Fission of ²⁴⁰Pu with 14.8-MeV neutrons*

D. R. Nethaway and A. L. Prindle University of California, Lawrence Livermore Laboratory, Livermore, California 94550

William A. Myers,[†] W. C. Fuqua,[‡] and M. V. Kantelo

McClellan Central Laboratory, 1155 Technical Operations Squadron, McClellan AFB, California 95652

(Received 8 July 1977)

We have measured the mass-yield distribution from the fission of ²⁴⁰Pu induced by 14.8-MeV neutrons. Seventy-five fission products from ⁶⁶Ni to ¹⁶⁹Er were detected. From these measurements we obtained the total chain yields for 49 mass numbers and constructed the mass-yield curve. Absolute fission yields were obtained by using the ²³⁸U(n, f) monitor reaction. The total yield determined from each half of the mass-yield curve is 0.984. From the agreement in these two methods we conclude that our yield determination is accurate to approximately 4%. The peak-to-valley ratio is 5.5, a significantly larger value than the ratio of 4.1 found for 14.8-MeV neutron fission of ²³⁹Pu. This difference agrees with the trend noted previously for 14.8-MeV neutron fission of uranium isotopes. A number of independent fission yields were measured. Values of Z_p inferred from these yields agree with those estimated from independent-yield systematics, but are approximately 0.1 charge unit greater than predicted. Several partial isomer yields and isomer ratios were measured. These results provide additional information about the fractional production of isomeric states either directly from fission or from β decay. The absolute photon intensity for the 342-keV transition in the decay of ¹¹¹Ag^g was measured to be 0.0668(\pm 5%).

NUCLEAR REACTIONS, FISSION ²⁴⁰Pu(n, f), E = 14.8 MeV; measured fission yields, deduced fission mass distribution. Measured independent fission yields and partial isomeric yields. ¹¹¹Ag^e measured I_{γ} .

INTRODUCTION

Many measurements of ²³⁹Pu fission-product yields are made on targets of ²³⁹Pu containing a significant fraction of ²⁴⁰Pu. The ²⁴⁰Pu may exist as an isotopic impurity, or arise from the formation of ²⁴⁰Pu by the (n, γ) reaction during highfluence neutron irradiation. Because earlier results for the fission of different uranium isotopes have shown there can be significant differences in the yield distribution from adjacent isotopes,¹ it is important to know the mass-yield distribution from neutron-induced fission of ²⁴⁰Pu. Until now, no measurements have been reported, and it has not been possible to correct the results from ²³⁹Pu fission experiments for the effects of ²⁴⁰Pu fission.

The mass-yield distribution from fission of ²⁴⁰Pu induced by 14.8-MeV neutrons was determined by measurements on the PuO₂ targets, on aliquots of the dissolved PuO₂ targets, and on chemically separated samples. We have results for 75 nuclides from the mass range 66 through 169. Absolute fission yields were obtained by using the ²³⁸U(n, f) monitor reaction.

EXPERIMENTAL PROCEDURE

Enriched 240 Pu, as PuO₂, was obtained from Oak Ridge National Laboratory. It had the isotopic

composition ²³⁸Pu, 0.017%; ²³⁹Pu, 0.67%; ²⁴⁰Pu, 98.39%; ²⁴¹Pu, 0.55%; and ²⁴²Pu, 0.37% at the time of irradiation. Because of the high level of α radioactivity associated with the ²⁴⁰PuO₂, all target preparation and most of the postirradiation chemistry was done in a glove box. Before each irradiation, the Pu was purified to remove decay products of ²⁴¹Pu (²⁴¹Am, ²³⁷Np, and ²³⁷U), spontaneous fission products, and inert contaminants. Up to 300 mg of 240 PuO₂ was dissolved in 6 M HCl, a few drops of HBF_4 , and a few drops of HNO_3 to maintain Pu as Pu(IV). The solution was boiled down, mixed with 12 M HCl and loaded onto a Dowex 1 anion exchange column which had been preconditioned with 12 M HCl containing a few drops of HNO₃. The adsorbed Pu(IV) was washed with 12 M HCl. The Pu(IV) was reduced to Pu(III) and eluted with a mixture of 12 M HCl and 0.5 MHI. This reduction-elution step is rather specific for Pu. Following removal of I from the eluate by boiling with aqua regia. Pu was precipitated as the oxalate, washed, and converted to the oxide.

Individual ²⁴⁰PuO₂ targets, ranging from 10 to 200 mg, were doubly encapsulated, first in either 0.012-mm Mylar or 0.025-mm aluminum foil to prevent loss of fission fragments and then in 0.2mm polyvinyl chloride to prevent contamination by α emitters. Monitor foils of enriched ²³⁸U (99.8% ²³⁸U, 0.2% ²³⁵U) were similarly encapsu-

1907

lated. Each target assembly consisted of a ²⁴⁰PuO₂ target, either alone or sandwiched between two monitor foils. The dimensions of the assembly were approximately 1.0 cm square by less than 0.5 cm between the front and back monitor foils. Each assembly was encapsulated in 0.5-mm-thick aluminum and contained in a Cd target holder to minimize the possibility of extraneous low-energy neutrons causing fission of the isotopic impurities ²³⁹Pu and ²⁴¹Pu. The Cd target holder had no lineof-sight joints. Its minimum thickness (the side facing the neutron source) was 0.5 mm.

The 14.8-MeV neutron irradiations were made at the LLL insulated-core-transformer (ICT) accelerator, where neutrons are produced by the reaction of a beam of 400-keV deuterons on a rotating titanium tritide target.² The maximum deuteron beam current was 20 μ A, producing a 14.8-MeV source of up to $5 \times 10^{12} n/s$. The neutron flux density was monitored with a proton-recoil counter so corrections could be made for the small changes in beam intensity. We had five irradiations, varying in duration from 1.5 to 15 h and producing up to 4×10^{12} fissions. The target holder was placed at 0° to the deuteron beam and either as close as possible to the neutron source or 10 cm away. The latter position ensured similar irradiation conditions for front and back monitor foils during irradiations using ²³⁸U foils as fission monitors. The mean neutron energy in the PuO₂ and U targets was 14.8 ± 0.3 MeV.

