Shape coexistence in ¹⁸⁶Hg and the decay of ¹⁸⁶Tl

J. D. Cole,* A. V. Ramayya, J. H. Hamilton, H. Kawakami,[†] B. van Nooijen,[‡] and W. G. Nettles Physics Department, [§] Vanderbilt University, Nahsville, Tennessee 37235

> L. L. Riedinger, F. E. Turner, and C. R. Bingham Physics Department,¹ University of Tennessee, Knoxville, Tennessee 37203

H. K. Carter, E. H. Spejewski, R. L. Mlekodaj, and W. D. Schmidt-Ott^{II} UNISOR,** Oak Ridge, Tennessee 37830

E. F. Zganjar

Physics Department, [¶] Louisiana State University, Baton Rouge, Louisiana 70803

K. S. R. Sastry

Physics Department, University of Massachusetts, Amherst, Massachusetts 01002

F. T. Avignone, III Physics Department, University of South Carolina, Columbia, South Carolina 29208

K. S. Toth

Oak Ridge National Laboratory, ^{††} Oak Ridge, Tennessee, 37830

M. A. Ijaz

Physics Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060 (Received 20 June 1977)

Details of the identification of ¹⁸⁶Tl and its decay to ¹⁸⁶Hg as investigated with an isotope separator are presented. Conversion electrons, γ , γ - γ , and e- γ studies establish two bands in ¹⁸⁶Hg; one built on a near-spherical ground state and one on a more strongly deformed shape with a band head at 522 keV. The levels are discussed in the framework of recent theoretical calculations.

 $\begin{bmatrix} \text{RADIOACTIVITY} \ ^{186}\text{Tl}, \ ^{186}\text{Tl}^{m} \text{ from} \ ^{181}\text{Ta} \ (^{16}\text{O}, 11n), \ E = 145 \text{ MeV}; \ ^{182}\text{W}(^{14}\text{N}, 10n), \\ E = 168 \text{ MeV}; \text{ mass separated radioactivities}. \ \text{Measured} \ T_{1/2}, \ E_{\gamma}, \ E_{\text{ce}}, \ I_{\gamma}, \ I_{\text{ce}}, \\ \gamma\gamma \ \text{coin}, \ e\gamma \ \text{coin}, \ \text{ICC}, \ ^{186}\text{Hg} \ \text{deduced levels}, \ I, \ \pi, \ \text{multipolarities}. \end{bmatrix}$

INTRODUCTION

In an earlier letter,¹ we reported evidence for the crossing of near-spherical and deformed bands in ^{186,188}Hg from the decays of the new isotopes ^{186,188}Tl. These results¹ established the coexistence of bands built on near-spherical and deformed shapes with states in both bands observed above and below the crossings so that neither band is terminated by the crossing. The discovery of the new isotope ¹⁸⁶Tl was first reported at the Nashville Conference.² In this paper we report details of our discovery of ¹⁸⁶Tl and its decay to ¹⁸⁶Hg. Our work agrees with the results of an independent investigation by Beraud *et al.*³

EXPERIMENTAL PROCEDURES

The first ¹⁸⁶Tl sources were produced by bombarding ¹⁸¹Ta foils in the ion source of the UNISOR separator with 145 MeV ¹⁶O ions from the Oak Ridge isochronous cyclotron. More intense mass separated sources were subsequently obtained by bombarding 99% enriched ¹⁸²W with 168 MeV ¹⁴N ions. In the latter reaction the target was separated from the ion source with a graphite cloth.⁴ The activities in the 186 mass chain were mass separated in the Scandinavian-type isotope separator. The mass 186 sources were collected on aluminized Mylar which was moved periodically to bring a freshly collected source in front of the detectors.

Spectra of γ rays and conversion electrons were recorded in the multiscale mode to establish the half-lives of the ¹⁸⁶Tl sources and the transitions associated with them and their daughters. For singles and coincidence γ -ray studies, large volume Ge(Li) detectors with 10–18% efficiencies were used. The γ -x-ray and conversion-electronx-ray data were used to assign transitions to levels in ¹⁸⁶Tl and ¹⁸⁶Hg while the γ - γ and e- γ data established the energy levels. Conversion electrons were detected in a Si(Li) detector cooled to liquid

16

2010

nitrogen temperature. In the coincidence studies, energy signals from the two detectors and the time between the events were digitized in an 8192 channel analog-to-digital convertor and stored on magnetic tape for each coincident event.

