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%'e investigate the single-scattering optical potential in the multiple scattering approaches of %'atson and of
Kerman, McManus, and Thaler. Since the kinematics of single scattering is three body in nature, we build
a three-body model of this term. This approach can include the proper kinematics for the struck nucleon, the
identity of the target nucleons, and the binding interaction of the struck nucleon. Integral equations of the
Faddeev type are derived for both the Watson and Kerman-McManus-Thaler single-scattering optical
potentials. Unitarity relations are investigated and we observe that these relations can be expanded in order
to identify the intermediate states responsible for the absorptive parts. The transition amplitudes to the
inelastic states implicit in the model are extracted and evaluated. This permits one to understand the
physical meaning of the imaginary part in precise terms. The same procedure is applied to the closure and
impulse approximations for the single-scattering term and their implicit inelastic states and reaction
amplitudes are identified, These approximations are evaluated by analyzing the inelastic data. %'e conclude
that the impulse approximation to the Watson single-scattering term should provide the best two-body
approximation to a single-scattering optical potential.

NUCLEAR REACTIONS Study optical potential in Watson and KMT multiple-
scattering theory, three-body model introduced, Faddeev equations derived,
unitarity studied; applied to intermediate energy nucleon-nucleus scattering.

I. INTRODUCTION

Most calculations of the optical potential for
hadrons scattering from nuclei at intermediate
energies are based on the multiple-scattering
series of Watson' in the rearranged form of Ker-
man, McManus, and Thaler (KMT).2 The lowest
order term of this series, the single-scattering
term, gives the optical potential arising from scat-
tering with uncorrelatqd single nucleons. Single
scattering can be expected to give the dominant
contribtuion to the optical potential at energies
above about 100 MeV for nucleon projectiles and
from even lower energies for pions and kaons. '

This term yields an optical potential which is
the folding of an effective hadron-nucleon inter-
action over the nuclear wave function. The exact
effective interaction prescribed by the theory can
not be calculated exactly, so approximations must
be made. In practice, hadron-nucleon scattering
amplitudes are usually used as effective inter-
actions. These amplitudes are complex and there-
fore lead to optical potentials with absorptive (im-
aginary) parts. These absorptive parts play an
essential role in determining the elastic scattering.

The physical meaning of the imaginary part con-

structed from folding a scattering amplitude is
somewhat obscure. Crudely, one can say that any
scattering heads to an absorption so the imaginary
part corresponds to something like the total pro-
jectile-nucleon cross section times the nuclear
density. Since different approximations for the
single-scattering term lead to different imaginary
parts for the optical potential, it would be useful
to have a detailed relation between the effective
interaction used and the reactions which are im-
plicitly causing the absorption. It is the goal of
this paper to provide such a relation via the study
of unitarity.

A sharper understanding of the single-scattering
optical potential is interesting for two reasons.
First, microscopic calculations of nuclear re-
actions usually employ a distorted wave approxi-
mation. These calculations require optical wave
functions in the neighborhood of the nuclear sur-
face. The optical potentials giving these wave
functions are obtained by fitting the elastic scat-
tering data phenomenologically. Unfortunately, the
optical potential is not uniquely determined by the
asymptotic wave function (experimental elastic
cross section). The resulting ambiguity leaves an
uncertainty in the optical wave function inside the
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nucleus. The theoretical structure of the potential
needs to be better understood, in order to remove
the uncertainties from distorted wave calculations.

A second reason for a careful study of the sin-
gle-scattering term is that one hopes to extract
information about nuclear correlations from elas-
tic scattering. The multiple- scattering series can
be arranged in such a way' that the second order
term depends on the correlations of pairs of nu-
cleons in the nucleus, f.he third on correlations
of triples, and so on. These correlations are of
considerable interest in nuclear physics, and the
small corrections they make to elastic scattering
have been proposed as a way to measure them.
Since these corrections are small compared to
the first order term, the first order term must be
known with high accuracy before correlations can
be extracted from the data.

The optical potential in the single-scattering ap-
proximation is given by a sum of terms corres-
ponding to the projectile scattering from one nu-
cleon at a time. This is physically reasonable
since most of the time the individual nucleons are
moving in uncorrelated shell-model orbits. A
dimensionless size parameter also suggests the im-
portance of scattering from one nucleon at a time.
The range of the strong part of the hadron-nucleon
force, ~„ is about 1.5 fm for nucleon projectiles
and less than 0.5 fm for pion and kaon projectiles.
The average separation of nucleons in the nucleus,
d, is about 1.8 fm. The ratio of the force range to
the average spacing r, jd, is therefore between 0.3
and 0.8 for the various projectiles. The nucleus
appears dilute to the probe so it should most often
see one nucleon at a time. This is consistent with
the experimental observation that most of the re-
action cross section at intermediate energies goes
into nucelon knockout. ~

The kinematics of the single-scattering approxi-
mation is effectively that of a three-body problem,
the three particles being the projectile, the struck
nucleon, and the rest of the nucleus or "core." We
construct a three-body model of the single-scatter-
ing optical potential and write Faddeev equations
for both its Watson and KMT forms. This permits
us to include the correct collision kinematics and
the effect of the nucleon-core binding potential in
intermediate states.

The difficult part of constructing a three-body
model of a projectile-nucleus optical potential is
that for a target having A particles there are A
distinct three-body problems involved. These must
be superposed in a manner which does not do vio-
lence to the true many-particle structure of the
amplitude. To be certain that our model yields a
reasonable weaving together of three- and many-
body aspects, and to obtain more physical insight

into the reactive content of our model, we study
the unitarity relation.

Standard manipulations of the Lippmann-Schwin-
ger (LS) equation with an optical potential show
that the imaginary part of the forward elastic am-
plitude is equal to the total elastic cross section
plus a unitarity defect. ' This defect is given by a
distorted wave matrix element of the imaginary
part of the optical potential. Since the optical po-
tential in our model is obtained from an operator
which satisfies a unitarity theorem of its own, an
expanded unitarity relation can be obtained. Care
must be used in constructing this relation since
Lippmann-Schwinger expressions do not specify
the asymptotic boundary conditions uniquely in a
three-body problem and "hidden" singularities
corresponding to rearrangement sta. tes can result.
Here, the Faddeev structure of our representation
of the optical potential allows us to use the stan-
dard methods of three-body unitarity and to dem-
onstrate the absence of hidden states.

Our unitarity relation shows that the imaginary
part of the forward elastic amplitude is the sum of
the total elastic cross section and total reaction
cross sections to pickup and knockout states. ' It
has a correct many-body structure and permits
the identification of the pickup and knockout am-
plitudes implicit in the three-body construction of
the optical model. A brief description of these re-
sults has been given in a recent letter. '

This expanded form of unitarity is most conve-
nient for assessing the validity and applicability
of approximations to the optical model. The stan-
dard impulse' and closure' approximations to the
sing1. e-scattering optical potential can be obtained
as approximations to our three-body model. We
can therefore determine the reactions responsible
for absorption in these approximations and even
the rea, ction amplitudes which are implicit in the
model. In both methods, the coordinates of only a
single nucleon may be modified so knockout is the
only possible inelastic intermediate state. No pick-
up states arise in these approximations since nei-
ther retains the off-energy-shell pole of the scat-
tering amplitude. The two approximations differ
from each other and from our three-body model in
the kinematics of the allowed inelastic states and
in the reaction amplitudes to these states.

The structure of the paper is as follows. In Sec.
II we review the derivation of the Watson and KMT
versions of the multiple-scattering series for the
optical potential, specifying the first order term
carefully. We present the three-body model in See.
III. The nature of the intermediate states involved
is discussed, and the Faddeev equations for the
optical potential operators derived. Techniques
for deriving explicit unitarity relations are devel-
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oped in Sec. IV and the absorptive reaction am-
plitudes in the three-body model are extracted and
interpreted. In Sec. V the closure and impulse ap-
proximations are studied and their reactive content
obtained. The resulting reaction amplitudes are
considered for the bvo approximations made both
for the Watson and KMT single scattering opera-
tors. The paper is summarized in Sec. VI and a
discussion and evaluation of the different methods
is given. The derivation of the three-body uni-
tarity relations used in Secs. IV and V are given
in the Appendix. This Appendix also contains dis-
cussions of the various limits taken in the paper to
convert discontinuity to unitarity relations.

II. MULTIPLE-SCATTERING THEORY

d'u y„k

q, =l-S,
where Q, is the target ground state and k is the
projectile momentum. The subscript 8 is used to
label the elastic channel quantities. Splitting the
Green function in Eq. (1) into the components
G =P,G+Q,G, the operator T,(E) can be separated
into the pair of equations

T,(E) = U, (E)+ U, (E)I',(E)T,(E), (4)

We consider the scattering of a projectile of
mass m, from a target consisting of A nucleons
and described by the Hamiltonian H~. The nucleon
mass we write as m.

We choose to describe the scattering by Watson' s
multiple-scattering expansion of the optical poten-
tial. ' We begin by reviewing the derivation of this
expansion briefly. The methods of Watson and
Kerman, McManus and Thaler' for obtaining the
elastic scattering due to the first term of the Wat-
son expansion are reviewed and the relationship
between the two methods is explained. The con-
sequences of the identity of the target nucleons is
considered at the end of this section.