After irradiation, the polyvinyl chloride package containing the ²⁴⁰PuO₂ was either sealed in a new aluminum container for γ -ray spectrometric analysis or transferred to a glove box for radiochemical separations. The target, Mylar, and polyvinyl chloride were dissolved in a mixture of HNO₃ and $HClO_4$ containing microgram quantities of Zr, Mo, Pd, and Ag. The solution was diluted to known volume. The actual ²⁴⁰Pu content of the target was determined from an aliquot of this solution by thermal ionization mass spectrometry at McClellan Central Laboratory (MCL) using the isotope dilution technique with ²⁴²Pu as tracer. Other aliquots were taken for radiochemical separations and direct γ -ray spectrometric measurements. Standard radiochemical procedures³⁻⁶ were modified to allow the removal of Pu and $^{\rm 241}\!Am$ and the sequential separation of up to 15 elements from a single aliquot. Rare earth elements were separated on a Dowex 50 cation exchange column. The eluent was a solution of α -hydroxyisobutyric acid at pH 4.2, the concentration of which was increased exponentially from 0.2M to 0.45 M. Those rare earth elements having very low fission yield (Er and Tb) were further purified by a repeated separation on a similar ion exchange column. In one

irradiation we measured rare earth fission products having half-lives shorter than 6 h. The more rapid separation of rare earth elements required for this irradiation was achieved by operating the ion exchange column at elevated pressure.⁷

The disintegration rates of individual radioactive fission products were determined by γ -ray spectrometry at LLL or MCL, by β -particle assay at MCL, or by both measurement techniques. The characteristic radiation detected for each nuclide is presented in Table I. Four types of samples were analyzed by γ -ray spectrometry: undissolved 240 PuO₂ targets and 238 U monitor foils (at LLL). aliquots of dissolved targets (LLL), group-separated rare earth samples (LLL, MCL), and radiochemically purified samples (LLL, MCL). We used 10 coaxial Ge(Li) detectors panging in active volume from 45 to 85 cm³ with resolutions from 2.39 to 1.86 keV full width at half maximum at 1332 keV. Spectra were interpreted with the GAMANAL code.⁴⁶ The absolute efficiency curve for each detector was determined with standardized sources from Amersham Searle Corp; Centre d'Etalonnage des Rayonnements Ionisants, France; International Atomic Energy Agency; Lawrence Livermore Laboratory; Los Alamos Scientific Laboratory; McClellan Central Laboratory; National Office of Measures, Hungary; and U. S. National Bureau of Standards.

Radiochemically purified samples were subjected to β -particle assay at MCL where we used 12 gas-flow proportional counters. Data for count rate as a function of time were resolved by multicomponent weighted least-squares analysis. The absolute efficiencies for detected fission products were determined as a function of precipitate thickness using standardized sources from Amersham Searle Corp., Lawrence Livermore Laboratory, Los Alamos Scientific Laboratory, McClellan Central Laboratory, and U. S. National Bureau of Standards. The efficiencies of nuclides unavailable as standardized sources (for instance, ⁶⁶Ni and ¹⁵⁷Eu) were estimated from a general curve relating efficiency to mean β -particle energy.

Aliquots free of Cs carrier were analyzed by thermal ionization mass spectrometry for atom ratios of fission product cesium isotopes. Targets for these measurements were dissolved several weeks after irradiation. Absolute atoms yields were obtained by relating the atom ratios ¹³⁴Cs/¹³⁷Cs and ¹³⁵Cs/¹³⁷Cs to the atom yield of ¹³⁷Cs determined by γ -ray spectrometry.

RESULTS AND DISCUSSION

Fission yield measurements

The measured amount of each fission product was corrected for decay back to the end of irradia-

	Radiation detected	Absolute γ		
Nuclide	(γ energy in keV)	intensity (v/decay)	Half_life	References
		(), uccay)		
⁶⁶ Ni ^a	β		54.6 h	8
⁶⁷ Cu	91.23	0.0683	2.575 day	9
	93.29	0.161		
70	184.56	0.487		
¹² Zn	144.7	0.83	46.5 h	10
1ºGa	295	0.77	4.91 h	11
97	328	0.135		
٥'Kr	402.47	0.473	1.267 h	12
00	2554.92	0.0847		
°°Kr	2195.90	0.141	2.803 h	12
8 9 _	2392.10	0.379	50 55 1	10
^{ov} Sr	β		50.55 day	13
⁹¹ Sr ⁵	β		28.6 yr	14
"Sr	555.63 ~	0.58	9.48 h	15
	749.77	0.24		
91	1024.25	0.33	FO F1 days	10
92 Q	β	0.00	58.51 day	10
**Sr 9237	1383.94	0.90	2.71 fl	10
Y 93xz	934.52	0.137	3.33 n 10.94 h	10 10
Ŷ	200.87	0.000	10.24 h	12,10
		0.0194		
95 7 2	1917.8	0.014	65 0 day	15
21	р 756 72	0 546	05.0 day	10
	765.80 °	0.040		
96 _{NID}	568 86	0.558	23.4 h	19
ND	778 22	0.968	20.1 1	10
	1091 31	0.305		
97 7 m	R R	0.400	16.82 h	15
21	ρ 659.19°	0.990	10.02 11	10
	743 37	0.940		
99MO	R R	0.540	2 752 dav	9 12 15
1410	μ 140 514 °	0.805	2.102 day	0,12,10
	181 092	0.0604		
	739.481	0.120		
	777,900	0.0424		
¹⁰³ Bu	497.09	0.900	39.6 day	12,15
105 _{B11}	469.38	0.175	4.44 h	15,20
104	676.40	0.167		-,
¹⁰⁵ Rh	319.24	0.196	1.476 day	15,20
¹⁰⁶ Ru	622.10 °	0.098	369 day	15
¹⁰⁹ Pd	88.04	0.0379	13.47 [°] h	12,21
¹¹⁰ Ag ^m	937.3	0.336	260 day	15
0	1384.3	0.24	-	
111 Pd ^m	172.2	0.324	5.5 h	22
¹¹¹ Ag ^{<i>s</i>}	β		7.431 day	9
-	342.14	0.0668 ^d		
¹¹² Pd	617.40 °	0.435	21.12 h	15,23
¹¹³ Ag ^{<i>s</i>}	β		5.371 h	24
	298.4	0.093		
¹¹⁵ Cd ^{<i>m</i>}	β		44.6 day	25
¹¹⁵ Cd ^e	β		2.208 day	9,12
	336.25 °	0.465		
	492.29	0.0826		
44.0	527.86	0.280		
¹¹⁷ Cd ^m	564.4	0.153	3.35 h	26,27
	1066.0	0.231		
	1997.4	0.254		

TABLE I. Nuclear properties of fission products detected in ²⁴⁰Pu fission.

