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Consequences of isospin mixing for compound nucleus reactions
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Consequences of isospin mixing are explored for compound nucleus reactions and statistical cross section
fluctuations. This is done in the framework of a theory of transport phenomena. Formulas differing from

previously published results are given for average compound nucleus cross sections, and for the correlation
function of cross section fluctuations. The extraction of isospin mixing from evaporation spectra is discussed.
It is pointed out that external mixing, which so far has been considered only in the theory of isobaric analog
resonances, may dominate internal or bound-state mixing. Hence, Coulomb matrix elements deduced from

highly excited compound nuclei only represent upper limits.

NUCLEAR REACTIONS Isospin mixing in compound nucleus reactions.

I. INTRODUCTION

The detection of isospin impurities in nuclear
levels is an interesting subject of nuclear spectro-
scopy. An impressive variety of experimental and
theoretical techniques is used. ' The subject has
recently been revived by very precise measure-
ments of isospin impurities for bound or quasi-
bound states in "C and "0 (see Refs. 2-5). The
deduced matrix elements H, which are due to iso-
spin breaking forces were found to be as large as
200 keg. For heavier nuclei they are somewhat
smaller. '

In the present paper we investigate the possibility
of extracting isospin mixing matrix elements for
nuclear states at high excitation energy where the
natural width of the levels is larger than their
mean spacing (I"» D). In this case one might ex-
pect that isospin mixing is essentially complete
so that isospin selection rules lose their signifi-
cance. However, several experiments contradict
this conjecture. ' " For example, "in the re-
action "Si(d, o.)"Al the compound nucleus "P was
excited and the isospin "forbidden" reaction
"Si(d, n)28AI (0.23, 0', X= I) turned out to be clear-
ly suppressed as compared to the isospin "al-
lowed" transitions to the T= 0 states of "Al. A

similar conclusion is drawn from the available
studies of evaporation spectra. ' Some of these
results prompted the introduction of isospin into
the Hauser-Feshbach formalism of statistical
nuclear reactions. ""In the analysis of Ref. 19
isospin mixing was neglected altogether; the
authors of Ref. 18 allowed for isospin mixing in the
compound nucleus. Based on this formalism and
the experiments of Ref. 1'7 average mixing matrix

elements H, have been estimated. "
In the present paper, we use general results on

the statistical theory of nuclear reactions2 ' to
reformulate the problem of isospin mixing in the
domain of strongly overlapping resonances. Qur
formulation shows that the quantity of spectroscopic
interest, the Coulomb matrix element H„which
produces what is called "internal" mixing in the
theory of isobaric analog resonances, "always
appears in conjunction with "external" isospin
mixing. The latter one is due to the coupling of
the compound nucleus levels to the particle decay
channels and seems to be the dominant effect.
Since this point has not been treated in the current
literature we feel that a brief presentation of the
formulas is useful. This is given in Sec. II. In
Sec. III, the formulas are interpreted, and internal
versus external mixing is considered. Specific ex-
amples of the theory are discussed in Sec. IV, and
in Sec. V the theory is applied to experimental
data.

II. AVERAGE CROSS SECTIONS AND FLUCTUATIONS

IN THE CASE OF ISOSPIN MIXING

%e consider a reaction leading from channel
a to channel p via compound nucleus formation
neglecting direct reactions in all channels. It is
assumed that the compound nucleus has two
classes'4 of levels, called class 1 and class 2,
that have different isospin T with Ty + T2 Tp+ p.
The reaction partners a, A in all channels are
assumed to have pure isospin T„T„.The re-
action of a with A leads to the formation of the
compound nucleus in a state of class m= 1 or 2
with a probability governed by the transmission
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where

4x
(1+x,+ x,)' (2.1)

x..= 2(V )'/D. . (2.2)

Here, (V }' is the mean square matrix element""
coupling a state of class m to channel a, and D
is the mean level spacing in class m. From these
definitions it follows that the isospin dependent
transmission coefficients & are related through
a vector coupling coefficient" to the usual ones

which are calculated with an isospin independent
optical model potential, i.e. ,

coefficients 7' ~ The transmission coefficients
can be expressed by average properties of the com-
pound nucleus via

&„~=(T„,T'„",T„T' lT, T„"'+T' )'v, . (2. 3)

Upon formation of the compound nucleus, isospin
mixing causes a diffusion process in which class
1 levels decay into class 2 levels and vice versa.
The diffusion is controlled by two mechanisms:
(i) the mean coupling H, ' = V»' of the levels of
classes 1 and 2, and (ii} the coupling of the levels
of, say, class 1 to any open channel o which also
couples to class 2 (virtual emission into the con-
tinuum and reabsorption into the other class of
levels}. This diffusion process influences the value
of the correlation function (S z(E)S*&(E+z)), where
S z is the S matrix element and ( ) denotes the
average over an energy interval large compared
to the decay width of the compound nucleus. %'ith

the averaging techniques of Refs. 21 and 22 one
finds'6 for n+ g

(2.4
-z N~+z+2xjz/D2 )

For z=0, this result follows directly from Eq. (5.22} of Ref. 22. All quantities of interest, like average
cross sections and autocorrelation functions of cross sections, can be expressed in terms of the correla-
tion functions (2.4); see Ref. 22 and Eqs. (2.8) and (2.9), below.