The transition operator for elastic and inelastic
scattering to bound target states is given by the
Lippmann-Schwinger (LS) equation

T,(E) = V+ VG(E)T,(E),
where

G(E)=(E+ie —K-H ) ',
E is the kinetic energy operator for the projectile,
and V =+",~v, is the sum of the interactions of the
projectile with each target nucleon. The many-
body scattering problem described by Eq. (1) can
be formally reduced to a tmo-body elastic scatter-
ing problem by introducing the projection operators

U, (E) = V+ VQ,G(E)U, (E),
where me have defined, for convenience,

I', (E}=P,G(E) .

(5)

The on-shell elastic scattering amplitude is
(k.'&. IT.(E) I&.k,) with Ik;I = Ik. I

~d E=E.+f.'~
2p, We use E, to denote the internal energy of
the target ground state and p,, is the projectile-tar-
get reduced mass. When target ground state matrix
elements of Eq. (4} are taken, the standard two-
body I.ippmann-Schwinger equation for elastic
scattering is obtained. The optical potential is
given by the target ground state matrix elements
of U, .

All the complexity of the many-body problem
still appears in Eq. (5). Separating U, into com-
ponents in which the projectile interacts last mith
a particular target nucleon, we have

U(i)
e ~ e

U&'& = v,.(1+q,GU, ) .
(7)

From the perturbation expansion of Eq. (7) we iso-
late the infinite series involving v, only, by de-
fining the Watson single-scattering operator

r,'"(E)=v,. +v;Q,Gv&+v&Q, Gv, Q,Gv &+ ' ' '

U(i ) —~(i ) + 7.(i )~ 6 U( j)
e e e ~e e

Iterating Eq. (9) and summing over i yields the
Watson multiple- scattering series

A A

U
— & {i)+ 7.(i)q G &(j) + ~ ~

e e e e e
t i ttjttit

(10)

The first term of this series is the single-scatter-
ing term to which the remainder of this paper mill
be devoted. Higher order terms describe processes
in which the projectile scatters from at least tmo
bound nucleons and depend on tmo-nucleon corre-
lations in the target. '

Taking only the first term of Eq. (10), the cor-
responding elastic scattering operator is given by

= v, + v;Q,G (E )r,"'(E)

= v, +r,"&(E)q,.G(E)v, .
This operator describes the scattering of the pro-
jectile from one of the bound nucleons. In between
interactions with the projectile, all the target nu-
cleons —including the struck one —yropagate by the
full target Hamiltonian. As a result 7,") is a many-
body operator. Upon eliminating v,. in Eq. (7) in
favor of r,"'by multiplying on the left with (1+r,"&

xQ,G), we obtain
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&(il(I+ I T }- P Z'(i)

3 i=1

A
T(i) —7.(i) + &(i)p ~ T(d)

e e e e ~ e (12)

In many circumstances the presence of the pro-
jection operator Q, in Eq. (8) renders the operator
v,'" difficult to work with. Following a technique
employed in KMT calculations' me introduce an
auxiliary operator defined by

P "(E)= v, + v,G(E)F,"(E). (13)

It is straightforward to relate the operators v,")
and T(,"by

f(i) —
7 (i) + &(i)I 7.(i)

e e e e e

—~(i)+~«)p ~«)
e e e e

(14)

Upon eliminating 7,'" in favor of P,"by multiplying
from the left with (1+2,"I',), Eq. (12) becomes

A
y(i) —&(i)+ 7 (i)I y(i )

e e e e e
j

(15)

—7-(i) 7.(i)I P i)
e e e e (16)

The amplitude T, is then obtained from the tmo-
body Lippmann-Schwinger equation (11). Alterna-
tively, Eq. (15) may be solved directly. When the
identity of the target nucleons is introduced this
equation may be reduced to I ippmann-Sehwinger
form. Using a properly antisymmetrized target
ground state me may write

k) A&ic y, ~r, ~i„„e,=',
i=1

where any choice may be made for the struck tar-
get nucleon described by T, and the label is omit-

Comparing Eqs. (14) and (11},we see that P," is
the elastic scattering operator that mould result if
the full optical potential were taken as 7,"". In
other words, comparing Eqs. (15) and (12), we see
that the introduction of v,"' to replace v,'" has se-
lectively solved part of the elastic scattering equa-
tion given in Eq. (11). In KMT calculations the
Green function G is approximated by a propagator
for the relative motion of the projectile-nucleon
system, and 7,"' becomes a free projectile-nucleon
t matrix. The model used in this present mork ean
also be formulated as a specific approximation to
0 as will be seen in the following section.

Once r(" has been constructed, the elastic scat-
tering calculation may proceed in two ways. The
Watson single-scattenng operator may be con-
structed by solving Eq. (14}in the form

~( i ) —~( i ) ~( i )p ~( i)
e e e e e

ted. Since this property also holds for the target
matrix elements of r„we maj rewrite Eqs. (11)
and (15) as

T, =A7, (1+I',T,),
T, -A7, + (A —l)r, I',T, .

Defining an auxiliary elastic operator T by

(18)

(18)

~e p g~e ~ (20)

Eq. (19) reduces to the Lippmann-Schwinger form

T, =(A —l)r, (I+I;T,) . (21)

The consequences of identical particle symmetry
for the nonelastic intermediate states involved in
the optical potential will be discussed in Sec. V.

It should be noted that up to this stage no approx-
imations have been made except for the truncation
of the multiple-scattering series (10}at the first
term. Therefore the resulting elastic scattering
amplitude calculated through each of the routes
discussed above will be the same. We mill refer
to Eq. (18) as the Watson method, and to Eqs. (20)
and (21}as the KMT method for the calculation of
elastic scattering due to the single-scattering op-
tical potential.

III. THREE-BODY MODEL

FOR THE SINGLE-SCATTERING TERM

In this section me consider in detail the operator
given in Eq. (13). This operator describes the
scattering of the projectile and a given bound tar-
get nucleon. By virtue of the many-body Hamil-
tonian H~ contained in the propagator 6 this scat-
tering operator is necessarily of many-body char-
acter. Equation (13}can be written

(22)

where we have used the decomposition H~ =K,.+K„.
+H„.+ u, . The terms are, respectively, the kinet-
ic energy of the ith nucleon, the center of mass
energy of the residual nucleus 8, , its internal
Hamiltonian, and the interaction of the ith nucleon
with the remaining nucleons given by iv, =P~&,v, i.
This latter term can give rise to many-body inter-
mediate states.

The nonelastic intermediate states in Eq. (22)
provide the absorption for the optical potential.
For intermediate energy nucleon projectiles we
can infer tha, t the nucleon knockout states play a
dominant role. ' consequently we will ignore bound
excited target states and also excited states of the
residual nucleus. We concentrate on the problem

r,"'(E) = v,.+ v,. (i)(E).
iF-+i@—K-Ki-KR. —HR. —mi

e
i
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of treating the continuum states of the projectile
and struck nucelon including the recoil of the re-
sidual nucleus and the distortion effect of the bind-
ing potential ge, . Following the theories of the nu-
clear bound state we introduce a single particle
potential by writing u&, = u, + (u&

&

—u, ) . We then
expand in powers of the residual interaction (u&,.- u, ) and ignore terms of first order and above.
The model target Hamiltonian is therefore H~"
=g, +g„,+H„.+g, At this level of approximation,
Eq. (22) becomes a three-body scattering problem.
We define the free Hamiltonian of the three-body
model as

H~~" =K+Ki +E~i+H~ i
~ (23)

Since the internal Hamiltonian of the residual nu-
cleus, H„, does not involve the coordinates of
either the projectile or the struck nucleon, it com-
mutes with all the other operators. When the tar-
get wave function is expressed in a parentage ex-
pansion (in terms of the eigenstates of Hs ) the op-
erator H~, will produce a simple shift of the ef-
fective energy. Within this model, Eq. (22) becomes

~(i) —~ + ~ ~(i)~(i)
e i c e e

where

G&*'=(E+&e-H«&-u. ) '.

(24)

The corresponding model for the Watson single-
scattering operator 7,'" can be obtained by sub-
stituting Eq. (24) into Eq. (16) to yield

I

+ G&i& P (E)e i i e e
~

e (26)

To ensure that Eq. (26) has no elastic channel
intermediate states (and so produce a valid optical
potential), we must ensure that the target ground
state contained in the propagator 1; is the same as
that generated from the model target Hamiltonian
H~". How this is done can be seen from making a
parentage expansion of the target ground state.
One expands in eigenstates of the core Hamiltonian,
H„. Explicitly, we write

i

f"'(E)=u +u G"'( E) "f'(
E)

f"'(E)=» +&& G'"( E)t'"( E}

where

G,"'(Z) =(E+&f -8&")-'

(29)

(3o)

The subscript P labels the pickup channel. We
multiply Eq. (24) on the left by (1+f~«&G,«&) to ob-
tain

7«& —f«&+f«&(G&i& G&i&)/&i&
e 0 0 e 0 e

Using the relation

(i) -G(i) +G(i)g(i)C(i)
e 0 0 e 0

Eq. (32) becomes

(32)

(33)

where Q, has the interpretation, within this model,
of projecting onto those three-body states in which
nucleon i is not bound to the residual nucleus to
form the target ground state. A more definitive
description of these states will be provided by the
study of unitarity relations presented in Sec. IV. .

The Qx een function in the conventional I.ippmann-
Schwinger equation (24) does not give the most con-
venient representation of the intermediate states
involved. An exact solution of the three-body prob-
lem represented by Eq. (24} will involve inter-
mediate state contributions from the break-up
eigenfunctions of H,"and the bound eigenfunctions
of H,'" and the bound eigenfunctions of H,

' +u,. and

H,"'+g, describing the e1.astic and rearrangement
channels. A theory of three-body scattering in
which the boundary conditions for all physical pro-
cesses are properly specified is provided by the
Faddeev' integral equations. The kernel of these
equations does not give rise to disconnected dia-
grams and allows the use of standard matrix meth-
ods for the solution. We thexefore employ the
Faddeev technique to restructure Eq. (24) not only
as a means of clarifying the nature of the inter-
mediate states, but also as a starting point for a
practical calculation.

