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We develop a macroscopic description of heavy ion inelastic scattering in the context of a folding model.

Form factors for the single nuclear excitation of either the projectile or target are derived, as well as the

mutual excitation form factor. The formalism is applied to several typical examples.

NUCI EAR REACTIONS Heavy ion inelastic scattering; folding model for single
and mutual excitation; applied to inelastic excitation of 2+, 3, 5 states in ~@Pb

by ' C at 96 MeV; '60+' C at 168 MeV, elastic, single, and mutual inelastic.

I. INTRODUCTION

In the usual macroscopic description of the nu-
clear inelastic excitation of collective target
states" one uses a transition form factor E(r)
obtained by deforming the optical potential V(r) so
that E(r) ~dV(r)/dr. For heavy ion collisions a
more physically motivated method has recently
been explored, ' in which one generates E(r) by
deforming the relevant nuclear density directly,
starting from a folding model description of the
optical potential. This method leads to a state
dependence (I, dependence) of E(r), in contrast
to the usual macroscopic description. %'hen such
an I.-dependent intrinsic form factor is used, it
has been shown" that target deformation lengths
P~R extracted from heavy ion inelastic scattering
data are consistent with those obtained from elec-
tromagnetic and proton scattering experiments.

In this paper, we present the formalism for in-
elastic scattering in the folding model. In addition
to the case of target excitation previously exam-
ined, '~ we consider here the possibility of pro-
jectile excitation and mutual excitation.

In the first order folding model, ' the optical po-
tential V(r) is obtained by convoluting the one-
body densities p, and p, of the projectile and tar-
get with an effective nucleon-nucleon amplitude
(a complex g matrix). Once p„p„and g have
been chosen, the geometrical properties and corn-
plex strength of V(r) are determined. In principle,
the g ma'. trix is calculable starting from a model
for the nucleon-nucleon (NN) potential. At high
energies, g is equivalent to the free space NN
amplitude (the f matrix), and is hence well deter-

mined by NN data alone. For the low energy heavy
ion collisions of interest here (5-15 MeV/part-
icle), there are very sizable corrections to the
approximation g = t, due to the interplay of off-
shell propagation of the nucleons, the requirements
of the Pauli principle, ' and the effect of projection
onto a single-channel framework. Rather than
trying to evaluate g quantitatively, we prefer to
adopt a simple phenomenological ansatz for g,
the parameters of which are determined by a fit
to heavy ion elastic scattering data in the folding
model. Our model for V(r) thus involves one com-
plex strength parameter f (E). Since we hold the
range of g fixed, there are no geometrical para-
meters to vary; this represents a simplification
in comparison to a phenomenological analysis em-
ploying Woods-Saxon potential forms. The folding
model has the additional advantage of possessing
a clear physical interpretation as the first term
in a systematic hole line expansion of the poten-
tial." Since V(r) is written in terms of densities
pl and p„ it is also clear how to proceed from
V(r) to a form factor for inelastic scattering via
a deformation of p, or p, directly. In the same
context, one appreciates the inadequacy of the
usual prescription of taking a form factor pro-
portional to dV(r)/dr for inelastic scattering in-
duced by a composite projectile.

In our approach, we use the folded potential to
generate distorted waves for the inelastic scat-
tering as well as the transition form factor via a
density deformation. Studies of the localization
properties of heavy ion elastic, inelastic, and one-
particle transfer reactions' show that, at low en-
ergy (5-15 MeV/nucleon), these processes are
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sensitive to the potential or form factor in essen-
tially the same region of coordinate space. Thus
we expect to get a good description of the distort-
ed waves in the relevant region for inelastic scat-
tering from a folded potential which fits elastic
scattering.

The paper is organized as follows. In Sec. II,
we present the formalism required to generate
inelastic scattering form factors in the folding
model. %e consider both single aid mutual ex-
citation. In Sec. III, we consider various applica-
tions of the formalism. First we look at the "C
+ '~Pb reaction, where we excite the low-lying col-
lective 2', 3, and 5 states in ~Pb. %e verify
the need for an I,-dependent intrinsic form factor
(as given by the folding model), in order to obtain
consistent deformation lengths P ~B. Using the
same model, we predict the angular distribution
of the projectile excitation (2' in "C}.We then
examine single and mutual inelastic scattering in
the "0+'3C reaction.