EXPERIMENTAL RESULTS

The γ -ray singles spectrum was measured in several different runs. A typical γ -ray spectrum which is the sum of the 10 time planes is shown in Fig 1 and an electron and γ -ray spectrum in Fig. 2. The results of the singles measurements and the conversion coefficients extracted from those data are given in Tables I and II.

The energies of the transitions in the yrast cascade of 186 Hg as reported by in-beam spectroscopy⁵ were used to identify the decay of 186 Tl to 186 Hg. Decay curves for the prominent transitions are shown in Fig. 3. These data establish that the halflife for the decay of the high spin isomer of ¹⁸⁶Tl is 27.5 ± 1.0 sec. A 374.0-keV transition has a half-life of 4.5 ± 1.3 sec. The conversion coefficient and K/L ratio of this transition are in agreement with those of an E3 transition. These halflives are in agreement with those of Beraud $et \ al.^3$ of 27 ± 3 and 3 ± 1 sec. In our first report,² there was evidence for a possible longer lived, $T_{1/2}$ ~1 min, component in the 405.3-keV transition but this was not seen in our subsequent studies. As seen in Fig. 3 there is some evidence that the 8-6 transition has a somewhat longer half-life and in one run the 6-4 transition had a somewhat longer half-life too. These differences, however, are thought to be from statistical uncertainties in these weaker lines. In the ¹⁹⁰Tl decay⁶ and those of the heavier Tl isotopes the spins and parities of the two isomers are assigned 7^* and 2^- . The E3 character of the 374.0-keV isomeric transition indicates

2011

FIG. 1. Gamma-ray spectrum of the 186 mass separated chain. The labeled peaks are from the decay of 186 Tl to 186 Hg except for the 374.0-keV isomeric transition and two lines in 184 Au.

FIG. 2. A portion of the electron and γ -ray spectra from the decay of ¹⁸⁶Tl to ¹⁸⁶Hg. The E0 character of the strong 522-keV electron transition is seen by comparing the two spectra.

that a second level is probably present between the 7^{+} and 2^{-} states in ¹⁸⁶Tl. The intensity of the 374.0-keV transition is very weak (2.0%) and within errors one cannot exclude β population of this amount to the 4⁺ or 2⁺ states. Thus we cannot say whether the low spin isomer is above the 7⁺ feeding into it, or below with β decay out. The γ -ray intensity of the 373.8-keV transition in the work of Berand et al.³ is 5.3 ± 0.5 compared with 2.0 ± 0.1 in our work. This difference in intensities indicates that we are not populating the isomer as strongly. They used the 3 He, 14*n* reaction and we the 14 N, 10*n* reaction. The high spin isomer should have been populated more strongly in our work. This coupled with the change in the isomeric transition intensity suggests that the isomer is the low spin member and that it lies above the 7⁺ ground state. This assignment leaves open the question of whether the low spin state is 2^- with a 5^+ state between it and the

7^{*} or whether here the low spin isomer spin in 4⁻. It also raises the question of why essentially no β decay to ¹⁸⁶Hg is observed from the low spin isomer.

The results of our γ - γ and e- γ coincidence studies which were used to establish levels in ¹⁸⁶Hg are shown in Table III. The level scheme is shown in Fig. 4. Of particular importance are the 0⁺ and 2⁺ members of the deformed band. The K electrons of the 522-keV transition are in coincidence with Hg K x rays but not with the strong γ rays in ¹⁸⁶Hg. Coupled with the large α_K and K/L ratio of this transition, it depopulates a 0⁺ state of this energy. The assignment of 2⁺ to the level at 621.0 keV is based on the α_K and K/L data which together show a large E0 component in the 215.6-keV transition. The spin-parity assignments for the states at 1080.5 and 1678.1 keV are based on the cascade character of their decays to levels of known spin-