To introduce this standard three-body descrip
tion, we eliminate the potentials u, and p, in favor
of the two-body t matrices defined by

7.& i) —g( i ) + g(i)g ( i)g( i)G, (i )&( i)
e P P 0 e 0 (34)

7( ) — + @- ~(')
e i i@+&~ H (i) + e

0
(28)

where
~
P„",) is an eigenfunction of H„, of energy

E„. The coefficient
~ p&) is given by the overlap

integral (P~s, ~
&I&,).

U the single particle potential is chosen so that
the Q", are eigenstates of the single particle Ham-
iltonian &,+u, with energy F., -F.„ then the cancel-
lation at the pole is exact. ' Thus we will write
Eq. (26) as

&( i)—
e

g(i)g(i)+(i} (35)

~(i) -C fi)-&+ g(i)G(i)pi) (36)P 0 e 0 e

by introducing the operator i . Equations (35) and
(36) are three-body integral equations of the Alt,
Grassberger, and Sandhas (AGS) form. " In the
present case only two pair-wise interactions are
present. The effects of the single particle binding

It is'useful to recast Eq. (34) into the coupled chan-
nel form
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potential u, enter through t,"'. If we tyke u,. = t,"'
= 0, then 7,'"-t'", and the folding model of the

KMT method is obtained apart from the three-body
kinematics implicit in Eq. (30). We will discuss
this special case of our model in more detail in

the next section.
The physical meaning of the operator 7'" can be

clarified in the following way. Equation (24) can
be written

7,'"= v,. + v, (E + z e —B,"'—u,. —v,.) 'v,

Substituting Eq. (37) into Eq. (36) gives

r(() —G(() z + t(()G (&)(v + v g(()v )p 0 e 0 i i i

where

g&') =(E+ie -ff&"—u, —v,.) '.

(37}

(38)

(39)

Applying the identity t,"'G0"'=u,.G',", and the re-
solvent relation G,"'+G,"'v,.g")=g"' to Eq. (38) we
have

g(i)—
e (41)

7(s) —G(i)- + t(i)G(i) G( i)-lg &( i)
p 0 e 0 0 e e (42)

~(i) -G (i)-1+u g (s)~
p 0 i i

=u(+u(g("v, .+(E+ie —Jf,")—u, ) . (40)

When T~" operates to the right upon the on-shell
elastic state ~(t)„k,), the last term of Eq. (40) does
not contribute. Thus r~") can be identified as an
off-shell transformation of the pickup transition
operator for the three-body system. ' We assume
for convenience that the projectile-nucleon sys-
tem has one bound state, which we refer to gener-
ically as a "deuteron. "

The corresponding integral equations for the cal-
culation of 7,'" are obtained by multiplying Eqs.
(35} and (36) on the right by (1 —I',r," )a)nd using
Eq. (16) to obtain

Equations (41) and (42) are completely equivalent

to, but more practical than, Eq. (28}. A direct
way to establish this equivalence is to derive Eqs.
(41) and (42) from Eqs. (26) or (28). To do this,
v,. must be elimina, ted in favor of t~"' by multipli-
cation from the left with (1+t~"'Go&"). Use of Eq.
(33) and separation into coupled channel form re-
covers Eqs. (41}and (43) immediately. The three-
body AGS integral equations for the single-scat-
tering optical potential operators constitute one

of the principal results of this work. The numer-
ical methods developed in three-body theory may
be applied to these equations to include three-body
kinematics and binding effects into the optical po-
tential calculations.

A somewhat similar application of three-body
equations to the multiple-scattering series is
found in the work of Revai."

IV. UNITARITY

AND THE ABSORPTIVE REACTION AMPLITUDES

The non-Hermitian part of the optical potential
arises from the nonelastic channels implicit in the
model. For any microscopic model of the optical
potential the reaction amplitudes for these non-
elastic channels are implicitly contained in the
singularities of the elastic operator and may be
revealed through an examination of the unitarity
relation. In this section we analyze this relation
in detail for our three-body model of the single-
scattering optical potential. We develop explicit
operator unitarity equations which permit us to
identify the types of reaction responsible for the
absorption and their amplitudes. In order to do

this, the use of a connected kernel (Faddeev) for-
mulation of the three-body model is essential.

The unitarity relations are obtained by investi-
gating the discontinuity of the scattering operators
across the right-hand (unitarity) cut in the energy
plane. For operators related by the equation

where we have defined

("= r(()(1 —r r(")
i} P e e (43}

A(E) =B(E)+B(E)C(E)A(E),

the discontinuity relation is

(44)

The term of Eq. (42) in parentheses has the prop-
erty of prohibiting on-shell propagation of the elas-
tic channel in intermediate states, and thus takes
account of the projection operator Q, in the de-
fining equation (28). To clarify this we note that in

the neighborhood of the elastic pole, t,"' has the
form u, F,u„so G,'"t,"'G,'" has the form G0")u,.l',
xu, G,"'. Since G,"'u,. isunitywhenappliedon shell
to the target ground state, G,"'t,'"G0" agrees with

1, at the pole. We emphasize that the manner in
which the elastic intermediate states are excluded
from Eq. (42) is not an approximate interpretation
of the projector Q„but is an exact representation
of its role in the three-body model we have set up.

A =AznCA+ (AzCz+ 1)nB(1+CA

where

(45)

nA(E) =A(E+ze) '-A(E+ze) . (46)

2)(i discA(E) = limnA(E) .

This relation must be used with extreme care. In
general, the e-0 limit may not be taken inside an
expression of the form A ACA if A and At have
singularities. If the matrix elements of bC are

(47)

We refer to Eq.(45) as the operator unitarity theo
rem. The discontinuity across the cut is defined
by
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AT, = T~nl', T, + (Til'&+ 1)n, U, (l + I',T,) . (48}

In the first term, the presence of the projection
operator P, permits us to take the limit & -0 in-
side (see the discussion of a similar term in the
Appendix} giving

disc T, = T&A,T, + —.lim(T&I'&+ 1}AU,(l+ I',T,),
(49)

not sufficiently connected, the & functions may re-
sult in more than one pole of A occurring at the
same energy. Since the poles of A' and A will be
just below and just above the real axis, respec-
tively, taking the limit & -0 can pinch an integra-
tion contour and lead to the production of an un-
suspected singularity. An example of this and a
discussion of all relevant cases are given in the
Appendix.

If we apply the operator unitarity theorem (45)
to the elastic scattering LS equation (4) we obtain

tarity relations for three-body scattering. As
these are normally expressed in terms of opera-
tors satisfying equations without projectors in the
kernel it will be convenient to express the discon-
tinuities in terms of the operators 7,'". Since v,
and 7, are related by Eq. (16}, which has the struc-
ture of Eq. (44}, the operator unitarity theorem
(45) may be applied to recover n,r,"& in the form

KT(i& ——T(i &&z T T(i&+ (1 r(i &&Ff) AT( &(1 —F T(i&)
e e e e e e e e e

(55)

Therefore, the reactive content of the optical po-
tential in our model may be explicated by express-
ing AU, in Eq. (48) in terms of nr(" using Eq. (54},
expressing 67,"' in terms of the three-body opera-
tor LB((& via Eq. (55), utilizing three-body unitar-
ity on the operator 7,'", and finally taking the lim-
it & -0. The expression implied by the substitu-
tions takes the form

where

A, (E) = discI', (50)

+~e ~e™ee

d p k, Q &E-E,-Q 2po) Q„k . (51} x (1+I;T,)

When forward on-shell matrix elements of Eq.
(49) are taken, the first term can be identified as
the total elastic cross section. The optical theo-
rem is therefore obtained in the form 0«, = o„+o~, .

If we were dealing with a complete and exact
microscopic theory of the system we would expect
to obtain a unitarity relation of the form

disc T, = T~A, T, + g T„'A„T„ (52}

in which n labels all possible nonelastic camels,
and T„and A„are the associated transition ampli-
tude and on-shell projector, respectively. Thus,
when U, is the exact optical potential, the absorp-
tive term is expressible in the form

lim(T~I'&+1)AU (1+& T ) = Q T'A T

7(i)
e (54)

The operator 7,'" is essentially a three-body op-
erator so a7,'" may be obtained by using the uni-

The corresponding relation for an approximate
optical potential will involve only selected reaction
channels described by approximate reaction ampli-
tudes.

In the case of the model of the single-scattering
optical potential given in the previous section, U,
is given by

(56)

-7( ) g ) g( ) gc( )g( )g(f)7( )
e p 0 (57)

where the second equality follows from Eq. (35).
The intermediate states in Eq. (57) receive con-
tributions from the elastic channel and the nucleon
knockout channel due to the poles of 6,"). However,
when we now apply the limit & -0 carefully, the
disconnected (or 5 function) part of n(",'" allows
a contribution from the nucleon pickup charmel due
to the bound state pole present in tg and tp In
the Appendix we give the details of a derivation of

When target ground state elements of this equation
are taken, the operator 67,'" and all outside trans-
ition operators are averaged over the target ground
state. Since each of these operators has at least
one interaction of the projectile with a target nu-
cleon, each matrix element is fully connected.
The singularities of the outside operators are
therefore never allowed to match and cannot pro-
duce a singularity through a pinch (see the Appen-
dix for more details). Therefore, all possible on-
shell intermediate state processes are accounted
for by evaluating AI', and hP, "in the limit & - 0.

