate- and momentum-

space calculation of the three boson bound state inter-
acting by the 8() Reid potential.

REIO SOFT

So
ga

(~ space)
g~

(p space)

-0.873
-0.763

-0.877
-0.765

Table I, and in the '$0 wave we axed the oscillator
strength K, =1.5 MeV fm ' as well as the number
of basis functions n, = 1. Thus Fig. 2(a) shows the
poor dependence on n, and K, in the '5,-'D, chan-
nel. The optimal curve for K, = 4 MeV fm ' is
sandwiched by curves with decreasing and increas-
ing tendency. A picture like this easily allows to
estimate the numerical error.

In Fig. 2(b) we fixed z, = 4 MeV fm ' and now

varied the number of basis functions in the other
partial waves. Curve I is the same as the middle
one of Fig. 2(a). If we use n, = 5 we get curve II.
Including the X = 2 waves (Nos. 4, 5 ctf Table I) with
four basis functions we arrive at curve III. Note
that the curves are almost parallel. This allows
for extrapolations, for instance of curve III.

V. TRITON CALCULATIONS WITH

THE REID SOFT%ORE POTENTIAL

In the j-J coupling scheme the acid potential
for j ~ 2 acts in 18.partial waves of the three nu-
cleon bound state (see Table I). Let us first dis-
cuss calculations for this potential truncated to
the '80 and '8,-'D, waves. In Fig. 3 we show the
convergence in the 'S, wave (No. 1 of Table I).
Obviously z, =2 MeV fm ' with n, =5 (or 2) appear
to be sufficient. The dependence on K, and n, of
partial waves Nos. 2 and 3 is pictured in Fig. 4.
For all curves belonging to different K, values, K,

2

lg
I

3
6.5"

~~ s~&o —~ ~~~
~baggy

x($-D)=4 MeV/fm~

n (5-0) = 1

5
n('S )

FIG. 3. For the acid potential the dependence of g&
on g& and g& in the go cbe~~el is pictured. g&=4 Mev
fm 2 and n2-—1 are fixed for partial waves Nos. 2 and 3
of Table E.

Rnd n, have been fixed to the above numbers, and
in partial waves Nos. 4 and 5, n, =3 basis functions
of the SRme K2 Rre tRken into Recount.

Because we used the same set of basis functions
in partial waves Nos. 2, 3 and Nos. 4, 5, one
might suspect that the K dependence is more com-
plicated than in Fig. 2(a), for instance. However,
there is rapid convergence in Nos. 4, 5 regardless
of what ~ has been used (see Fig. 5). Thus we end

up with a binding energy of -V.53+ 0.06 MeV for the
truncated acid potential.

Let us next turn to the p and d waves of the Reid
potential. To include them we were forced to re-
duce the number of basis functions in the Sy Dg

channel because of the very limited capacity of our
computer. We have chosen n, = 2 (», =2 MeV fm '),
n, =5 and n, =2 (z, =4 MeV fm '). For this choice

TABLE V. Results for test runs with various separable interactions.

Potential
gglMeV

(this method)

Number of
basis functions
~0 3 3

X=O X=2
Eg/Me V

(other methods) Reference

Reid (UPA)

Graz

Hammann-Mongan II
(no tensor)

-6.87+ 0.02 5
8 -7.44 + 0.02 5

-8.57 + 0.03 5
-8.86+ 0.03 5

-10.01+ 0.01 7

10
10

15
11

-6.8
7.45( 7.42)

-8.86

-10.02

15
15(19)

20, 21

22, 23, 21

Hammann-Mongan II
(with tensor) B

-9.63+ 0.01 5
-9.69 + 0.01 5

10
10 9.70

22 23 21
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REIO SOF T

's-'a g=o~ RE/0 50FT
5-0 (A=2)

75 "
7, 5

me ~~+~*~+~ ~ ~ ~ ma~V' ~ ~ ~

7.0 '

4
I ~

r I
I

I
I

I
I /

5 i

n (A=2) = 3

7.0

n& =7

5

6/

10
n(35-O)