E	(keV)						
Present	Beraud et al. ^a	Present	Beraud et al. ^a				
98.2 ± 0.7		0.6 ± 0.3					
117		< 0.3					
186.4 ± 0.4		2.5 ± 0.5					
215.6 ± 0.3	215.5 ± 0.3	3.7 ± 0.4	4.5 ± 0.5				
288.1 ± 0.4 ^b	287.9 ± 0.3 ^b	1.3 ± 0.3 ^b	< 1.8 ^b				
356.8 ± 0.2	356.7 ± 0.3	32 ± 2	32 ± 1				
374.0 ± 0.5 ^c	373.8 ± 0.3 ^c	2.3 ± 0.3 c	5.3 ± 0.5 ^c				
397.9 ± 0.4	397.8 ± 0.3	2.0 ± 0.2	1.6 ± 0.2				
402.7 ± 0.2	402.6 ± 0.3	50 ± 2	50 ± 1				
405.4 ± 0.2	405.3 ± 0.2	100	100				
412.3 ± 0.4	412.6 ± 0.3	1.8 ± 0.2	1.5 ± 0.2				
420.2 ± 0.4	421.3 ± 0.3	0.8 ± 0.2	0.7 ± 0.1				
424.3 ± 0.3	424.1 ± 0.2	12.7 ± 0.5	14.0 ± 0.7				
459.2 ± 0.5	459.2 ± 0.3	2.4 ± 0.4	2.7 ± 0.5				
478.3 ± 0.5^{d}	477.9 ± 0.3	3.0 ± 1.2 ^d	1.8 ± 0.2				
497.5±0.7 ^b	497.6 ± 0.3 ^b	2.0 ± 1.0^{b}	0.60 ± 0.15^{b}				
522 ± 1	523 ±1	< 0.4	< 0.5				
573.7 ± 0.4	573.5 ± 0.3	1.5 ± 0.3	1.5 ± 0.5				
597.6 ± 0.4	597.5 ± 0.2	4.3 ± 0.3	4.6 ± 0.3				
607.2 ± 0.3 ^e	607.5 ± 0.3	$8.3 \pm 0.8^{\text{f}}$	6.7 ± 0.5				
621.9 ± 0.4 ^d		2.9 ± 0.4^{d}					
625.6 ± 0.3 ^d	626.1 ± 0.3	6.2 ± 0.3^{d}	3.1 ± 0.2				
675.1 ± 0.3^{e}	675.5 ± 0.3	15.3 ± 0.8	15.5 ± 0.8				
726.0 ± 0.7^{d}	726.5 ± 0.3	3.6 ± 0.5^{d}	1.7 ± 0.4				
769.8 ± 0.4	770.2 ± 0.3	4.8 ± 0.6	5.0 ± 0.3				
787.6 ± 0.7	788.4 ± 0.4	3.0 ± 1.0	2.9 ± 0.3				
811.8 ± 1.0	811.1 ± 0.4	3.0 ± 0.5	2.3 ± 0.5				
827.0 ± 0.7	826.4 ± 0.4	3.2 ± 0.5	2.4 ± 0.3				
870	870.0 ± 0.4	< 0.5	1.0 ± 0.2				
1178 ± 1.0	1177.1 ± 0.4	0.8 ± 0.4	0.8 ± 0.2				
1209 ± 1	1209.7 ± 0.5	2.3 ± 0.7	1.1 ± 0.2				
1247 ± 1	1247.6 ± 0.5	1.4 ± 0.5	1.4 ± 0.2				
1272 ± 1	1272.6 ± 0.5	1.4 ± 0.4	1.4 ± 0.2				

TABLE I. γ -ray energies and intensities in the decay of 186 Tl.

^a Reference 3.

^b Present in decays of levels in ¹⁸⁶Hg and ¹⁸⁶Au.

^c This transition is in ¹⁸⁶Tl and the different intensities presumably reflect different populations of the high spin isomer.

^d Doublet with long life component in our work.

^e This result is from on line data and has a 27 sec half-life. In one off line run this intensity was 14.5 and had a $T_{1/2}$ the order of several minutes.

^f Coincidences with $K \ge 10^{106}$ Hg and ¹⁸⁶Hg.

parity and so are considered tentative.