(a)

II. FORMALISM

If we assume a local, energy-dependent effective
nucleon-nucleon amplitude g(r, E), the first order
optical potential V(R, E) describing the collision of
two heavy ions may be written in a folding model
as '

P(E, E)=f p, (r'}p(r ) (R d, +Fr )Erd'r, ,d(t}
where p, and p, are the projectile and target den-
sities, respectively, and g is taken to have the
form"'

27Ta-2
g(r, E)= — f (E)N exp( r'Ir,'}-

Here, f (E) is the spin-isospin averaged forward
scattering effective amplitude evaluated at the in-
coming energy per nucleon F-, M is the nucleon
mass, and N = (vr, ')~ ~' is a normalization con-
stant. The coordinates are defined in Fig. i{a).
The raijge r, is chosen to be 1.4 fm, consistent
with the range of the spin-isospin-independent
component of the free nucleon-nucleon t matrix. '
%e neglect the modification of the range r, in the
nuclear medium. Note that the equivalent range
p ' of a Yukawa interaction e ""/i)rwhich h, as the
same volume integral and root-mean-square ra-
dius would be p. '=0.5 fm. This corresponds to
the intermediate range part of the NN force; note
that single-pion exchange does not contribute to
Z(~, E)

The excitation of collective nuclear states is
naturally described in a folding model ap-
proach, ' ' since the densities of the nuclei ap-
pear explicitly. Such collective states can be des-

(b)

FIG. i. Part (a) defines the coordinates used in con-
structing the folded potential. The circles labeled 1 and

2 represent the projectile and target densities. Part (b)

defines coordinates used in deforming the density.

cribed by a deformed density obtained by intro-
ducing a surface vector"

R-R t+ p„r„),
where the YL„'s are defined in the body-fixed co-
ordinate system. Writing p(r) as p(R + t) [see
Fig. 1(b)], we have

p(r}=p(R,+t)-p trtt, +R, Qp „}' ) .
LN

(4)

The deformed density can be explained in a Taylor
series about the point O. L~=O, and to first order
in QL„we get

P(~)-P(RR+t)+BR n~~F~—
L

When this deformed target density is then folded
with the spherical projectile density and the ef-
fective interaction, one gets

P(R, E}=f p, (r')p, (r"}r(arF —r', E}dr'dr

+E 2™f p, (r')Idp, (r )/dh Irp„

xg(R+ r —r', E)dr'dr', (6)
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where we take B,=-1.2A' ' to agree with the con-
vention for electron scattering. The first term
of E(l. (6) is just the elastic scattering optical po-
tential of Eq. (1). The second term is the inelastic
transition operator (form factor) to be used in a
distorted-wave Born approximation (DWBA) cal-
culation of inelastic scattering. "

The form factor 6:(R) is needed in the space-
fixed coordinate system and hence $'~„must be
rotated into the space-fixed frame'.

I
~LN ~ +uN~tu

For an axially symmetric nucleus M =0 and a»
P~a~o Then

where j~(qr) is a spherical Bessel function. We
now perform the trivial r' and r integrations in
E(l. (10) to obtain

4 „(R)=(q ) JKRp(q)p, *"( ,q)q-(q)e

4(q =)'&* (R) Je'Pqp, (q)p'(4)

xg(q)j (qft).

Hence we have the following form factor 6:~„(R)
for a transition to a state of angular momentum L:

&~)q((R) =4(2v)'Y~(ll)P~R, D~o

r(R)=&,QP, D&, Y,„(r )p,(r')„.p,(r )

xg(R+ r» i')(fr'(fr" . (6)

This can be written as

+(R}=Zfz. () qqo xqq(

where

@-fg"r"~»

X &-r4f» (ff f&P) ee( «}d «(10)

p(q) -=4, , Jqee" p(e)"

In order to calculate the six-dimensional integral
I~„, we introduce the Fourier transforms of the
densities and effective amplitude.

4,„(qi) Jqe' Pe Je '4"
p, (q)4((

q'dq pi(q) p.'(q}g(qi)&(q&)

Since p, describes the target density, 6'»(R) des-
cribes the excitation of a collective state in the
target. In order to describe projectile excitation,
the subscripts 1 and 2 must be interchanged in
E(l. (16). Note that unless p, = p„ these two form
factors are different. Also, because of the pres-
ence of the Bessel function in E(l. (16}, 6'~„(R) has
a nontrivial L dependence. These points will be
expanded upon later.