15

FIG. 4. Dependence of E~ on g2 and g2 {partial waves
Nos. 2, 3) for the Reid potential. The values of m&=2

MeVfm andn& ——5 are fixed. In partial waves Nos. 4
and 5 we used g4= 3 basis functions with the same g2.

one gets -7.58 MeV for the truncated Reid poten-
tial which is not too far away from the fully con-
verged result. We then investigated the particular
influence of the 'P„'P„'P„'P,-'g„'D„and 'D,
waves of the Reid potential. Their particular con-
tributions can be taken from Table VI. In Fig. 5

the convergence and a dependence is shown for
these waves.

Including all p waves (i.e. , Nos. 1-14) shows that
there is almost no interference between these
waves. Extrapolating from the small basis used in

FIG. 5. Convergence with respect to n4 for K2

= 4 MeV fm 2 and 6 MeV fm . g 2
——7 is fixed. The dif-

ference between both curves is due to the g2 depen-
dence in partial waves Nos. 2, 3 as indicated by the
circles in Fig. 4 and 5.

this calculation, especially from 5 to 15 functions
in partial waves Nos. 2, 3, we get a binding energy
of -7.46+ 0.09 MeV. Thus the contribution of all
p waves including the 'P, -'I', tensor force is slight-
ly repulsive which mainly is due to the 'P, waves.
The d waves contribute 100 keV attraction and we

get -7.56+ 0.10 MeV for the Reid potential includ-
ing all partial waves up to J» 2.

VI. SUMMARY

Vfe presented an economic and transparent meth-
od to solve the Faddeev equation in momentum
space using directly the potential. It takes ad-

REIO SOFT P, O WAVES

&0' 3p 3F
2 2

3p
0 J=1/2 J=312

'O2

ai 7.57$ ':
-75-

fp
3O

2

/=112 3p i=312

70'

n n

FIG. 6. Convergence and g-dependence for partial ~aves Nos. 6-18 of Table I. When calculating the p& curves for
instance, all other p and d waves have been omitted, but Nos. 9 and 10 are both included. The horizontal line corres-
ponds to the truncated Reid calculation as marked by the cross in Fig. 4. This is basically taken in partial waves Nos.
1-5.
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TABLE VI. Triton binding energy dependence on the number of partial waves calculated with the acid-soft potential.

Partial Potential
wave No. acting in Number of basis functions

3 3Sg- Dg

15
15

Po

~P

9
10

11
12
13
14

15
16

17
18

Pf

3D

Binding energy
(MeV)

Binding energy
-7.58 MeV

Extrapolated

-6.80 -7.53 -7.58

-0.08 + 0.02 + 0.27 -0.14 -0.07 -0.03

-7.55 -7.49 -7.57

-7.46 -7.48 -7.56

vantage of an expansion of the Faddeev amplitude
into a physically adapted set of basis states for
the subsystem. The convergence is satisfactory
and thus gives an easy manageable tool to test me-
son theoretical potentials and relativistic general-
ized equations. Investigations in this direction are
under way. A complete calculation including the
usual five partial waves (Nos. 1-5 of Table 1) takes
about 45 minutes on a Telefunken TR 440, which
should be reduced by a factor 8 or 10 on an IBM
370.

Our result for the Reid potential differs from re-
sults of other groups'0 "Sy an intolerable amount.
It is interesting to note, however, that if we re-
move (erroneously) the factor i ' ' from the po-

tential V f", ,(p,p ') we found -7.1 MeV (five partial
waves) which is fairly close to -V.O MeV given in
Refs. 10-12. The separable (UPA) expansion" of
the Reid potential also gives -7.1 MeV after that
modification.

The presence of that tedious factor i' ' is just
a matter of the convention used when defining the
momentum states (p(ls) j) . Due to our convention
presented in Sec. II it must be present. Its pres-
ence or absence does neither effect the deuteron
binding energy nor the two-body phase shifts and
not even the three-body binding energy, when only
partial waves Nos. 1-3 are taken into account, but
it shows up in the coupling parameters & and in the
fuQsthree-body system.
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