The limit of d, l', is given in Eq. (51). To deter-
mine the limit of b,v,"), we first apply the operator
unitarity theorem (45) to Eq. (24). The result is

g~(i) —7.(o&gG, (&)g(f)
e e e e
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this typical three-body unitarity relation for P,"
from this point of view. The result is"

T&&&- fl&&&r«&(I+Z T )e e e e

then Eq. (62) becomes
disc v'"= v'"tA 7'"+7'" A"'T"'

e e ee 0 0 i}

+ 7 (i)tg(i)&A(i)g(i l ~(i)
e e 0 e e (56)

disc T =TtA T + ~~T"'tA"'T"'
e e e e

where the wave operator 0,'" and the projection
operators A~&

' and A"' are given by

A(i) - j +t(i)G(i)
e e 0 (59)

Aq
'= d k~iP&&& k)

g .~ g (i) k y(i) (60)

Ao"= d kod p Q" p

disc T, = T,'A, T, + p (Ti I ~+ l)(1 —7«&trt)

&& r&i&tA«&7&&&(1 r ~& &&)(I+r T )

+ W (T&r&+1)(1—y«&'&Z')r«&'g& "tA&'&
8 8 8 8 8 8 0

&& n,«&r«&(1 —r,r, )(I«+&I',T ) . (62)

If we introduce the operators

T&'& = ~&'&(I+r,T,),

(61)

The operator A~" projects onto the on-sheLL states
of the channel corresponding to pickup of the ith
target nucleon. A state in this channel is speci-
fied by the product of the internal wave functions
of the deuteron azd residual nucleus denoted by
Pq"„and the relative momentum of the deuteron
and the residual nucleus, k~. The operator A,"'
projects onto the on-shell states corresponding to
knockout of the ith nucleon. This state is speci-
fied by the state of the residual nucleus, @„"',and
tmo momenta k, and p, specifying a three-body
plane-wave state. The reduced masses appearing
in Eqs. (60},and (61) are as follows: )&~, the re-
duced mass for the relative motion of the projec-
tile-nucleon bound state and the core (g, ' =m, '
+ms '); p„ the reduced mass for the relative mo-
tion of the projectile and the target (p,, ' =m, '
+»& '};and p, , the reduced ma, ss for the relative
motion of the struck nucleon and the core ( p,

' = m '
+m„').

The explicit unitarity rela. tion is obtained by
taking the limit c-0 in Eq. (56) and inserting Eq.
(56) to obtain

+~ T(i)tA(i) T(i)
0 0 0 (65)

Equation (43) has been used to replace 7'" by v~"
and Eq. (16} to replace r«& by 7&'& T.his unitarity
relation has the desired structure [of Eq. (52)] so
the operators T~"' and T,"' may be identified as
amplitudes for the pickup and knockout of the ith
particle, respectively.

We note that the limit q-0 cannot simply be tak-
en inside the operator string if a three-body treat-
ment of the optical potential is not employed. Thus,
if the operator unitarity theorem is applied direct-
ly to the 1,8 Eq. (1) one obtains

Z T', = Tt~G, T;

=TtI 4G T +T Q, 4G T . (66)

This operator relation has a structure which is as
close as possible (within the confines of our three-
body model) to that of Eq. (66) satisfied by the ex-
act T,. From the foregoing discussion it is clear
that the components T,"' mill introduce the same
pickup channel singularities into Eq. (6'l) that r,"'
introduced into Eq. (57). In the case of the exact
operator relation of Eq. (66), these considerations
associated with the limit E -0 should be borne in
mind when discussing the reactive content of the
second term.

We now turn to the interpretation of our main re-
'sult, Eq. (65). As expected from the three-body
structure of our single-scattering model, the re-
actions possible in the model are pickup and knock-
out of a single nucleon. We note that the unita, rity
relation Eq. (65) has a proper many-body struc-

In the first term one may take the limit inside due
to the connectivity of the operators as discussed
above and in the Appendix. In the second term,
however, the limit may not be taken inside since
Q, does not produce a connected operator. The
discontinuity of G, only begins at the elastic thresh-
old, while it is clear that reactive channels may
open at energies below this. These reactive con-
tributions describe rearrangement charnels and
will arise due to the singularities of T,. Our pres-
ent three-body model can demonstrate this. Sub-
stituting Eq. (57) into Eq. (56), and using Eqs. (16)
and (12), we have

AT, =Ttnr, T, +p T«&'(AG&,"-nr, )T,"&. (6'I)
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ture, i.e. , distinct many-body channels enter in-
dependently in the sum. This therefore demon-
strates that the proposed model weaves together
the three-body structure of the assumed reaction
mechanism with the many-body nature of the true
problem in a consistent manner.

We can interpret from the structure of the oper-
ator strings what effective reaction mechanisms
are included in the model description of the re-
actions which are occurring in the intermediate
states. Both the pickup and knockout operators
[given by Eg. (63) and (64), respectively] begin on
the right with the operator 1+I' T,. When applied
to the initial plane wave state, p,k,), this opera-
tor produces the state

I e,x,", &
-=(1+T.T.) I e.k.&

which has the structure of the target in its ground
state times a distorted wave in the relative coor-
dinate. Using Eg. (4) it can be easily shown that
g+' satisfies the two-body LS equation

(68)

&~, IU, I ~.& I x.". &.
e

(69)

The operators T~"' and T,'" therefore can be seen
to have a quasidistorted wave structure. The oper-
ators r~" and Q~"'7.,"~ are the three-body transition
operators for pickup and knockout of the ith par-
ticle given the constraint that the target is never
in its ground state. These reactions therefore
take place as follows: the projectile comes in,
distorting in the optical potential field as it goes.
It then interacts with the ith particle extracting
it from the nucleus. These particles then go out,
the projectile continuing to interact with particle
i as often as it wants, possibly binding it to itself.
Particle i continues to interact with the binding po-
tential of the core, but the projectile and the core
no longer interact.

These amplitudes therefore do not have a full
distorted wave structure. The final state absorp-
tion is restricted to that which arises from inter-
actions with the extracted nucleon. This makes
sense as, for the outgoing projectile to interact
absorptively with the core, it would have to ex-
tract a second nucleon from the core to interact
with. This leads to a four-body intermediate state.
Models including some outgoing distortion in a
three-body framework (for example, by the intro-
duction of a third potential in the projectile-ith
nucleon-core three-body problem) can be construc-
ted. This will be discussed in a subsequent paper.

~,. =(k,y&'IT,"'I4,k,). (70)

The target ground state is completely antisymmet-
ric with respect to exchange of any pair. Further-
more, all the information on the i dependence of
Q~" and T~" is contained in the arguments of its
matrix elements, i.e. ,

(kg&p' 1%~ 4 ~

Spy qp —ply pq;
'tt' s (41 q2 ~ ~ ~

1 9;-g ~ 0(,g ~ ~ ~ ~ i &k~)
p

x6 k — q+q, —P j&
jAj

(71)

where the internal wave functions of the deuteron

Q~, and residual nucleus fIJ)~ are independent of i.
It therefore follows that

M,. =f,.M

where f, is the sign of .the permutation exchanging
i and i. If we then define

T~= T"VA

P I

(73)

(74)

and similarly for Tp and Ap the unitarity relation
(65) becomes

disc T = T A T + TpApTp+ TpAp Tp,

where the transition operators for pickup and

knockout are

T;= WA ~,(i+ r,T,),
T = vga', r, (1+ I', T,)

(75)

pressed so that a one- or two-body treatment is
obtained. In this section we consider the reactive
content of two standard approximations, the closure
and the on- shell impulse approximations.

We begin this section by converting our equations
to the "reference particle" notation. Since the tar-
get nucleons are identical, the matrix elements of
the transition operators involving any one of the
A particles also carry all the information as to
what are the matrix elements for the other A-1
particles. This permits us to replace the sums
over i = j. , A by factors of A.

Consider, as an example, the pickup operator
T~"'. Its matrix element between on-shell states
ls

V. COMPARISON WITH CLOSURE
AND ON-SHELL APPROXMATIONS

In actual calculations of single- scattering optical
potentials the three-body states are usually sup-

Since both the approximations we wish to inves-
tigate are sometimes applied in KMT form [i.e. ,
a,s approximations to Eq. (21)], it is useful to have
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the unitarity results of our three-body model ex-
pressed in terms of the auxiliary (KMT) elastic
operator 1,= (A —1)T,/A. Multiplying Eq. (75) by
(A —1}/A, we have

where

T,' = U + U I',T, .

(86)

discT, =
—1 TtA'T'+ Tp~ApTp+ To~AoTO

where

p p p + g(Tg

0 g 0 41 e + IgT4f

(78)

(79)

The operator t, is not simply a one-body operator
since it contains a potential involving the nucleon
coordinate, but the dependence on this coordinate
is simple. Expl. icitly, the two-body matrix ele-
ment of t,(E) in the mixed representation (momen-
tum space for the projectile, coordinate space for
the target nucleon) is given by"

(81)

which is easily verified from Eqs. (18) and (20),
we can write

The transition operators in Eqs. (79) and (80) can
be expressed in terms of T, by converting the
operators ~, and ~p i@to the corresponding KMT-
type operators 0, and %~. Using Eqs. (16) and (43)
together with the identity

(1 1,r,)(1+1',T,) = (1+1",T,),

= 6(r, —r,')e' ' + 'o'~~ &k,
~
t, (E')

~

k g, (88)

where &k, ~t, (E') ~ko(& is the one-body T matrix ob-
tained by assuming the struck nucleon is held fixed
at the origin.