The even parity band structures will be considered in the next section. A major difference seen in decay of ¹⁸⁶Tl to levels in ¹⁸⁶Hg compared with the ¹⁸⁸Tl decay, and the decay of the heavier Tl isotopes is the lack of strong population of the 5⁻, 7⁻,9⁻ members of an odd parity band. For example, in ¹⁸⁸Hg a level at 1909.7 keV is assigned as 5⁻, and its γ decay is 13.2 units. The 2295.4-keV level is assigned 7⁻ and has 3.7 units of γ intensity out. There are no such strongly populated states seen in ¹⁸⁶Hg. One possible explanation for this decrease may be that the β -decay strength is carried off by the deformed band, which is not seen in ¹⁹⁰Hg and heavier Hg isotopes and is significantly lower in energy in ¹⁸⁶Hg than ¹⁸⁸Hg.

Fransition	I _{er}	Ι,	,	K conversion coefficients									
Energy	Prese	Pres	sent	Berau	d et al.	a	E 2 ^b		<i>M</i> 1 ^b				
215.5	2.45 ± 50	3.7 ±	=0.4	3.1±	0.7	2.8	±0.3		0.142	0.	76		
356.7	33 ±6	32 ±	= 2	$0.049 \pm$	0.009	0.04	±0.01		0.042	0.	193		
402 ± 405	100	150		0.0315					0.0315	0.	138		
424.2	12 ± 5	12.7	=0.5	0.045 ± 0.019		0.031 ± 0.006			0.028	0.	121		
522	50 ± 5	< 0	.4	>6.0		>6.2							
374	8.5 ± 3.0	2.3 ±	=0.5	$0.17 \pm$	0.07	0.095	±0.020	E	1	M1 0.	18		
								E	2 0.039	M2 0.	58		
								E	3 0.105	M3 1.	5		
								E_4	4 0.27	M4 3.	7		
	K/I			K/L the	heorv ^b								
Energy	Presen	t exp .	<i>E</i> 0	<i>M</i> 1	E2	M 2	E3	M 3	E4	<i>M</i> 4			
215.5	5.3±	1.4	5.8	6.0	1.15			1999 ₁₉₉ - 199 199 199 199 199 199 199					
522	5.7±().8	5.8	6.0	3.6								
374	1.5±0).9	0.0	5.8	2.4	4.6	1.0	2.9	0.43	1.8			

TABLE II. Relative intensities of conversion electrons in the decay of 186 Tl and K conversion coefficients.

^a Reference 3.

^b R. S. Hager and E. C. Seltzer, Nucl. Data <u>A4</u>, 1 (1968); <u>A6</u>, 1 (1969).

TABLE III. Results of the $\gamma-\gamma$ coincidence studies for transitions assigned to the ¹⁸⁶Tl decay. An \times means a definite coincidence and a W means weak but not absolutely definite evidence. The last two entries show the coincidence between the K electron lines of the 405.4- and 522-keV transitions and γ rays as seen in the $e-\gamma$ coincidence studies.

		nt Stern Co			teget / de l'Alifensaio			1996 - The Constant of States of Sta						
V rav														
Gate	Ho v rov	215.6	356.8	402 7	4054	494 3	150 2	178 3	597 6	607 2	675 1	769.8	7876	811 8
San	пбліцу	210.0	000.0	102.1	100.1	141.0	100.4	H10.0	001.0	001.2	075.1	103.0	101.0	011.0
215.6	×				×					W				
356.8	×			×	×	×								W
397.9	×				W							W		
402.7	×		×		×	×						×		W
405.4	×		×	×		×	W	W	×	×	×	W	W	
404.0														
424.3	×		×	x	x									
459.2	×				×									
478.3	×													
597.6	×				×						×			
607.2 ^a	×				×									
675.1 ^a	×				×				W					
769.8	×			×	×									
787.6	x				W									
811.8	×		×	×	×									
827.0	×				×									
K-405.4+402.	7 ×		×	×	×									
K-522	×													

^a Both the 607.2- and 675.1-keV gates show coincidences with Pt as well as Hg K x rays to confirm that these are both doublets and belong between levels in both isotopes.

FIG. 3. Decay curves for the known yrast transitions in ¹⁸⁶Hg from two separate runs and the new 374.0-keV isomeric transition.

FIG. 4. Energy levels in $^{186}\mathrm{Hg}$ populated by the decay of $^{186}\mathrm{Tl}.$

Beraud *et al.*³ placed several of the weaker transitions into three additional ¹⁸⁶Hg levels. In addition, several of the weak transitions in Table I could not be analyzed for $T_{1/2}$ and may not belong to the ¹⁸⁶Tl decay. Also there are some long lived impurities that obscure lines that could be in this decay.