In Eq. (2.4), N is the number of decay channels open to levels of class m,

(2.5)

and the mixing parameter z is
2

+g ~„,x .
1 2

The matrix in Eq. (2.4) is readily inverted to give

(2.6)

tN, +z+2viz/D, -z ) ' ( ,N+z+2i&z/ ,D
N2+ z+ 2viz/Dz j ( z N~+ z+ 2zie/D, )

x[(N, +z+2ziz/D, )(N, +z+2vtz/D, ) —z'] ' . (2 7)

The set of formulas (2.4) through (2. t) allows for
the calculation of average compound nucleus cross
sections"

I'~ of levels in class m is customarily defined by

r'. =N. D /2z.

o., -=(o.,(E})= (S.,(E)S+,(E))

and of autocorrelatjon functions

(2.6)
The spreading width for internal mixing I' j t of
levels of class m with those of class num is due
to the matrix elements V „'.In our case, we have

C z(z) =(o z(E)o s(E+z)) o z'

= l&S s(E)S*s(E+&)&I'. (2.9)

III. INTERPRETATION, INTERNAL AND EXTERNAL

MIXING

In order to demonstrate the physical picture be-
hind Eqs. (2.4) to (2.9), it is useful to introduce a
slightly different notation. The mean decay sridtk

I," ...=2xV„'/D„r,' ...=2,V„'/D, . (2.2)

It is also useful to introduce a spreading width for
external mixing I'~,„,of levels of class m with
those of class num due to virtual transitions to the
channels. This quantity is defined by
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%e note that because of the simplicity of the case
of two classes of levels considered here the def-
inition of I' „,is different from the general
definition in Ref. 22.

%e combine 1 ~ f„and 1"'„,to define the total
spreading width

I"m- I'~, ~at+ I'~, erat ~ (3 4)

z/N =r'/r'. (3.5)

The denominator appearing on the right-hand side
of Eq. (2.7) can be written in the form

~(z —i~,}(&—ia, )
~

(3.6)

The distinction between internal and external
mixing is very similar to theone introduced by
Robson in the theory of isolated analog reso-
nances. " The width 1" „,is due to the internal
mixing between the bound states embedded in the
continuum introduced by the isospin-breaking
Coulomb interaction. V. The width I' „,arises
from the coupling of the compound nuclear states
to those decay channels which have either iso-
topic spin. Such channels are, for instance,
channels in which one of the two fragments is a
proton. This decomposition corresponds to the
two mechanisms described below Eq. (2.3).

It will be shown below that the quantities of
physical interest are the ratios I'„/I' . This is
not surprising; the ratio I' /r determines which
fraction of the states of class m mixes with quasi-
bound states in. the other class, and which fraction
decays into the open channels before such mixing
takes place. This ratio incorporates the two
criteria for isospin mixing which have been dis-
cussed separately in the literature. 29'

(a) Static criterion. Isospin mixing for states
in class 1 is small if the ratio (V»2)'~'/D2 is small.
This criterion can be derived from time-indepen-
dent perturbation theory.

(b) Dynamic criterion. Isospin mixing is small if
the mean life time 8'/r' of compound states in
class m is small compared to the time 5/(V» )'~'
it takes to mix the levels.

%e see that these two criteria combined appear
in I" „,/I'

~ The ratio I' „,/I' is similarly
patterned, but refers to external mixing. %'ith

the definitions just given, the ratio z/N can be
expressed in the form

relation lengths I', and I', are modified by the
presence of the spreading widths I', and I,'. At
present there seem to be a few experiments""
where the analysis indicates the presence of two
correlation lengths, associated with the existence
of two classes of states. That analysis, however,
did not incorporate isospin mixing.

In the expressions for cross sections given be-
low, it is not the quantity z which appears but
rather the renormalized quantity

z =z(1+z/N, +z/N, ) '. (3.8)

IV. SPECIFIC EXAMPLES

In this section we wish to apply the formalism
outlined so far to some selected cases.

(i) IsosPin allowed reactions For an isosp. in al-
lowed reaction n- P which has nonvanishing trans-
mission coefficients 7, and 7& for just one class
of levels, say m=1, the cross section reads

o s(allowed) = T,(1 —r,'/I', )(1/N, )Tz, . (4.1)

In the li~it of no mixing ~ -0, this expression be-
comes the usual Hauser- Feshbach formula

o z (allowed) = 7„(1/N,)Ts, , (4.2)

where the levels of class 2 do not intervene any
longer. In the limit of very strong mixing, z - ~,
Eq. (4.1) tends towards

This is not surprising as ~ incorporates the ef-
fects of all higher order terms in the isospin-
breaking interaction, while ~ contains only the
terms of lowest order. The expressions given be-
low can be greatly simplified by defining, in ana-
logy to Eq. (3.5},

z/N =r"/r.'.
This quantity is, for m =2, the "fractional mixing
parameter" p, introduced by several authors. "
It describes the fraction of strength taken away
from the levels of class 2 due to their mixing with
the levels of class 1. The quantity z/N, is related
to the opposite way of mixing, called "upward"
mixing in Ref. 32. "Upward" mixing was intro-
duced in order to improve the original theory"
in which only downward" mixing was taken into
account. The present formulation takes care of
both.