	Radiation detected $(\gamma \text{ energy})$	Absolute γ intensity		
Nuclide	in keV)	(γ/decay)	Half-life	References
¹¹⁷ Cd ^g	273.31	0.284	2.56 h	26,27
	344.51	0.173		
	1303.4	0.176		
¹¹⁸ Cd	1229.5 °	0.15	0.838 h	28
¹²⁵ Sn ^g	822.6	0.0387	9.65 day	17
	915.5	0.0376		
	1066.6	0.0887		
¹²⁵ Sb	427.88	0.304	2.77 yr	12,15
¹²⁶ Sb ^g	414.7	0.810	12.5 day	15
	666.2	1.00		
	695.1	1.00		
¹²⁷ Sn ^g	1095.6	0.195	2.12 h	29
¹²⁷ Sb	473.20	0.248	3.87 day	9
	684.90	0.368		
¹²⁸ Sn	482.0	0.66	1.00 h	17
¹²⁸ Sb ^g	636.2	0.360	9.01 h	17
¹²⁹ Sb	544.7	0.181	4.32 h	30
	914.6	0.202		
	1030.1	0.127		
¹³⁰ Sb ^e	330.9	0.78	0.667 h	17
	839.4	1.00		
130 T 8	536.09	0.99	12.36 h	31
¹³¹ Te ^m	793.80	0.159	1.25 day	15
	852.30	0.256		
	1125.50	0.148		
	1206.6	0.118		
¹³¹ I	364.46	0.79	8.022 day	12
¹³² Te	228.2	0.88	3.24 day	15
	522.60 °	0.156		
	630.20 °	0.135		
^{132}Cs	667.5	0.974	6.475 day	32
¹³³ I	529.91	0.83	21.0 h	9
$^{134}Cs^m$	127.42	0.143	2.90 h	33
¹³⁴ Cs ^s	604.70	0.98	767 day	15
¹³⁵ I	1260.41	0.284	6.610 h	9
	1457.56	0.0858		
	1678.03	0.0947		
¹³⁵ Xe	249.65	0.92	9.106 h	12,15
$^{135}Cs^m$	786.34	0.997	0.883 h	12,34
	845.05	0.959		
¹³⁵ Cs ^s	e		$2.3 imes10^{6}~{ m yr}$	34
¹³⁶ Cs	818.48	1.000	13.0 day	15
	1048.10	0.805		
	1235.41	0.197		
¹³⁷ Cs	661.62°	0.850	30.01 yr	15
¹³⁸ Cs	462.7	0.270	0.557 h	17
	1009.7	0.285		
	1435.7	0.750		
¹³⁹ Ba	165.85	0.220	1.385 h	15
¹⁴⁰ Ba	β		12.80 day	12
	537.261	0.2446		
	1596.20°	0.9552		
¹⁴¹ Ce	β		32.38 day	12
	145.44	0.493		
¹⁴² La	641.21	0.465	1.545 h	15,35
	2398.0	0.117		
4.40	2542.9	0.088		
¹⁴³ Ce	293.20	0.435	1.379 day	12

TABLE I. (Continued)

Nuclide	Radiation detected (γ energy in keV)	Absolute γ intensity (γ/decay)	Half-life	References
144 Ce	ß	taan (1997) Maadada aha ka daada Afrika ahaa hadii qaada doolaa a	284 6 day	15
Ce	133 50	0.110	204.0 uay	10
145 Dr	674 0	0.0043	5 98 h	36
11	748.0	0.0043	0.00 11	50
147Nd	R R	0.0043	11 04 day	19
nu	531.00	0 1295	11.04 uay	12
149 _{Nd}	114 221	0.1235	1 721 h	19
ING	211 207	0.234	1.721 11	12
149 Dm	211.307	0.234	2 208 dov	15 97
151 Dm		0.031	2.200 uay	10,07
Pm	107.73+108.38	0.092	1.185 day	15,38
	240.08	0.036		
153	340.08	0.224		
¹³⁵ Sm	β		1.928 day	15,39
455	103.17	0.284		
¹⁵⁵ Eu	86.55	0.335	4.68 yr	15,40
450	105.32	0.224		
¹⁵⁶ Eu	β		15.19 day	15
¹⁵⁷ Eu	β		15.15 h	41
	413	0.186		
¹⁵⁹ Gd	β		18.56 h	42
	363.56	0.103		
¹⁶⁰ Tb	β		72.1 day	15
¹⁶¹ Tb	β		6.91 day	43
¹⁶⁹ Er	β		9.40 day	44

TABLE I. (Continued)

 a Confirmed by observation of the 1039-keV γ ray from the ^{66}Cu daughter in equilibrium.

^bDetermined by milking of the 2.66-day ⁹⁰Y daughter.

 $^{\circ}\gamma$ ray emitted by the daughter in equilibrium.

^dA value of $0.0668(\pm 5\%)$ for the absolute photon intensity (I_{γ}) of the 342-keV γ ray was determined by the $4\pi\beta\gamma$ coincidence technique. This result is in agreement with the recommended value of Thierens *et al.* (0.068 ± 0.006) (Ref. 45).

^eDetermined from 135/137 atom ratio and 137 Cs disintegration rate. See text.

tion. A correction was also made for decay during irradiation, based on the time history of neutron flux density as measured by a proton-recoil counter. In cases where both the parent and daughter nuclides have half-lives within a factor of 100 of each other (such as the ⁹¹Sr-Y, ⁹²Sr-Y, ¹⁰⁵Ru-Rh, ¹³⁵I-Xe pairs), it was necessary to consider both the parent and daughter decay in making this correction.

Results of the fission yield measurements are summarized in Table II. Relative yields were first calculated as the ratio of a particular yield to that of ⁹⁹Mo, and the ratios for each product were averaged over all the experiments. ²³⁸U monitor foils were used with four ²⁴⁰PuO₂ targets in two of the irradiations. The number of fissions occurring in these ²⁴⁰PuO₂ targets was calculated from the ²⁴⁰Pu and ²³⁸U masses, the 14.8-MeV neutron fission cross section ratio, σ_f (²⁴⁰Pu)/ σ_f (²³⁸U) = 1.98 ± 0.06,^{47,48} and the average number of ²³⁸U fissions. The latter quantity was determined from numerous (10 to 15) prominent fission products for each pair of foils using yields given in Ref. 49. The average front-to-back ratio was 1.03. From these four targets used with ²³⁸U the absolute fission yield of ⁹⁹Mo was determined to be 0.0485 atoms per fission with an estimated uncertainty of 5%, based on the uncertainties in the 238 U and ²⁴⁰Pu fission cross sections and the ²³⁸U fission yields. The absolute fission yields of the other products from $^{\rm 240}{\rm Pu}$ fission were calculated from their relative yields and the ⁹⁹Mo absolute yield. Since the fission cross sections of ²³⁹Pu, 240 Pu, 241 Pu, and 242 Pu are all about the same at 14.8 MeV, the corrections for fission of the isotopic impurities ²³⁹Pu, ²⁴¹Pu, and ²⁴²Pu are each less than 1%, and tend to be self-cancelling.