Since g(r) involves the interaction of a nucleon
in the projectile with one in the target, it is pos-
sible to have a one-step process (first order in g}
that inelastically excites both the target and pro-
jectile. It is straightforward to expand both den-
sities and obtain a form factor F~ „~„ for such
a mutual excitation:

qy (R) p(~1)R(1)p(R)R(R)

xD„' D„ I „~(R),

p (q)-=(q )
Jqqe p (e)q (e)''

PI

&'«i (q~)p'(~)Y (q)

.L
-=2„2 Y~(q)P'(q) .

%e have made use of the expansion

(12) where the superscript 1 (2) refers to projectile
(target) and

(R)=Jee'qe, p, (e') .p(e )

Yz)u)(+ )Y~«R(r }g(R+r —r ) ~

(18)

e@'~ =4m Qi~j ~(qr) Y~„(r)Y~(q), (14) Introducing Fourier transforms and integrating
over r' and r' as before we get

4. . . ,(»=Pe'""J 4)q „,(4) „,(") "( )p~( )q( ) "'"

~ai g(q&)P (q)PR'(q}g(q)Yg «(q)Y~ (q)Y,*«(q)Y~(It)
Zhf
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Integrating over 0,, and defining I,, -=(2I,,+ 1)'~', we get the final result

4 2m~'

I/Nyi ~No ~ xy o lo o Argo Moo
~ ~~ ~

$Lo y g~(R)(R) ( I p(&)R(&)p&o)R(o)DEx nto g&cz+to ( o z l f o x

0 O)

x q'dqj (qR)p, '(q) p, '(q)g(q) . (20)

We note that there is a sum of terms in the mutual
excitation form factor. The factor (~ ~o& ~o) en-
sures that Ly+ must vector couple to L2 and that
L, + L, + 2 must be even.

The matrix elements of these form factors sand-
wiched between distorted waves and collective
wave functions are then calculated in the usual
manner"' and angular distributions are obtained.
The complications arising in the mutual excitation
calculation are discussed in Ref. 11 in an Austern-
Blair model" approach.

A+ 0

I.O
0

I

40
I

80
I

I20
A

I I

l60 200

FIG. 2. Ratio of intrinsic form factors for the excita-
tion of the first 2' and 3 states in '60 for a variety of
projectiles. The ratio is taken at the strong absorption
radius R~ defined as Rq =1.5(A' 3+B 3), whereA andB
are the projectile and target mass numbers, respective-
ly. The error bars are determined from the values of
the ratio at R~+ 0.5 fm.

III. RESULTS

A. Introduction

DWBA calculations" utilizing the optical poten-
tials of Eq. (1) and the form factor of Eq. (8) were
first performed for the reaction 'o¹(~0, "O'}'oNi*
(2 ) at three energies. ' It was found that folding
model fits were comparable to those obtained by
using the deformed optical potential (DOP) ap-
proach. " The more interesting results are ob-
tained when one looks for L-dependent form factor
effects and differences between target and pro-
jectile excitation which arises from the folded
form factor. The shape of the DQP form factor
is just given by dV„,(R)/dR and has no L depen-
dence. As noted previously, the presence of the

spherical Bessel function in Eq. (16}leads to an
L-dependent shape of the folded form factor. Ex-
perimental evidence for this L-dependence has
been given. 4

For inelastic excitation of the 2' and 3 collec-
tive states in "0, the ratio of the form factors
F,/F, at the strong absorption radius Ro is shown
in Fig,. 2 as a function of projectile mass A. For
A greater than the mass of the target, this ratio
is approximately constant at 1.4. Thus the relative
cross sections for 2' and 3 excitation are changed
by about a factor of 2 with respect to the prediction
of the deformed optical potential. Thus, L -depen-
dent form factor effects are enhanced by using a
heavy projectile to excite a target. For a point
projectile with zero range forces there is no L depen-
dence, and the folding model form factors reduce
to the usual prescription.

In order to maximize the differences that arise
in the folded form factor between projectile and
target excitation, it is best to study the case of
a very light projectile incident on a very heavy target.
The projectile excitation for such a system has usual-
ly not been measuredbecause it is difficult to re-
solve experimentally the projectile excitation peak
in the often dense excitation spectrum of the heavy
target. However, the excitation of the 4.43 MeV
3+ state in "C should be measurable on a '~Pb
target. The elastic scattering and excitation of
the 2', 3, and 5 states on ~'Pb by a 98 MeV "C
beam has been measured. " In Sec. IIIB, we pre-
sent folding model fits to this data and compare
them with DOP calculations, "again supporting
the L-dependent form factor shape. We then show
how these two approaches lead to large differences
in the predicted projectile excitation angular dis-
tribution.