NEAR-SPHERICAL AND DEFORMED BANDS

In our letter,¹ we presented in more detail the bands built on near-spherical and deformed shapes in ¹⁸⁸Hg. Here we present the full results for ¹⁸⁶Hg. Figure 5 gives the levels associated with the nearspherical and deformed shapes in ¹⁸⁶Hg. The crossing of these bands so that the yrast cascade shifts from one to the other explains the unexpected "forward bending" of the usual moment of inertia plot (Fig. 6) as already shown¹ for ¹⁸⁸Hg.

A number of theoretical calculations have been carried out to explain the structure of the light mass mercury isotopes.⁷⁻¹² In each case the existence of the two bands is reproduced by a second minimum in the potential at larger deformation

FIG. 5. Levels associated with the near-spherical and deformed bands in 186 Hg are shown. On the left the energies of the levels in the two bands are plotted vs I(I+1) and are compared with the calculations of Frauendorf and Pashkevich (Ref. 11).

than that of the other minimum. The successes of these calculations are illustrated in Figs. 5 and 7 which compare the calculations of Frauendorf and Pashkevich¹¹ and Kolb and Wong¹² with our experi-

FIG. 6. Plots of the moments of inertia for the yrast cascades in ^{184–188}Hg are shown for comparison with Fig. 5.

mental results. While all of the calculations have two minima, one at an oblate minimum with $\beta \approx 0.15$ and a prolate minimum at $\beta \approx 0.25$, the predicted shape of the ground state is oblate in Refs. 7 and 8 and prolate in Refs. 10–12.

Kolb and Wong¹² have pointed out that the groundstate properties depend sensitively on the singleparticle spectra, and this is why earlier calculations^{7,8} incorrectly predicted large ground-state deformations in ¹⁸⁶Hg. Turning it around, they emphasize that these mercury nuclei provide a good probe of the single-particle spectrum in the deformed region.

The matrix elements for electromagnetic transitions depend on the overlaps of the collective wave functions. Kolb and Wong¹² calculated these overlap integrals which show for ¹⁸⁶Hg that as one comes down the yrast cascade from spin 14⁺ that there is a crossing from the well deformed band to the near-spherical band around the 4⁺ deformed state. As shown in Fig. 7, their calculations reproduce qualitatively our branching ratios.

One difference in branching ratios to be noted in 186 Hg compared with the heavier Hg isotopes is the absence of a strong ground-state transition from the 2⁺ member of the deformed band. There could be a relatively weak 621-keV transition that is

2016

FIG. 7. The energy levels predicted by Kolb and Wong (Ref. 12) are compared with our experimental results. Below our γ -ray intensities in parentheses are given B(E2) values normalized to one of the overlap integrals of Kolb and Wong (Ref. 12) since these are roughly comparable.

masked by a rather strong, longer lived transition of that energy in our spectrum. The longer lived 621-keV transition is much weaker in the spectrum of Beraud *et al.*,³ but a weak 621-keV transition of uncertain half-life is still seen.

Beraud *et al.*³ have presented a table of X(E0/E2;

 $2_2^{*} \rightarrow 2_1^{*}$) values for ¹⁸⁶,¹⁸⁸Hg. These results may be misleading, however, since *M*1 admixtures are possible, and these have not been measured. Finally the systematics of the behavior of the nearspherical and deformed bands in ¹⁸⁴⁻¹⁸⁸Hg have been represented elsewhere recently.^{13,14}

*Present address: Delft Technological University, Delft, Netherlands.

- tOn leave from Institute for Nuclear Study, Tokyo, Japan.
- Present address: Delft Technological University, Delft, Netherlands.
- ||Present address: Universität Göttingen, Göttingen, Germany.
- \$Supported in part by grants from the National Science Foundation and the Energy Research and Development Administration.
- **Supported in part by separate University of Tennessee** and Louisiana State University contracts.
- **UNISOR is a consortium of the University of Alabama

in Birmingham, Emory University, Furman University, Georgia Institute of Technology, University of Kentucky, Louisiana State University, University of Massachusetts, ORNL, Oak Ridge Associated Universities, University of South Carolina, University of Tennessee, Tennessee Technological University, Vanderbilt University, and Virginia Polytechnic Institute and State University and is supported by them and the U.S. ERDA. ††Research supported by the U.S. ERDA under contract

- with Union Carbide. ¹J. H. Hamilton, A. V. Ramayya, E. L. Bosworth, W. Lourens, J. D. Cole, B. van Nooijen, G. Garcia-Bermudez, B. Martin, B. N. Subba Rao, H. Kawakami,
- L. L. Riedinger, C. R. Bingham, F. Turner, E. F.