In column 4 of Table II we have listed the estimated fraction of the total chain yield for each product nuclide. These estimates are based on tabulated Z_p values⁵⁰ and a Gaussian charge dispersion curve with σ =0.56. The Z_p values were

	Measured		Est. fraction	
Product	fission yield	Percent	of total	Total chain yield ^a
nuclide	(atoms/fission)	error	chain yield	(atoms/fission)
66NI ;	6 04 × 10-7	44	0.999 ± 0.001	$(6, 1 \pm 2, 7) \times 10^{-7}$
67 _{CP}	0.04×10^{-6}	25	0.555±0.001 1	$(0.1 \pm 2.7) \times 10^{-6}$
72 rZm	1.31×10	10	1	$(1.5 \pm 0.5) \times 10^{-5}$
⁷³ Ca	4.4/ × 10 -	10	0.993 ±0.005	$(4.5 \pm 0.5) \times 10^{-5}$
87 ₁ / ₂	0.04 × 10 -	0.0		$(0.3\pm0.5)\times10^{-5}$
88Km	0.0122	8.2 4 0	0.990 ± 0.004	0.0123 ± 0.0010
89 Gm	0.0128	4.5	0.943 ± 0.010	0.0136 ± 0.0007
90g.	0.0174	3.0	1	0.0174 ± 0.0005
91 _{Gm}	0.0194	3.0	1 0 000 ± 0 001	0.0194 ±0.0000
91 _V	0.0235	3.0	1	0.0235
Mass 91	0.0245	5.0	1	0.0244 ± 0.0005
920-	0.0977	2.0	0.000 / 0.004	0.0001
92 _V	0.0277	3.0	0.989 ± 0.004	0.0281
Mass 92	0.0293	4.0	1	0.0293
93				0.0204 10.0000
95 Y	0.0288	3.0	1	0.0288 ± 0.0009
³⁵ Zr	0.0368	3.0	1	0.0368 ± 0.0007
**Nb	8.34 × 10 ⁻⁵	3.0	b	
³ 'Zr	0.0418	3.0	0.990 ± 0.004	0.0422 ± 0.0013
⁵⁵ Mo	0.0485	3.0	1	0.0485 ± 0.0015
105Ru	0.0527	3.0	1	0.0527 ± 0.0016
105Ru	0.0525	3.0	1	0.0525
No. 105	0.0432	3.0	1	0.0432
Mass 105				0.0432 ± 0.0013 °
¹⁰⁶ Ru	0.0400	3.0	0.999 ± 0.001	0.0400 ± 0.0012
¹⁰⁹ Pd	0.0229	3.0	1	0.0229 ± 0.0007
¹¹⁰ Ag ^m	≤4.9×10 ⁻⁶		b	
¹¹¹ Pd ^m	9.90×10^{-3}	8.6	0.997 ± 0.003	$(9.9\pm0.8)\times10^{-3}$ d
¹¹¹ Ag	0.0166	3.0	1	0.0166 ± 0.0005
¹¹² Pd	0.0156	3.0	0.987 ± 0.016	0.0158 ± 0.0005
¹¹³ Ag <i>^e</i>	0.0153	5.2	1	0.0153 ± 0.0008
¹¹⁵ Cd ^g	0.0109	3.0	1	0.0109 ± 0.0003
$^{115}Cd^m$	7.18×10^{-4}	3.0	1	$(7.18 \pm 0.22) \times 10^{-4}$
Mass 115				0.0116 ± 0.0003
¹¹⁷ Cd ^{<i>e</i>}	6.01×10^{-3}	3.0*	0.996 ± 0.004	$(6.0 \pm 1.2) \times 10^{-3}$
117Cd ^m	2.57×10^{-3}	3.0 •	0.996 ± 0.004	$(2.6 \pm 0.5) \times 10^{-3}$
Mass 117				$(8.6 \pm 1.3) \times 10^{-3}$
118Cd	4.95×10^{-3}	6.0	0.979 ± 0.018	$(5.1+1.0) \times 10^{-3^{\text{f}}}$
125 _{Sn}	8.44×10^{-3}	3.0	0.979 ± 0.010	$(8, 80 \pm 0, 33) \times 10^{-3}$ d
125 _{Sb}	0.0157	3.0	1	0.0157 ± 0.0005
126 _{Sb}	3.60×10^{-3}	3.2	h	0.0101 ±0.0000
127 Sn ^g	0.0143	4.08	0732 ± 0.062	0.0195 ± 0.0042^{d}
127Sb	0.0195	3.0	0.992 ± 0.004	0.0197 ± 0.0006
¹²⁸ Sn	9.94×10^{-3}	3.0	b	
¹²⁸ Sb ^{<i>s</i>}	0.0101	3.0	0.963 ± 0.014	0.0105 ± 0.0003^{d}
¹²⁹ Sb	0.0191	4.2	0.875 ± 0.030	0.0218 ± 0.0012
¹³⁰ Sb ^e	0.0171	5.0	0.686 ± 0.049	0.0250 ± 0.0022^{d}
¹³⁰ I ^{<i>e</i>}	2.09×10^{-3}	4.5	b	
¹³¹ Te ^m	0.0154	3.0	0.940 ± 0.016	0.0164 ± 0.0006 ^d
¹³¹ I	0.0445	3.2	1	0.0445 ± 0.0014
¹³² Te	0.0355	3.0	0.796 ± 0.037	0.0445 ± 0.0025
¹³² Cs	1.7×10^{-5}	60	b	
¹³³ I	0.0538	3.4	0.968 ± 0.010	0.0556 ± 0.0020
¹³⁴ Cs ^s	4.22×10^{-4}	3.6	b	
$^{134}Cs^m$	2.23×10^{-4}	3.8	b	
¹³⁵ I	0.0386	3.2	0.629 ± 0.049	0.0614 ± 0.0052

TABLE II. Yields of products from fission of ²⁴⁰Pu with 14.8-MeV neutrons.