The matrix elements of U, are given by

(82)

A —1
~

0 T,

t,(E') = v+ v, . t,(E'),1
E +$6 —E (84)

where E' = E —4, with 4 a constant which is an
"average value" of the target Hamiltonian. Fol-
lowing the KMT method as described in Sec. Q,
the auxiliary opti. cal potential in the closure ap-
proximation is therefore

fi, = (A —1)t, , (85)

and the elastic operator T,' is given by

Equation (78) is the equivalent of the unitarity re-
lation (75) for our three-body model of the single-
scattering optical potential when expressed in
terms of KMT-type operators.

The closure and on-shell impulse approximations
may now be obtained as approximations to our
three-body model and the resulting unitarity rela-
tions displayed. The KMT-type transition opera-
tors that are exrr'ployed to formulate both these ap-
proximations must be converted to properly nor-
malized physical transition operators before in-
formation on the reactive content is deduced from
a unitarity relation.

In the closure approximation' the Green function
in Eq. (24) is approximated by the free propagator
for the projectile alone. One therefore replaces
0, by the operator

x (k,
~
t, (E')

~

k 'r,'&(k'r,'~ k(tl, &, (89)

where the complete set of mixed representation
states for the projectile and particle 1 have been
inserted on both sides of t,. Defining the one-body
density matrix

p(rl ~ rz) =

and applying Eq. (88), Eq. (89) becomes

(k'(tl
~

t& ~(tl k& = (A 1)&k' ~t (E')
~

k&P(k' k),

where we have defined

(91)

(92)

(k'(tl,
( disc0, [(jl,k& = (A —1)&k''e.

I
t!it.t. I @.». (93)

(See the Appendix for a discussion of a limit of
this type. } The projector A, only involves the co-
ordinates of the projectile, viz. ,

Information concerning the intermediate states
which are implicit in Eq. (91) can be obtained
through the unitarity relation for t, . Defining

g,(E') -=(E'+is K) ', applying the operator uni-
tarity theorem to Eq. (84) and taking the limit e-0
we obtain
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(94)

Because g, is a one-body operator, the state of
the target particles is not restricted by the on-
shell condition. To identify the reaction ampli-
tudes we apply the operator unitarity theorem to
Eq. (87) and use Eq. (93) to get

(95)

serting a complete set of plane waves for the pro-
jectile and particle '1 on the right Of t, and using
Eq. (88) yields the explicit expression

&& y„'"(ko)$ (p, )d'bod'P, . (102)

where

(96)

Converting to a relation for the physical transition
operators by multiplying Eq. (95) by A/(A. —1)
yields

dlscT = T~ AeTe+ To A~TO,

where we have used Eq. (86) and the definition

To = &At, (l + I', T;) = T;/vA . (98)

This permits us to move the apparently extraneous
(-1/A) piece of the elastic term over to the reac-
tive part giving

disc T; = T,'~A, T;+ T,'t(A, —A, )T;. (99)

Equation (99) is the unitarity relation for the
elastic scattering amplitude arising from a closure
approximation to the KM'7 pseudo- optical potential.

We can now use Eqs. (98) and (99) to explicate
the reactive content of the closure approximation.

Because t, is a two-body operator, when it is
applied to the initial state

~ P,k,&, only the coordi-
nate of a single nucleon in the target is affected.
Since the dependence of t, on the struck particle is
extremely simple, the final state of the nucleus
can be easily obtained. %'e expand the target wave
function in a parentage expansion. Taking matrix
elements of Eq. (27) gives

(pi p~l V=+ ~"(pi)@'s(p" . , p„) . (100)

(This state should be antisymmetrized but we will
not consider the effect of this here. ) Writing the
coordinates of the target nucleons, 2, . . . ,A, corn-
pactly as $, the relevant "reactive" matrix ele-
rnents are

The operator 1+ I',T,' converts the projectile's
plane wave into a distorted wave state y+'. In-

The 5 function from A, at the intermediate states
in Eq. (99) restricts the magnitude of k,' to be
equal to the projectile's initial momentum k, (or
to some value slightly shifted from it) but it per-
mits any values for P,' and $.

The physical interpretation of this matrix ele-
ment is straightforward. It is the matrix element
for knockout of a nucleon from the target, con-
serving momentum at the projectile-nucleon scat-
tering vertex but not necessarily conserving ener-
gy in the final state. The knockout amplitude ap-
pears as a distorted wave impulse approximation
(DWIA) with the initial distortion given by the
auxiliary optical potential in the closure approxi-
mation. Although the Fermi motion and recoil of
the struck nucleon have not been ignored, the de-
finition of t, is such that its matrix elements in

Eq. (102) do not involve the momentum of the
struck nucleon. There is no distortion in the final
state.

A second approximation which is commonly em-
pl.oyed is an approximation suggested by KMT. '
They take t, =t where

t =v+v — . t,E+ie —K- K~
(103)

where E=E —E, is the projectile's initial kinetic
energy. The total kinetic energy of the pair is
given by K+Kg K ]+&op where K„ is the kinetic
energy of the projectile-nucleon center of mass
and k„ is their relative kinetic energy. It is com-
mon to neglect the spread in the kinetic energy of
the pair c.m. and replace E-Kog by its initial val-
ue when the Fermi motion of the struck nucleon is
ignored, viz. , E(1+mo/m) '. [For typographical
convenience we will define x=m, /m and ri
= (I+@) '). This eliminates the energy shift in the
Green function which couples the effective two-
body collision energy to the Fermi motion. It is
essentially a three-body effect and cannot always
be ignored in certain important cases. If we make
this replacement then the T matrix in Eq. (103) is
replaced by the T matrix defined by the equation

1
tIA(gE) V+ 8 1A(OE) '

gE+i& —0„ (104)

This equation is a two-body problem in the relative
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coordinate alone. The auxiliary optical potential
matrix element implied by Eq. (104) is

(k y. ~fl,„~y,k} (107)

Applying the operator unitarity theorem to Eq.
(1Q4) and taking the limit & - 0 gives

disct» &~NCAA ~t»

=(A —() f d'P, p(p, —k' ~ k, p)

x (k' —xI}(k+p, )
~
t~(I)E)

~

q(k- xpI}}.

(105)

where

kQd 'p, k,p, 6 gE —2",—xp, ' k,p,
mQ

(108}

If the dependence of t~ on the momentum p, is
suppressed by setting p, = 0 in the arguments of

t,„, then. this becomes

(ke. l~ ~e,k}
= (A 1)(k xqk

i tIA (Iiz)
i
I)k}p(k k) . (106)

The structure of this equation should be compared
with the structure of Eq. (91). Further approxima-
tions are often made in order to reduce Eq. (106)
to a, simply calculable form in coordinate space.
(One such approximation is the assumption that

t» is local, i.e. , only a function of the difference
of its momentum arguments. ) We will not consider
these here but will investigate the implications of
the full impulse approximation form (105).

The 5 function in A» restricts the intermediate
states to the plane wave states of the projectile
and struck nucleon which have a relative kinetic
energy equal to their initial relative kinetic ener-

gy, assuming the struck nucleon is at rest. The
reactive amplitudes are constructed by building a
un. itarity relation for T~ and then multiplying by

(A —1)/A as in the case of the closure approxima-
tion discussed above. The result is

T~ = &if,„(1+r, r'") = r'"/HA. (110)

The reactive amplitudes then take the form

discTIA yIAIQ 2'IA+ TIAI(p I1 )2 IA (1 Q9)

with

(k:P (IP. IP.'I & dd P P'. ((& =J(P(kl-*kl)(l(„(PZ)(~P(I, — P)&()(I,'+P, -I,-P)k, '&(I,)P (P)d'kd'P,

The physical interpretation of this matrix element
is straightforward. It is the nucleon knockout am-
plitude to the quasifree states ignoring the binding

energy of the struck particle. The amplitude is a
standard DWIA matrix element with the final state
distortion turned off. The impulse T matrix has
the two-body kinematics appropriate to quasifree
knockout. When Eq. (111) is employed in the uni-

tarity relation (109), the projection operator AIA
restricts the matrix elements of t» to be half-
shell.

As with the closure approximation, we see that
the unitarity relation Eq. (109) has a correction to
the projection operator in the reactive part. How-

ever, because A»-A, is not a true projection oper-
ator, this relation is not a model consistent uni-

tarity relation in the sense that each term does
not represent a distinguishable asymptotic state
of the model system.

The difference between Eqs. (99) and (109}and

our model unitarity relation, Eq. (75), is that in

the reactive contributions of the latter the inter-
mediate states are described by genuine projec-

tion operators. This difference stems from a pro-
perty of the three-body model operator T; which is
not preserved by the closure or impulse approxi-
mation to t, . We recaLL from Sec. II that the in-
troduction of the exact 0, through Eq. (13) effec-
tively solves part of the two-body elastic scatter-
ing equation for the transition operator T,. Thus
intermediate states of 7, include propagation of
the target ground state, thereby avoiding direct
treatment of the projectio~ operator inherent in

the Watson operator T,. Proper counting of the
elastic channel intermediate states in T, and a
proper unitarity relation for T, is then guaranteed
if the KMT method of Eqs. (20) and (21) is em-
ployed. Any approximation to 7, must contain
elastic channel intermediate states if that proper
and model consistent unitarity relation is to be
maintained. In our three-body model we have as-
sumed that the target has a good single particle
structure generated by the potential u, . It is the
presence of this potential in the Green function,
Eq. (25), which allows elastic intermediate states
for V„as evidenced by the first term of Eq. (58}.
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However, the closure [Eq. (84)] and impulse [Eq.
(104)] approximations to f, cannot contribute elas
tic intermediate states, as evidenced by Eqs. (93)
and (10V).