16

Zganjar, E. H. Spejewski, H. K. Carter, R. L. Mlekodaj, W. D. Schmidt-Ott, K. R. Baker, R. W. Fink, G. M. Gowdy, J. L. Wood, A. Xenoulis, B. D. Kern, K. J. Hofstetter, J. L. Weil, K. S. Toth, M. A. Ijaz, and K. S. R. Sastry, Phys. Rev. Lett. <u>35</u>, 562 (1975).

- ²W. D. Schmidt-Ott, H. K. Carter, E. H. Spejewski, R. L. Mlekodaj, L. L. Riedinger, F. Turner, C. R. Bingham, E. F. Zganjar, J. H. Hamilton, A. V. Ramayya, E. Bosworth, K. R. Baker, A. Xenoulis, J. L. Wood, G. M. Gowdy, R. W. Fink, K. S. Toth, and M. A. Ijaz, in *Proceedings of the International Conference* on Reactions between Complex Nuclei, Nashville, Tennessee, 10-14 June, 1974, edited by R. L. Robinson, F. K. McGowan, J. B. Ball, and J. H. Hamilton (North-Holland, Amsterdam/American Elsevier, New York, 1974), p. 177.
- ³R. Beraud, C. Bourgeois, M. G. Desthuilliers, P. Kilcher, and J. Letessier, J. Phys. (Paris) <u>36</u>, C5-101 (1975).
- ⁴R. L. Mlekodaj, E. H. Spejewski, H. K. Carter, and A. G. Schmidt, Nucl. Instrum. Methods <u>139</u>, 299 (1976).
- ⁵D. Proetel, R. M. Diamond, P. Kienle, J. R. Leigh, K. H. Maier, and F. S. Stephens, Phys. Rev. Lett. <u>31</u>,

896 (1973).

- ⁶C. R. Bingham, L. L. Riedinger, F. E. Turner, B. D. Kern, J. L. Weil, K. J. Hofstetter, J. Lin, E. F.
- Kern, J. L. Well, K. J. Holstetter, J. Lin, E. F. Zganjar, A. V. Ramayya, J. H. Hamilton, J. L. Wood, G. W. Gowdy, R. W. Fink, E. H. Spejewski, W. D. Schmidt-Ott, R. L. Mlekodaj, H. K. Carter, and K. S. R.
- Sastry, Phys. Rev. C 14, 1586 (1976).
- ⁷M. Cailliau, J. Letessier, H. Flocard, and P. Quentin, Phys. Lett. <u>46B</u>, 11 (1973).
- ⁸A. Faessler, V. Götz, B. Slavov, and T. Lederberger, Phys. Lett. <u>39B</u>, 579 (1972).
- ⁹S. G. Nilsson, J. R. Nix, P. Möller, and I. Ragnarsson, Nucl. Phys. A222, 221 (1974).
- ¹⁰F. Dickmann and K. Dietrich, Z. Phys. <u>271</u>, 417 (1974).
- ¹¹S. Frauendorf and V. V. Pashkivich, Phys. Lett. <u>55B</u>, 365 (1975).
- ¹²D. Kolb and C. Y. Wong, Nucl. Phys. <u>A245</u>, 205 (1975).
- ¹³J. H. Hamilton, in Selected Topics in Nuclear Structure, edited by V. G. Soloviev et al. (Dubna Press, USSR, 1976), D-9920, p. 303.
- ¹⁴J. D. Cole, J. H. Hamilton, A. V. Ramayya, W. G. Nettles, H. Kawakami, E. H. Spejewski, M. A. Ijaz, K. S. Toth, E. L. Robinson, K. S. R. Sastry, J. Lin, F. T. Avignone, W. H. Brantley, and P. V. G. Rao,
- Phys. Rev. Lett. 37, 1185 (1976).