Product nuclide	Measured fission yield (atoms/fission)	Percent error	Est. fraction of total chain yield	Total chain yield ^a (atoms/fission)
¹³⁵ Xe	0.0579	6.2	0.983 ± 0.006	0.0589 ± 0.0037
¹³⁵ Cs ^e	0.0497	4.1	1	0.0497 ± 0.0020
Mass 135				0.0520 ± 0.0033
¹³⁵ Cs ^m	6.55×10^{-4}	3.3	b	
¹³⁶ Cs	$5.03 imes 10^{-3}$	3.0	b	
¹³⁷ Cs	0.0448	4.0	0.996 ± 0.002	0.0450 ± 0.0018
¹³⁸ Cs	0.0519	10	0.977 ± 0.007	0.053 ± 0.005
¹³⁹ Ba	0.0456	3.0	0.999 ± 0.001	0.0457 ± 0.0014
¹⁴⁰ Ba	0.0377	3.0	0.993 ± 0.002	0.0380 ± 0.0011
¹⁴¹ Ce	0.0357	3.0	1	0.0357 ± 0.0011
¹⁴² La	0.0388	8.0	0.998 ± 0.001	0.0389 ± 0.0031
¹⁴³ Ce	0.0309	3.0	1	0.0309 ± 0.0009
¹⁴⁴ Ce	0.0265	3.0	1	0.0265 ± 0.0008
¹⁴⁵ Pr	0.0269	10	1	0.0269 ± 0.0027
¹⁴⁷ Nd	0.0178	3.0	1	0.0178 ± 0.0005
¹⁴⁹ Nd	0.0145	3.2	0.999 ± 0.001	0.0145 ± 0.0004
¹⁴⁹ Pm	0.0129	3.0	1	0.0129 ± 0.0004
Mass 149				0.0136 ± 0.0008
¹⁵¹ Pm	$8.05 imes 10^{-3}$	6.2	1	$(8.1 \pm 0.5) \times 10^{-3}$
¹⁵³ Sm	$6.55 imes 10^{-3}$	3.0	1	$(6.55 \pm 0.20) \times 10^{-3}$
¹⁵⁵ Eu	2.78×10^{-3}	3.0	1	$(2.78\pm0.08)\times10^{-3}$
¹⁵⁶ Eu	2.25×10^{-3}	3.0	1	$(2.25\pm0.07)\times10^{-3}$
¹⁵⁷ Eu	1.58×10^{-3}	3.0	0.999 ± 0.001	$(1.58 \pm 0.05) \times 10^{-3}$
¹⁵⁹ Gd	6.8×10^{-4}	15	1	$(6.8 \pm 1.0) \times 10^{-4}$
¹⁶⁰ Tb	≤1.5×10 ⁻⁶		b	
161 Tb	3.46×10^{-4}	3.0	1	$3.46 \pm 0.10) \times 10^{-4}$
¹⁶⁹ Er	1.15×10^{-5}	4.0	1	$(1.15 \pm 0.05) \times 10^{-5}$

TABLE II. (Continued)

^a The experimental standard deviations given here do not include the systematic uncertainty in the yield determination. This additional uncertainty is estimated to be about 4%.

^bIndependent fission yield—see Table IV.

^c The ¹⁰⁵Rh yield is preferred. The ¹⁰⁵Ru yield is not consistent with the mass-yield curve. The photon abundances of ¹⁰⁵Ru and ¹⁰⁵Rh are well known, and replicate analyses agreed in both cases. The large discrepancy in the fission yields could not be resolved.

^d Partial isomeric yield only.

^e The disagreement in the photon abundances found in the literature for $^{117}Cd^{m,\ell}$ is such that we have arbitrarily increased the total uncertainty in the yields to 20%.

^f The yield of ¹¹⁸Cd is in disagreement with the expected shape of the mass-yield curve, and has not been used. We believe that the absolute photon abundance is in error. We have also measured the ¹¹⁸Cd yield from thermal fission of ²³⁵U and found similar disagreement.

⁶ The uncertainty in the yield of 127 Sn^e has been increased to 20% to allow for the extra uncertainty in the photon abundance.

derived from systematics inferred from an analysis of measured independent and cumulative fractional chain yields.⁵¹

Of the 75 individual measurements given in Table II, we have calculated the total chain yield for 49 mass numbers. The remaining results are independent yields, partial isomer yields, or multiple measurements for the same mass number. We show the total chain yields greater than 10^{-4} as a mass-yield curve in Fig. 1. Because we found no distinct structure, we drew a smooth curve

through the data points using their reflected values as an aid. We assumed the average mass of the fissioning nucleus was 236.0, corresponding to an emission of 5.0 neutrons.⁵² The total yield in each half of the mass-yield curve is 0.984. The closeness of this value to unity confirms the reliability of the yields based on the ²³⁸U fission monitors. Since both methods have uncertainties of about 5%, we estimate then that the overall uncertainty in the yield determination is approximately 4%.

'ission yield (atoms/fission)

10

60

80

Mass number FIG. 1. Mass-yield curve for fission of ²⁴⁰Pu with 14.8-MeV neutrons. Measured yields are indicated by open circles with error bars. The curve was drawn with aid of mirror points reflected about mass 118.0.

120

140

160

180

100

The peak-to-valley ratio in the mass-yield distribution is 5.5 compared with the value of 4.1 for 14.8-MeV neutron fission of 239 Pu.⁴⁹ This agrees with the trend found for 14.8-MeV fission of the isotopes of uranium,¹ i.e., the peak-to-valley ratio increases with increasing target mass number from 3.2 (for 233 U) to 6.8 (for 238 U).