Qur three-body formulation of the optical poten-
tia, l also shows how this unita, rity defect of the
closure and impulse approximations can be
avoided. The integral equations (41) and (42) for
the Watson operator r, yield the projectile-nu-
cleon, T matrix t~ as the first term when the equa-
tions are iterated. Thus the operators t, and t~
can be used as closure and impulse approxima-
tions to 7., rather than, to 0,. Furthermore, since
in the Watson method the elastic intermediate
states ar'e inserted when the Lippmann-Schwinger
Eq. (18) for T, is solved, proper unitarity will be
preserved. A calculation following this prescrip-
tion for the example of the closure approximation
is summarized by the equations

T;=At, (1+ I',7,),
discT', = T,' A, T,'+ To A, TO,

where

To = vA f,(1+ I',7,) = T;(~A

(112)

(113)

(114)

We note that a comparison of the standard Lipp-
mann-Schwinger Eqs. (8) and (13) for r, and r,
suggests that 7., may be more accurately approxi-
mated by a, two-body free T matrix than may ~„
because of the projected intermediate states in the
latter. However, the present work shows that
within a three-body formulation, the two-body
component given by the first term of the iterated
series is the same for both operators. [See Eqs.
(35), (36) and (41), (42)]. In the absence of calcu-
lational comparisons, the implications of the uni-
tarity equation suggest that the Watson. operator
v, is more suited to approximation by a two-body
T matrix than is the KMT operator v;. This point
will be discussed further below.

VI. SUMMARY AND CONCLUSIONS

In this paper we develop a three-body model for
the single-scattering term of the optical potential
in multiple-scattering theory. This model assumes
that a distinguishable projectile scatters from a
target of identical nucleons and that the target
wave function has a good single particle structure.
The formulation can accommodate the kinematical
three-body effects arising from the transformation
from projectile-nucleus c.m. frame to projectile-
nucleon c.m. , from the Fermi motion of the struck
nucleon, and from its separation energy. It can
also include the intermediate state distortion ef-
fects due to the potential which binds the struck
nucleon to the rest of the nucleus. The result is

that the effective interaction describing the scat-
tering of the projectile from a bound nucleon is a
three-body T matrix.

The operator introduced by Watson to describe
the scattering of a projectile from a single bound

nucleon is a, many-body operator. The struck nu-

cleon may interact with any of the other bound nu-

cleons during the scattering with the projectile
thus leading to further excitations. Consistent
with the assumed diluteness of the nucleus and the
single-scattering nature of the first order term,
we replace the interaction of the struck nucleon
with the other nucleons in the nucleus by an effec-
tive single particle potential. This potential plays
two roles, binding the struck nucleon to the rest
of the nucleus and providing intermediate state
distortions for the motion. of the struck nucleon.
This replacement is the only approximation we
make.

The on-shell intermediate states present in Wat-
son's optical potential operator provide the absorp-
tive channels since elastic intermediate states are
expressly excluded. In exploring the consequences
of our model, we have omitted explicit treatment
of the bound excited states of the target nucleus,
and have concentrated on the proper handling of
the more difficult (and more important) continuum

and rearrangement states. The bound inelastic
states may be easily included by making the opti-
cal potential a matrix on these states, and then,
if desired, formally eliminating all states but the
ground state.

We present a pair of coupled integral equations
for the single-scattering optical potential in our
model. These equations have a structure similar
to the AGS version of the Faddeev equations" for
a three-body problem having only two interactions,
the projectile-nucleon interaction and the nucleon-
core interaction. The projectile- core 'interaction
is absent as we are writing equations for the opti-
cal potential. This interaction is obtained by sum-
ming over all the nucleons in the nucleus and its
effect obtained by solving the LS equation with the
optical potential.

Since the equations have Faddeev structure, they
permit the exact inclusion of the "two-particle"
continuum states without the difficulties of unspec-
ified boundary conditions or noncompact kernels.
They should be amenable to the numerical tech-
niques which have become well established in work
on the three- nucleon problem.

The Green function in the original LS equation
for the Watson, single- scattering optical potential
contains a projection operator which prohibits in-
termediate state propagation of the target ground
state. The effects of this projection operator ap-
pear in the context of our model as a modification
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of the kernel compared to the standard three-body
equations. This extra term in. the kernel cancels
exactly the on-shell intermediate state contribution
which corresponds to the target ground state. This
cancellation allows us to have a three-body-like
model which is still consistent with the many-body
structure of the amplitude. The intermediate state
corresponding to the struck nucleon bound to the
core is present in all A three-body problems. If
these A three-body problems were superposed in-
judiciously, considerable overcounting would re-
sult. Our study of the unitarity relation for this
model demonstrates that the modification. of the
Faddeev equations which we obtain prevents this
overcounting. This happens because the elastic
intermediate states are all produced by solving the
LS equation and they are therefore totally excluded
from the states used to construct the optical poten-
tial. This is maintained in our model but not in
all approximations to it.

In the KMT approach an auxi1. iary optical poten-
tial is defined by removing the projection operator
from the Watson single-scattering term. This
auxiliary optical potential is then used in an LS
equation to produce an auxiliary transition opera-
tor which can be shown to be exactly equal to the
physical transition operator when multiplied by the
factor A/(A —1). The exact equivalence has been
shown to hold if the exact single-scattering opera-
tors are used. We demonstrate that the equiva-
lence also holds in our three-body approximation.
The resulting KMT single-scattering operator sat-
isfies three-body integral equations of the same
type as does the Watson single-scattering opera-
tor, but without the overcounting modification in
the kernel. The processes included in the three-
body mode1. are illustrated in Fig. 1.

If full three-body calculations are to be done, it
is not clear whether Eqs. (41), (42) (Watson form)
or (35), (36) (KIT form) have an advantage. The
major numerical difficulty in solving either set
exactly is in the three-body nature of the equations.
If, however, one considers iterating the equations,
then the weakening of the kernel of Eq. (42) by the
subtraction of the pole, suggests that Eqs. (41),
(42) for the Watson optical potential may converge
faster than Eqs. (35), (36) for the K1VIT optical po-
tential. The weakening of the kernel in this man-
ner is similar to the quasiparticle method of Alt,
Grassberger, and Sandhas' which has proved very
successful in providing rapidly convergent correc-
tions to three-body calculations. Unfortunately,
counterexamples are known where a pole subtrac-
tion worsens the convergence. " Firm statements
will have to await realistic calculations. Our cur-
rent estimation of the three-body experience, how-
ever, suggests that the free two-body T matrix

t~e
FIG. 1. A diagrammatic representation of the optical

potential in the three-body model proposed. The heavy
black line indicates the nucleus, the heavy black dot the
struck nucleon-core wave function, and the open circle
a two-body 7' matrix. The terms shown correspond to
the first few iteration of Eqs. (35) and (36) for the aux-
iliary optical potential of the KMT approach. The itera-
tions of Eqs. (41) and (42) for the Watson optical poten-
tial can be represented by the above diagram if t~ is re-
placed by t, —Go r, t",

will be a better approximation to the Watson sin-
gle-scattering optical potential than it will to the
KMT single- scattering optical potential in contrast
to previous expectations. " This is because the
presence of the Q operator tends to cancel the dis-
torting effect of the binding potential leaving an
operator which is closer to a free T matrix.

Considerable effort has been devoted to the deri-
vation of the unitarity properties of the model.
Unitarity relations assist in understanding the
physical basis of the optical, potential's absorptive
part by allowing us to examine the reaction mech-
anisms which are implicit in its construction and
to check if a consistent and experimentally reason-
able treatment of these reactions is given. This
can provide a valuable guide to the validity of the
approximations. Our principal result is Eq. (65)
which displays explicitly the structure of the ab-
sorptive part of the cross section in terms of the
inelastic states of the model and the associated in-
elastic transition operators. Equations (63) and
(64) give the inelastic transition operators con-
sistent with the model. The inelastic states ob-
tained are nucleon knockout and pickup. The tran-
sition operators for these reactions have a. quasi-
distorted-wave form. The initial distorted wave
is the elastic scattering wave function generated
by the model optical potential. The departure from
standard distorted wave approximations lies in the
way the final state distortion is handled.

In a distorted wave approximation, the initial
distortion is followed by a single scattering given
by a projectile-nucleon potential or T matrix. The
outgoing bound pair or the two free particles may
scatter from the residual nucleus producing final
distorted waves. No single- scattering optical
model can provide the full final state distortion to
the intermediate reactive states. In single scat-
tering, only one particle at a time can be extracted
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(o)

(b)

FIG. 2. (a) A diagrammatic representation of a single-
scattering folded-T-matrix approximation for the optical
potential. (b) The imaginary part of diagram (a) using
unitarity on the effective interaction. The contribution
to unitarity is obtained by taking the DW matrix element
of this operator. [See Eq. (48).] The hatched line indi-
cates an on-shell intermediate state.