8 12C+ 208Pb

The elastic scattering data" and a corresponding
Woods-Saxon optical model fit" are displayed in
Fig. 3 along with the folding model result. " It
was found"' that in order to get adequate agree-
ment with elastic heavy ion data, the prescription
of Eq. (2) for the effective interaction required a
phenomenological value of f rather than the free
space value. By confronting a wide range of heavy
ion elastic scattering data at different energies, a
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FIG. 3. Elastic scattering for ' C+ SPb at EI» =96
MeV. The data and solid curve are from Ref. 15.

F~(r) = P~RE~(r) . (21)

In this way, the trivial I- dependence of the form
factor due to the different deformation lengths
(Pz&) has been removed. One can define a strong
absorption radius" by Bz -=1.5(A'~'+8'~'), where
A and 8 are the projectile and target mass num-
bers, respectively. It has been shown that elastic
and inelastic heavy ion reactions are sensitive to
the radial region around 8 ."" For '~C+'~Pb
we have R~ 12.3 fm. In the 10-14 fm region one
sees that there are small but non-negligible dif-
ferences in the E~'8, mostly in their magnitude.
Since the DOP form factor is L independent, one
sees that different P~'8 must arise when the two
methods are used to fit the inelastic data. The
results are shown in Fig. 5. The data and dashed

smoothly energy-dependent f (E) has been construc-
ted. In all calculations presented here, these
smooth values have been used with no searches
performed. The value of f used in Fig. 2 is (1.74+
0.75i) fm. The fit is adequate but certainly not
as gal as the fou.r-parameter Woods-Saxon fit.
The "C density was obtained from the charge den-
sity of Friar and Negele, "corrected for the finite
proton form factor. The ' 'Pb density was derived
from Hartree-Fock wave functions. "

Figure 4 displays the intrinsic form factors
E~(r) for three different multipole excitations in
'~Pb. Here we define E~ by

I

l
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I
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0

I

I
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4 6 8 l2
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FIG. 4. The intrinsic folding model form factors for
the excitation of the lowest-lying 2', 3, and 5 states
in 'Pb by "C.
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FIG. 5. The angular distributions and calculations for
the excitation of three states in 2Pb by '2C. The data
and dashed curves are from Ref. 15. The deformation
lengths used in both calculations are in Table I.
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P ~ (f~) extractedI Deformatj. on lengthsTABLE I. e ' s
from ein lastic scattering

This Satchler
Other workL work et al .

I

12C ~ 2o pb

E, ,=98 Mev

I2C(2

208Pb 2 0,54
3 0.77
5 0.47
2 1.6

0.56
0.71
0.39

0.38-0.39 "
0.74-0.86 '
0.43—0.49 d

1.5 -1.8 '
IO—

'See Ref. 15.
b See Refa. 22, 2,4 and 25.
c See Refs 20-25
'See Refs. 23 and 25.
e See Ref. 26.
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FIG. 8. The elastic scattering, projectile, target, and
mutual excitation data for ~ 0+ C at E h, b= 168 MeV are
presented along with folding model results (solid line)
and a DOP calculation (dashed line). The data are from
Ref. 27. The deformation lengths used are in the text.
For the mutual excitation, only the simultaneous excita-
tion process {i.e., no sequential excitation) is calculated.

to this mutual excitation in the folding model ap-
proach using Eg. (20). Figure 8 displays the re-
sults of a folding model calculation of the elastic
scattering, projectile excitation, target excitation,
and simultaneous mutual excitation. The DOP si-
multaneous excitation is also shown as a dashed
line. In this case, it is clear that the simultaneous
contribution to the mutual cross section is too
small and hence the two-step sequential process
must be included. A very similar conclusion was
arrived at by Rickertsen" in his calculations for
the mutual excitation of "C on '~C.

The f used in the calculations shown in Fig. 8
was again extrapolated from smooth fits to other
elastic data and was taken to be (1.43+ 0.88i) fm.
In order to fit data, the PQ needed for "C was
2.1 fm and the pg needed for "0was 2.1 fm. The
"C density used was the same as described in
Sec. IIIB. For "0, we used the Hartree-Pock
density of Negele, ~g applying a correction for cen-
ter of mass motion. In both the '0+ "C and "C
+ "Cmutual excitation analyses, the Coulomb form
factor contributions were neglected because of the
relatively high energies and small charges.
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