The total chain yields of products on the lower portions of the mass-yield curve are shown in Fig. 2 and appear to be skewed with no common central mass number. Two experimental factors may account for this effect. The first is the imprecise low yields determined for ⁶⁶Ni and ⁶⁷Cu. The reported yield of ⁶⁷Cu represents only 26% of the measured yield. This is caused by its production from zinc impurity in the ²⁴⁰Pu target material. The correction is based on an observed apparent yield of ⁶⁵Zn and the results of a separate experiment in which the relative yields of 65 Zn. ⁶⁶Ni, and ⁶⁷Cu were measured in a zinc target irradiated with 14.8-MeV neutrons. The correction to the ⁶⁶Ni fission yield is negligible. Second, the skewness and lack of common central mass number may be caused by the result for ¹⁶⁹Er. It is

FIG. 2. Low-yield products from fission of 240 Pu with 14.8-MeV neutrons. Measured yields are indicated by open circles with error bars.

possible that the majority of the observed ¹⁶⁹Er yield was produced from reactions on Er impurity. The observed ¹⁶⁹Er could have been produced from an erbium impurity of approximately 70 ppm. The actual erbium content is not known, but, because of the rather specific purification of our target material, we would not expect it to be that high. We have not made any adjustment on the observed ¹⁶⁹Er to account for this, but we note that it may have been significant.

We should also note that the yields of the products on the lower part of the mass-yield curve in Fig. 2 might not have the same central mass number as the high-yield products. For example, in the fission of five uranium isotopes the central mass number of the low-yield products was about one mass number higher than for the peak-yield products.¹ This effect may be caused by an increased energy requirement for reactions leading to the low-yield products and which are accompanied by less neutron emission.

A listing of the recommended total chain yields for mass numbers from 66 to 170 is in Table III. The yields are taken from the smooth curves shown in Figs. 1 and 2. TABLE III. The recommended total chain yields for mass numbers 66 to 170. These yields were taken from the smooth curves drawn through the data points in Figs. 1 and 2. The yields are given as atoms/fission.

	Total		Total
Mass	chain	Mass	chain
number	yield	number	yield
66	6.1×10^{-7}	118	0.0097
67	$1.3 imes 10^{-6}$	119	0.0099
68	2.4×10^{-6}	120	0.0105
69	4.9×10^{-6}	121	0.0115
70	$9.8 imes 10^{-6}$	122	0.0123
71	2.1×10^{-5}	123	0.0135
72	4.5×10^{-5}	124	0.0150
73	$9.0 imes 10^{-5}$	125	0.0167
74	1.6×10^{-4}	126	0.0192
75	3.2×10^{-4}	127	0.0224
76	5.1×10^{-4}	128	0.0261
77	7.5×10^{-4}	129	0.0310
78	0.001 08	130	0.0375
79	0.001 56	131	0.0450
80	0.00217	132	0.0516
81	0.002 93	133	0.0530
82	0.0039	134	0.0538
83	0.0050	135	0.0534
84	0.0064	136	0.0515
85	0.0082	137	0.0494
86	0.0102	138	0.0470
87	0.0124	139	0.0436
88	0.0149	140	0.0408
89	0.0176	141	0.0375
90	0.0210	142	0.0345
91	0.0244	143	0.0311
92	0.0281	144	0.0281
93	0.0311	145	0.0244
94	0.034 5	146	0.0210
95	0.037 5	147	0.0176
96	0.0408	148	0.0149
97	0.0436	149	0.0124
98	0.0470	150	0.0102
99	0.0494	151	0.0082
100	0.0515	152	0.0064
101	0.0534	153	0.0050
102	0.0538	154	0.0039
103	0.0530	155	0.00293
104	0.0316	150	0.00217
105	0.0450	107	0.001 56
100	0.0375	158	0.00108
107	0.0310	109	7.5×10^{-4}
100	0.0201	160	3.1×10^{-4}
110	0.0224	161	3.3×10
111	0.0192	162	2.3 × 10 1 6 × 10-4
119	0.015.0	164	1.0×10^{-4}
112	0.0135	165	6 8 × 10 ⁻⁵
114	0.0193	166	4.4×10^{-5}
115	0.012.5	167	2.8 × 10 ⁻⁵
116	0.0105	168	1.8×10^{-5}
117	0.0099	169	1.1×10^{-5}
		170	7.2×10^{-6}

Independent yields

Independent fission yields were measured for several nuclides. These results are summarized in Table IV, along with the total chain yields (see Table III), the independent fractional chain yields, and the values of Z_p inferred from the measurements using a Gaussian charge dispersion curve with $\sigma = 0.56$.⁵³ Measured values of Z_p are compared with predicted values on the basis of independent-yield systematics.^{50,51}

Measured and predicted Z_{p} values generally agree, although the predicted values are approximately 0.1 charge unit smaller. The measured yield of ¹³²Cs, about 60 times higher than expected, may be partly caused by the (n, 2n) reaction on Cs impurity in the ²⁴⁰Pu. The amount of ¹³²Cs observed could be formed from 14 ppm Cs, but the actual level was not measured. The high yield of ¹³⁴Cs could also be partly caused by the (n, γ) reaction.

Isomer ratios

Several partial isomer yields and isomer ratios were measured and are summarized in Table V. The estimated fractional production of each isomer pair from direct fission and from β decay is given.

The measured isomer ratio for ¹¹⁵Cd (0.0658 \pm 0.0020), primarily formed by β decay, is in agreement with the average value of approximately 0.071 found for the 14.8-MeV fission of five uranium isotopes.¹

When the yield is primarily from fission (127 Sn, 130 Sb, 134 Cs), the measured isomer ratio can be compared with recent theoretical calculations for the distribution of independent fission-product yields to isomeric states.⁵⁴ The calculated isomer ratios are 0.22 (127 Sn), 0.75 (130 Sb), and 1.59 (134 Cs). The 127 Sn and 130 Sb calculated yields are in fair agreement with the experimental values; the disagreement in the case of 134 Cs may be caused by preferential formation of 134 Cs sf by the (n, γ) reaction on cesium impurity in the target (the measured independent yield of 134 Cs is higher than expected).