T ~
~ ~ ~ ~

~ ~ ~

A A-I A-P. A-I

FIG. 3. (a) A diagrammatic representation of part of
a 0%' amplitude for knockout. The zig-zag Bne indicates
a particle-nucleus scattering. (b) Part of the diagram in
(a) with the final state knocked-out nucleon-nucleus scat-
tering expanded by using single scattering for the optical
potential. Observe the presence of four-body inter-
mediate states.

from the nucleus. The nucleus must return to its
ground state before a, second particle can be seen.
Once the first particle has been extracted, the pro-
jectile is not allowed to interact with the rest of
the nucleus at all. The extracted particle may only
interact with the rest of the nucleus via its binding
potential. Since most of the important final state
distortion in knockout or pickup comes from the
imaginary part of the particle-core optical poten-
tial, which in turn arises from knockout of an add-
itional particle, this cannot be present in the re-

actions imp1. icit in single scattering. Our three-
body model is characterized by the fa.ct that it in-
cludes as much scattering as is possible in the
context of the three-body reaction mechanism con-
sistent with single scattering.

This argument is sketched diagrammatically in

Fig. 2 for an optical potential given by the foMing
of a two-body T matrix. In Fig. 2(a) we show the
single-scattering approximation schematically. In
Fig. 2(b) the T matrix is opened to reveal the in-
termediate states. The hatched line cutting the
diagram indicates the presence of an on-shell
knockout state. Figure 3(a) shows the diagram for
the knockout of a single nucleon in a distorted
wave approximation. In Fig. 3(b) the final state
distortion of the outgoing nucleon is opened up to
reveal the lowest order contribution to the distor-
tion in a single-scattering impulse approximation.
This clearly brings up a second nucleon and would
only be present if double-scattering terms were
included in the construction. of the original optical
potential.

In our model, after the incident projectile is
distorted in the optical fieM and interacts with the
target nucleon extracting it from the nucleus, any
number of projectile-nucleon interactions may
take place possibly forming a projectile-nucleon
bound state. The nucleon may also interact with
the nucl. eus via the binding potential any number
of times. All these interactions are summed to
all orders and in every possible sequence, in the
solution of our three-body integral equations for
the optical. potential.

We show how both the closure and impulse ap-
proximations can be obtained as approximations
to our three-body model. Each approximation ig-
nores the binding interaction of the struck nucleon
in calculating the optical potential operator. They
differ in the kinematics used to construct the pro-
jectile- nucleon two-body T matrix. The unitarity
methods developed above are applied to these ap-
proximations to extract the reactions which are
implicit in them and to identify the associated
transition operators. Since both methods ignore
the pole in the off-shell two-body T matrices, no
singularities corresponding to pickup are present.
The only reaction present in the absorptive parts
in the closure and impulse approximations is
knockout.

In the closure approximation, the allowed knock-
out states have the projectile's kinetic energy re-
stricted to its incident value (or to some fixed val-
ue slightly lower). The energy states of the target
nucleons are unrestricted. If the transition opera-
tor acting on the nucleons of the target only pro-
duces low lying excited states of the target, this
approximation shouM be reasonable.
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In the impulse approximation, the allowed knock-
out states contain the projectile and a knocked out
nucleon. Their relative kinetic energy is re-
stricted to that corresponding to free scattering
from a target nucleon which is initially at rest and
unbound. These are exactly the states of quasifree
knockout at all energies and angles.

In both the closure and impulse approximations,
the transition operator to the knockout states has
a distorted wave character. The incoming projec-
tile is distorted by the relevant optical potential
and the knockout is produced by a two-body T ma-
trix. In the case of the impulse approximation this
is a half-shell T matrix of the commonly used type.
In both cases there is no final state distortion.

In conventional distorted wave calculations of
knockout, final state distortion must be included
for both particles to fit the data adequately. This
suggests that both the closure and impulse approx-
imations will overestimate the knockout amplitudes
and therefore overestimate the imaginary part of
the optical potential. In practice, this overesti-
mate may compensate for those inelastic process-

es which are not included in the approximate opti-
cal potential.

The relative adequacy of the cl.osure and impulse
approximations may be evaluated by a considera-
tion of the experimental reaction data. This is the
particular value of the extraction of implicit re-
action mechanisms; it allows one to check the
consistency of one's implicit physical assumptions
by comparison with other data.

As an example we consider the inelastic scatter-
ing of protons from C at 160 and 1000 Me&.
Singles spectra for the inelastic scattering are
shown in Fig. 4 (from Ref. 4). If these singles
spectra are integrated over angle as a function of
energy loss, one obtains the energy spectra. shown
in Fig. 5. At 160 MeV the spectrum is quite flat
and does not peak at small energy loss. The angu-
lar integration is over the forward hemisphere in
the lab, which is the region relevant for quasifree
knockout. A significant fraction of the cross sec-
tion is observed. From geometrical considera-
tions, taking a black nucleus of radius 1.2 xA' '
gives a total reaction cross section of about 250
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FIG. 5. Angle integrated inelastic proton spectra for
scattering from C. Dashed lines indicate extrapola-
tions of the data.

by the dotted lines in Fig. 5(b) one obtains about
70 mb of cross section. The experimental total
reaction cross section has been measured as being
222 mb.

]3oth sets of inelastic data have knockout charac-
ter. The positions of the broad peaks observed in

Fig. 4 follow the angular dependence of free scat-
tering as shown in Fig. 6. The slight downward
shift is primarily due to the binding energy of the
struck particle. The magnitudes and shapes of the
peaks are fitted reasonably mell by distorted wave
calculations.

Qne possible reason for the missing reaction
cross section at 1 GeV is pion production. At this
energy, a large fraction of the nucleon-nucleon
cross section goes into pion production. This
means that much of the quasifree scattering pro-
cess mould no longer be a three-body process, but
would involve four final state particles. The data
of morley et al. ' did not go to large enough energy
loss to see this.

This kind of process can be included in our
method by adding another stage to the expansion of
the unitarity relation. The nucleon-nucleon poten-
tial itself becomes complex and, given a model for
pion production, satisfies a discontinuity relation
of its own. Extending our procedure, a unitarity
relation mould be obtained including three- and
four-body intermediate states. If one is in an en-
ergy region where pion production is described
adequately by an isobar model, the additional
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states could be included by a simple generalization
of our three-body procedure. We assume that the
1 GeV data support the hypothesis that quasifree
scattering (including inelastic nucleon-nucleon
processes) dominates the reaction mechanism.
More extensive data investigating this point would
be most welcome.

If we accept these data as evidence for the dis-
tribution of inelastic strength, then we must con-
clude that at 160 Me& the average excitation ener-
gy of the inelastic states is too large to be well
treated by a closure approximation. At 1 Ge7 the
closure approximation may work reasonably well,
especially if the missing cross section is occurring
at energy losses smaller than those observed rath-
er than larger.

We have also seen that although our three-body
model retains the equivalence of the Watson and
KMT single-scattering terms, the closure and im-
pulse approximations do not. Arguments given
above suggest that these approximations mill do
better if used for the Watson rather than the KMT
single- scattering potential. Combining this result
with our analysis of the inelastic data suggests
that the impulse approximation for the Watson sin-
gle-scattering optical potential should be the best
of the two-body approximations considered. We
note that this approximation was used by Lerner
and Redish" for constructing the real part of the
P+ "Q optical potential at 65 MeV. When the off-
shell dependence of the impulse approximation was
retained, i.e. , the first iterate to Eq. (41) was
used, an excellent result was obtained.

In conclusion, we have constructed a three-body
approximation to the single-scattering optical po-
tential in Watson and KMT forms. This model
maintains the exact agreement between the two
methods as does the exact single-scattering oper-
ator. The three-body structure permits the use of
unitarity to extract the reactions implicitly re-
sponsible for the absorption and their amplitudes.
This allows one to consult additional experimental
data in order to refine the physical picture inher-
ent in the model and to evaluate approximations to
it. The model itself should provide a.good basis
for further calculations and for extending the de-
scription of the theoretical optical model while
keeping a closer touch with the information con-
tained in the inelastic data.
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APPENDIX: DISCONTINUITIES
ACROSS THE UNITARITY BRANCH CUT

disc%, = lim —WJ(Go~t~+ 1)GotG, (1+t,GO) t, , (A3)
0 F

where we have used

nG, (E+ i&) = G(E i+a-)~- G,(E+i&)

= 2i @Go(E+i&)~GO(E+ ie) . (A4)

In Eq. (A2) it appears as if only eigenfunctions of

Go appear. The main difficulty is that the structure
of Eq. (Al) suggests that the only on-shell inter-
mediate states will be the eigenfunctions of the
Hamiltonian contained in the operator G,'". When
matrix elements are taken, we will see below that
such states are present and arise from the singu-
larities of 4G,"' pinching the real axis. In Eq.
(AS) these contributions will be seen to come from
the poles of GO~G, (the on-shell breakup states),
and the poles of tt and t, (the on-shell elastic
states). However, Eq. (A3) also suggests the pos-
sibility that the disconnected part of 4Q,'", re-
presented by the unity parts of the parentheses,
allows singularities of 0~ and 0, to contribute. We
show, that in our three-body model, this is, in

We derive the unitarity relation [Eq. (58)] for
the operator 0,"' by carefully taking the limit &- 0
in Eq. (57). This derivation provides an iilustra-
tive example of the caution that must be exercised
in evaluating expressions of the form lim, ,A 4CA
when matrix elements of 4C are not sufficiently
connected. Our discussion covers all cases met in

Sep. P7 and in particular we demonstrate why the
limit &-0 may safely be taken inside the operator
strings of Eq. (56).

From Eq. (57) we must evaluate

discs,"'= . lim ~~,"'= . lim &,"'~~G,"'7;" '.1 . 1
27' 0 2 7'

(A1)

Applying the operator unitarity theorem [Eq. (45)]
to the resolvent equation for G,"' we obtain

t G,"'=(G,'t,'+1)t G,(l+t,G,). (A2

For convenience we do not label the active target
nucleon throughout the remainder of the Appendix.
Equation (Al) then reads
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fact, the case if the nucleon pickup channel is
open.

It is convenient to define

0, = (1+ t,GO}f, = Q,V, ,

and using Eqs. (36) and (37}we can write

Vp=tpGptp+t Gpt .

Equation (A3) now reads

(A6)

disc%~ = lcm —~pG pG p7 p ~

6~0 ~

The utility of introducing the operator tp is that
Eq. (A6) demonstrates that the extra singularity
mentioned above is the bound state pole of t» (and

f~~). It will contribute if the pickup channel is open.
To take the limit in Eq. (A7) explicitly, we form
matrix elements and study the intermediate state

integrations. We work in the center of mass of
the full (A+ 1)-body system and introduce two

equivalent momentum representations of the nu-

cleon knockout state. The relative momentum of
the projectile and the active target nucleon is q~,
while the momentum of the center of mass of this
pair relative to the residual nucleus is k~. The
other coupling scheme is defined by specifying q,
as the relative momentum of the active target nu-

cleon and the residual nucleus, while g is the mo-
mentum of the center of mass of this pair relative
to the projectile. We use units such that 5/(nu-
cleon mass) = 1, and will assume that the momenta
are scaled to include reduced mass factors. If the
nucleon knockout state is on shell the momenta
sat&sfy E = ke + ge + E„=k~'+ q~'+ E~ where E is the
total energy, and E„is the internal energy of the
residual nucleus.

The matrix element form of Eq. (A7) will read

( )I.& «f~~'(E+")~&s .q.&&".q &s~~.(E+")~'& d y (A8)

where, for the present, we suppress any detailed information about the initial and final states. Finite con-

tributions are identified by explicating those pole singularities of the integrand which can pinch the contour

and so lead to terms of order 1/e. The singularity structure of the scattering amplitudes in Eq. (A8) is
obtained from the matrix element form of Eq. (A6). We have

, , (q I f»(E+ 7 e —&»' —E„)I qg (k»q»@„ I &»(E+ ie) 1 i&

kekr~RI o E+ e If = d q» (E y 2 i'»+ fg —
p

—gp — ~]

, , (q, lt, ( Ei+e —k,'- Es) lq,'&(k,q,'A„l 7,(E+fe) lf&
(AS)

Because the residual nucleus does not break up,
Eq. (AS) has the structure of three-body scattering
theory for which the pole singularities in the mo-
menta k„q, are given by the work of Faddeev.
These same singularities are known to be solely
responsible for the unitarity relations. '" We
sketch how these results are applied to our partic-
ular case.

When the energy arguments of the two-body T
matrices are in the vicinity of the energies of the
two-body bound states, the pole structure is re-
presented by

+ nonsingular terms, (A10)
E+ gg —kp —Ep

where E~=E„+e~, and e~ is the deuteron internal
energy. A similar relation holds for the matrix

elements of t, by replacing the subscript p by e.
The target ground state energy is E,. The bound
state form factors are related to the corresponding
bound state wave functions by

(q» If»& = (E, E„q»') &q» &z I

—&»&-

«.If.& = +'.—E.—~.')«. &. I e.&

(All)

Since the energy arguments of the T matrices are
not integrated over in Eq. (AS), these poles will be
present in the matrix elements of 7,. We can use
Eqs. (A10) and (All) to extract the residues of the
amplitude 0p at these poles. Given the structure of
the integrand in Eq. (A8), it is convenient to divide
by the factor (E+ i@ —0,' —Ez) before extracting the
residues. This introduces an extra pole due to the
vanishing of this factor, and the corresponding
residue is just an on-shell breakup matrix element
of Tp The final result for the pole structure is
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(k,q, p„I 7',(E+ie) I i)
E+i& k,'- q,'- E„

(q~4 „14&~)R~(k~;i) (q, f„I Q,)R,(k, ; i)

R,(P,; i)
+ . ',", + nonsingular terms,E+sz —k,2 —q 2 —E„e

(A12)

where the residues are given by

R~(k~; i) = (k~, P~ I 7~(E+ ac)
I i) I, 2.s s, ,

R.(k, ;i)=(k„y, I &,(E+ie) Ii)l....., ,

R, (P,;i)=(P„P„I7,(E+ie)li)I p g, 2„2.s s
(A15)

(A13)

(A14)

fn Eq. (A15) we have introduced the six-dimension-
al hyperspherical momentum P, = (k „q,) = (k~, q~).
In this space the solid angle Po specifies position
on the surface k,'+q, '=E —E„.

The pole structure of the other factor of the in-
tegrand in Eq. (A8) is obtained by reflection
through the real axis. Substituting into Eq. (A8)
we obtain n. ine singular integrals. However, only
the three integrals in which a pole term is multi-
plied by its complex conjugate survive in the limit
&- 0. Using

c(xy+ e')

I 0 (~'+ e') (y'+ e')

»m "( -" =o
0 (x'+ ~')( 'y+ e')

(A21)

this term and all remaining terms vanish.
Collecting together these results, the operator

form of the unitarity relation for 7, reads

disc%, (E) = tt(E+io)A, V, (E+io)

+ 0'(E+i 0)A~7~(E+i 0)

+ Tt(E+io)D~(E+io)ADA, (E+io)&,(E+ io),

(A22)

(A18) have been carried out by employing the nor-
malization condition for the bound state wave func-
tions. 0f the remaining terms from the integrand
of Eq. (A8), the following example is typical:

R~~(P0;f)R~(k~;i)(q~&f&s I P~)

, w (E —iz —k~'- q,' —Es)(E+ie —k~' —E~)

Rj*, (k~;f) R0(Pa, i)~P, I P„,qp)
(E —ie —k ' —E~)(E+iE —k~' —q~' —E~)

(A20)

Setting x= (E k~' q~' —Es), and y = (E —k~' —E~),
and using the limits

lim» = v5(x),
DX +f

the surviving integrals yield

(A16)
where the projection operators are

Ae= d ke fek&, 5 E —k+ —E& k4f g r (A23)

I (q, P„I 0,) I 'R,*(k„f)R,(k, ; i) Ap= d3kp (Ibpk 5 E —kp —Ep (A24)

d'k, %t E+i0 k,g, 5 E-k,'-E, A0= d k,dq, Q~k 5E —k, —q, —Ez

x (k,p, I7,(E+io) Ii) (A17)
x (k,q, p„l . (A25)

I (q~g„ I $~) I'R~ (k~;f) R~(k~;i)

~p E+i0 Qp, k 5 E —kp2 —Eq

x (k,y, l-;(E+io) Ii),
Aa

lim — d'k d'q
, v ' ' (E —k,' —q,' —E„)'+&'

(A18)

d'k, d'q, f 0,'E+i0 P„,k,q,

x 6(E k,' q,2 Es)

x(k,q 4zl70(E+io) li) (A19)

The integrations over q„q~ in Eqs. (A17) and

We have used Eq. (A5) to obtain the form of the
last term in Eq. (A22). When the label i of the
active target nucleon is restored, one obtains Eq.
(58).

%e can now address the question of taking the
limit inside the operator strings of Eq. (56). Con-
sider first the second term of Eq. (56). The treat-
ment of this term can, be covered by following
through the above derivation with the states li)
and ( fl taken to be

I
i) = (1 —I',r,' ') (1+ I', T ) I P,k), (A26)

(fl=(k@, l(7,1.,1)(1,«1 ) (A27)

The resulting contribution to unitarity will be just
Eq. (A22) multiplied by the extra left and right fac-
tors. This is the result we have employed in Eq.
(62). It is valid only if the extra operators intro-
duced through use of the above states do not alter
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the pole singularity structure we have already de-
duced for the integrand of Eq. (A8). The connec-
tivity structure of the amplitudes in Eq. (A9) en-
sure this. Pole singularities in the momenta

k„q, can be generated in Eq. (A9) only by having

as a final state process an infinite series of re-
peated interactions internal to a disconnected sub-

system. ' Since the nucleons of the residual nu-

cleus must end up in the eigenstate Q„, the only

possible interacting disconnected subsystems in

the final state are those already described by t,
and t~. The taking of the limit inside the second
term of Eq. (56) is therefore a valid operation.

Consider now the third term of Eq. (56). Taking
only one term of the sum, forming matrix ele-
ments, and applying the limit we have

1 ~
~ ~ ~

- c s (k, Q, ) (T,I', +1)r~l gk, )(k,f, l r, (1+ I', T,) ( Q,k)
lim . (kp,

~
(T,I' + 1)T EI',r (I+ I',T,)

~ p,k) = Iim — d &,
'

(
'.

I
', '

')(
6~0 6~0

(A28)

where particle labels are omitted. Since the oper-
ators v; and T, end with an interaction of the pro-
jectile with a target nucleon, and the target re-
mains in its ground state, there is no possibility
of repeated interactions internal to a disconnected
subsystem in the intermediate states. The on. ly
singularities arise from the denominators. Taking
the limit by using Eq. (A16), the result reads {in
operator form)

lim . (T~F,'+ 1)r~&I;r,(1+ I',T,)
6~O 21TZ

= (Ttl ~+ 1)rtA, r, (1+ I',T,), (A29)

which confirms the validity of taking the limit in-
side the operator strings. This concludes our
proof of Eq. (62).
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