ACKNOWLEDGMENTS

We would like to express our gratitude and appreciation to the friends and colleagues who contributed so much to our experiment. At LLL, Wesley Hayes, Jr. gave us assistance and advice in the handling of plutonium. Radiation safety monitoring was provided by Eric Nelson, Elmar Van Sant, Jr., and Paul Linnes. Raymond Gunnink and Richard Meyer generously furnished unpub-

	Measured	Total chain	Independent	Value o	of Z,
Nuclide	fission yield ^a	yield ^b	FCY	Measured ^c	Predicted
⁹⁶ Nb	$(8.34 \pm 0.25) \times 10^{-5}$	0.0408	$(2.04 \pm 0.06) \times 10^{-3}$	38.89 ± 0.17	38.80±0.08
¹¹⁰ Ag ^m	≤4.9×10 ⁻⁶	0.0192	$\leq 2.6 \times 10^{-4}$	$\leq 44.56 \pm 0.21$	44.58 ± 0.16
¹²⁶ Sb ^{<i>s</i>}	$(3.60 \pm 0.12) \times 10^{-3}$	0.0192	0.188 ± 0.006	≥50.01 ±0.05 ^d	49.84 ± 0.12
¹²⁸ Sn	$(9.94 \pm 0.31) \times 10^{-3}$	0.0261	$0.381 \pm 0.012^{\circ}$	50.67 ± 0.02	50.50 ± 0.09
¹³⁰ I ^s	$(2.09 \pm 0.09) \times 10^{-3}$	0.0375	0.0557 ± 0.0025	$\geq 51.61 \pm 0.09^{d}$	51.23 ± 0.08
^{132}Cs	$(1.7 \pm 1.0) \times 10^{-5}$	0.0516	$(3.3 \pm 2.0) \times 10^{-4}$	52.59 ± 0.31	52.04 ± 0.07
^{134}Cs	$(6.45 \pm 0.17) \times 10^{-4}$	0.0538	0.0120 ± 0.0003	53.24 ± 0.14	52.91 ± 0.07
¹³⁵ Cs ^m	$(6.55 \pm 0.22) \times 10^{-4}$	0.0534	0.0123 ± 0.0004	$\geq 53.24 \pm 0.14^{d}$	53.32 ± 0.07
¹³⁶ Cs	$(5.03 \pm 0.15) \times 10^{-3}$	0.0515	0.0977 ± 0.0029	53.78 ± 0.08	53.69 ± 0.07
¹⁶⁰ Tb	≤1.5×10 ⁻⁶	5.10×10^{-4}	$\leq 2.9 \times 10^{-3}$	$\leq 62.96 \pm 0.16$	62.89 ± 0.13

TABLE IV. Measured independent fractional chain yields (FCY) and a comparison of measured and predicted values of Z_{p} , the most probable charge for a given mass number.

^aMeasured fission yield from Table II.

^b Total chain yield from Table III.

^c The "measured" value of Z_p is inferred from the measured independent FCY. The uncertainty given for the measured Z_p includes the uncertainty in the width of the Gaussian charge dispersion curve, $\sigma = 0.56 \pm 0.06$. This is by far the major part of the total uncertainty.

^d The result is a lower limit to Z_p since only the partial isomeric yield was measured.

^eThis yield is a cumulative fractional chain yield.

TABLE V. Measured isomer yields from fission of ²⁴⁰Pu with 14.8-MeV neutrons.

Nuclide	Spin-parity	Fission yield	Isomer ratio (m/g)	Fractional p Fission	roduction ^a βdecay
$^{111}\mathrm{Pd}^{m}$	$\frac{11}{2}$	9.9 $\times 10^{-3^{b}}$	1.49 ± 0.27	0.15	0.85
¹¹¹ Pd ^{<i>g</i>}	$\frac{5}{2}$ +	6.77 × 10 ^{-3 °}			
¹¹⁵ Cd ^m	$\frac{11}{2}$	$7.18 imes 10^{-4}$ ^b	0.0658 ± 0.0020	0.01	0.99
¹¹⁵ Cd ^g	$\frac{1}{2}$ +	0.0109 ^b			
¹¹⁷ Cd ^m	$\frac{11}{2}$	2.57×10^{-3} ^b	0.43 ± 0.12	0.18	0.82
¹¹⁷ Cd ^{<i>s</i>}	$\frac{1}{2}$ +	6.01×10^{-3} ^b			
¹²⁵ Sn ^m	$\frac{3}{2}$ +	7.6 $\times 10^{-3}$ °	0.90 ± 0.09	0.48	0.52
¹²⁵ Sn ^g	$\frac{11}{2}$	8.44×10^{-3}			
¹²⁷ Sn ^m	$\frac{3}{2}$ +	2.1 $\times 10^{-3^{\circ}}$	0.15 ±0.23	0.83	0.17
¹² Sn ^g	$\frac{11}{2}$	0.0143 °			
¹²⁸ Sb ^m ¹²⁸ Sb ^g	8-	0.0150 ° 0.0101 ^b	1.49 ± 0.12	0.48	0.52
¹³⁰ Sb ^m		8.6×10^{-3} c	0.50 ± 0.14	0.86	0.14
¹³¹ Te ^m	<u>11</u> -	0.0171 °			
¹³¹ Te ^s	$\frac{1}{2}$ $\frac{3}{2}$ +	0.0269 °	0.57 ± 0.04	0.57	0.43
$^{134}Cs^{m}$ $^{134}Cs^{s}$	2 8- 4*	$2.23 \times 10^{-4}{}^{b}$ $4.22 \times 10^{-4}{}^{b}$	0.53 ± 0.03	1.00	0

^aThe fractional production was estimated from the cumulative fractional chain yields of the isomer pair and its β -decay precursor.

^bMeasured yield from Table II.

^cYield estimated from the total chain yield (Table III), the cumulative fractional chain yield, and the measured yield of the other isomer.

lished decay scheme data. Calvin Wong and Lewis Mego helped with the ICT irradiations. Ruth Anderson and Jim Evans assisted with the many γ -ray spectrometric measurements. At MCL the Chemistry Section helped us with the separation and purification of over 300 samples; MSgt Charles Rheault, TSgt Howard Erdman, TSgt Robert Osborne, and Sgt Robert Haslett were particularly helpful. The β and γ assay of these sam-

- *This work performed under the auspices of the U.S. Energy Research and Development Administration under contract number W-7405-Eng-48 and the U.S. Air Force Technical Applications Center.
- Present address: Lt. Col. William A. Myers, Defense Intelligence Agency, DT-1B, Washington, D. C. 20301.
- [‡]Present address: Celanese Chemical Co. Technical Center, P. O. Box 9077, Corpus Christi, Texas 78408.
- ¹D. R. Nethaway and B. Mendoza, Phys. Rev. C <u>6</u>, 1827 (1972).
- ²R. Booth, Lawrence Livermore Laboratory Report No. UCRL-70183, 1967 (unpublished).
- ³McClellan Central Laboratory Radiochemical Procedures (unpublished).
- ⁴M. Lindner, Lawrence Livermore Laboratory Report No. UCRL-14258, 1965 (unpublished).
- ⁵Jacob Kleinberg, Los Alamos Scientific Laboratory Report No. LA-1721, 1967 (unpublished), 3rd ed.
- ⁶National Academy of Science-National Research Council, Nuclear Science Series on the radiochemistry of various elements.
- ⁷D. H. Sisson, V. A. Mode, and D. O. Campbell, J. Chromatog. 66, 129 (1972).
- ⁸R. L. Auble, Nucl. Data Sheets 16, 383 (1975).
- ⁹R. A. Meyer, Lawrence Livermore Laboratory (private communication).
- ¹⁰K. R. Alvar, Nucl. Data Sheets 11, 121 (1974).
- ¹¹T. E. Ward, D. L. Swindle, R. J. Wright, and P. K. Kuroda, J. Inorg. Nucl. Chem. <u>32</u>, 2483 (1970).
- ¹²R. Gunnink, Lawrence Livermore Laboratory (private communication).
- ¹³D. C. Kocher, Nucl. Data Sheets <u>16</u>, 445 (1975).
- ¹⁴D. C. Kocher, Nucl. Data Sheets <u>16</u>, 55 (1975).
- ¹⁵R. Gunnink, J. Niday, R. P. Anderson, and R. A. Meyer, Lawrence Livermore Laboratory Report No. UCID-15439, 1969 (unpublished).
- ¹⁶H. Verheul and W. B. Ewbank, Nucl. Data <u>B8</u>, 477 (1972).
- ¹⁷W. W. Bowman and K. W. MacMurdo, At. Data Nucl. Data Tables 13, 89 (1974).
- ¹⁸D. C. Kocher, Nucl. Data <u>B8</u>, 527 (1972).
- ¹⁹L. L. Medsker, Nucl. Data B8, 599 (1972).
- ²⁰F. E. Bertrand, Nucl. Data Sheets <u>11</u>, 449 (1974).
- ²¹F. E. Bertrand, Nucl. Data <u>B6</u>, 1 (1971).
- ²²S. Raman and H. J. Kim, Nucl. Data <u>B6</u>, 39 (1971).
 ²³S. J. Rothman, N. L. Peterson, W. K. Chen, J. J. Hines, R. Bastar, L. C. Robinson, L. J. Nowicki,
- and J. B. Anderson, Phys. Rev. C <u>9</u>, 2272 (1974). ²⁴Z. Matumoto and T. Tamura, J. Phys. Soc. Jpn. <u>29</u>, 1116 (1970).

ples was performed by Capt. Michael MacInnes, Capt. George Anzelon, Capt. Robert Johnson, Donald Paisley, MSgt James Lucas, and TSgt Delbert Thomas, of the Nuclear Physics Section. SSgt Lloyd Hume helped keep the data straight. The mass spectrometry group, particularly D. W. Efurd, Capt. Guy Merrill, Jr., TSgt Earl Henry, and Jackie Phelps provided plutonium assay and isotopic analyses.

- ²⁵S. Raman and H. J. Kim, Nucl. Data Sheets <u>16</u>, 195 (1975).
- ²⁶P. R. Gregory and M. W. Johns, Can. J. Phys. <u>50</u>, 2012 (1972).
- ²⁷C. W. Tang, A. Pakkanen, Z. C. Mester, C. D. Coryell, G. Chilosi, K. Box, and A. H. Wapstra, Z. Phys. A272, 301 (1975).
- ²⁸G. H. Carlson, W. L. Talbert Jr., and S. Raman, Nucl. Data Sheets 17, 1 (1976).
- ²⁹K. E. Apt and W. B. Walters, Phys. Rev. C <u>9</u>, 310 (1974).
- ³⁰D. J. Horen, Nucl. Data <u>B8</u>, 123 (1972).
- ³¹H. R. Hiddleston and C. \overline{P} . Browne, Nucl. Data Sheets 13, 133 (1974).
- ³²H. R. Hiddleston and C. P. Browne, Nucl. Data Sheets 17, 225 (1976).
- ³³E. A. Henry, Nucl. Data Sheets <u>15</u>, 203 (1975).
- ³⁴E. A. Henry, Nucl. Data Sheets <u>14</u>, 191 (1975).
- ³⁵J. F. Lemming and S. Raman, Nucl. Data Sheets <u>10</u>, 309 (1973).
- ³⁶T. W. Burrows, Nucl. Data Sheets <u>12</u>, 203 (1974).
- ³⁷L. D. McIsaac and R. G. Helmer, Phys. Rev. <u>150</u>, 1033 (1966).
- ³⁸B. Harmatz, Nucl. Data Sheets <u>19</u>, 33 (1976).
- ³⁹W. A. Myers and R. J. Nagle, Lawrence Livermore Laboratory (private communication).
- ⁴⁰W. R. Daniels, D. W. Barr, G. F. Grisham, and F. O. Lawrence, J. Inorg. Nucl. Chem. 36, 3874 (1974).
- ⁴¹J. K. Tuli, Nucl. Data Sheets <u>9</u>, 273 (1973).
- ⁴²J. K. Tuli, Nucl. Data Sheets 9, 435 (1973).
- ⁴³J. K. Tuli, Nucl. Data Sheets 13, 493 (1974).
- ⁴⁴W. A. Myers, J. Inorg. Nucl. Chem <u>39</u>, 925 (1977).
- ⁴⁵H. Thierens, D. DeFrenne, E. Jacobs, A. DeClercq, P. D'Hondt, and A. J. Deruytter, Nucl. Instrum. Methods 134, 299 (1976).
- ⁴⁶R. Gunnink and J. B. Niday, Lawrence Livermore Laboratory Report No. UCRL-51061, 1972 (unpublished).
- ⁴⁷J. W. Behrens, J. C. Browne, and G. W. Carlson, Lawrence Livermore Laboratory Report No. UCID-17047, 1976 (unpublished).
- ⁴⁸J. W. Behrens and G. W. Carlson, Lawrence Livermore Laboratory Report No. UCRL-78704, 1976 (unpublished).
- ⁴⁹D. R. Nethaway and G. W. Barton, Lawrence Livermore Laboratory Report No. UCRL-51458, 1973 (unpublished).
- ⁵⁰D. R. Nethaway, Lawrence Livermore Laboratory Report No. UCRL-51640, 1974 (unpublished).
- ⁵¹D. R. Nethaway, Lawrence Livermore Laboratory Report No. UCRL-51538, 1974 (unpublished).
- ⁵²W. G. Davey, Nucl. Sci. Eng. 44, 345 (1971).

1969), Paper SM-122/116.

⁵⁴D. G. Madland and T. R. England, Los Alamos Scientific Laboratory Report No. LA-6595-MS, 1976 (unpublished).