Therefore, the autocorrelation function is charac-
terized by two Lorentzians, and by two associated
correlation lengths X„andA., given by

1
a z (allowed) = T,

1+ 2
(4 3)

x, , =-.' (r,'+ r,'+ I,'+ r,')
*-,' [(r,'+ r,' I,' r,')'+ 4r,'r,']."' (3.7)

This shows explicitly how the unperturbed cor-

which is the Hauser- Feshbach formula without dis-
tinction between the levels of class 1 and 2—an
obvious result since the distinction between the
classes is no longer meaningful. For arbitrary z,
the interpretation of Eq. (4.1) is also obvious:
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Only a fraction (1- r~i/r, ) of the levels of class 1
is available for decay back into the channels, each
channel P bemg populated with the probability 7s, /
N~.

For the autocorrelation functions we obtain from
Eqs. (2.4), (2.7), and (2.9) in case of no mixing,
i.e. , z =0, the well known Lorentzi. an form"

C,e(e((eeed, e)=(r, N ee,)* ((~ (e/r, '
I

a

(4.4)

The same result is obtained as long as

r, /ri «1. (4.5)

which is obviously more reasonable. However,
in order to keep things simyle we follow common
usage and work with the factor f.

To estimate f, it is useful to have first an esti-
mate of I",,~/r, . The latter qLutntity can be esti-
mated 1 the l,imitof strong absorytion in all chan-
nels, i.e. , the ease in which the isosyin-indepen-
dent transmission coefficients 7 are all unity.
This implies (x,+x 2) = 1 for all channels a. Let
us also suppose that proton channels are the only
open channels with dual isospin, and that the levels

As discussed below, this condition shouM be
fulfilled very often.

(ii) IsosPin forbidden reactions. The cross sec-
tion for an isosyin forbidden reaction o-P, where
the channel a has nonvanishing transmission co-
efficients only with states of class 1 and channel
P only with states of class 2, turns out to be

o s(forbidden) = r, (r~i/r, )(1/N, }vs,. (4.6)

The interpretation of this expression is obvious.
In the analysis of comyound nucleus cross sec-

tions the expression T T+, is usually calculated
and compared to the measured o ~. The analysis
of an isospin-allowed and of an isosyin-forbidden
reaction as e.g. , in Refs. 8, 9, and 13, then yields
a suppression factor f of the forbidden with re-
spect to the allowed transition. From Eqs. (4.1)
and (4.6)f is seen to be

f= r/( Jr+r). (4.7)

It may perhaps by surprising that f, the supres-
sion factor for reaction feeding primarily states
of class one, should only depend on the widths 1",
and I 2 of states of class Italo. '@hi,s, however, 1,s
due to the definition off. A physically more ap-
pealing definition is obta~ned if one were to calculate
the expressions r,{I/i(i,)r~ and r~(I/ti, )rs, . This
leads to another suppression factor f with

F I'f =
~r,

'
r,~+'r) (4.6)

of class 2 can decay only into these channels in
an isospin-allowed fashion. Then we have from
Eqs. (2.1), (2.3), (3.1), and (3.3),

...~=( 0 0 ~ -~
( 0-2 o--.}1 j. ( 1

= [2T,/(2T, + 1)]rJ . (4 9)

Here, To is the isospin of the residual nucleus C
that remains after proton emission, while 72
=T& = 7~+&. We consider (4.9) an upper limit for
I', „sinceit is based on the assumption'3

From arguments given in the theory of isobaric
analog resonances one expects that internal mixing
is smaller than external mixing. This implies
together with Eq. (4.9)

r,'/r, '~ 1. (4.10)

Note that for compound nuclei with neutron ex-
cess the levels of class 2 having the higher iso-
spin 72= T,+ 2 have many fewer decay channels
available than the levels of class 1, i.e. ,

N, »N2. (4.11)

1
a s —(7,+ 7.~) (7s, + v s,} e

2
(4.13)

as it should.
In the general case the autocorrelation function

is made uy of a sum of interfering terms. '4

V. APPLICATION TQ EXPERIMENTAL RESULTS

(i) Cross section fluctuations As explained .in
Sec. IV the quantity f of Eq. (4.7) can be extracted
by comparing allowed and forbidden compound nu-
cleus cross sections. In Ref. 8 this has been. done
for the reaction "Si(d, a) "Al. Statistically fiuc-

The reason is that levels of class 2 can decay via
neutron emission only into the ~nA) channels where
A is the analog state of C. The hypotheses (4.10)
and (4.11) imply the inequality (4.5).

(iii) General case The c. ross section o s reads

F~ 1 F,'
TjB + e1 f —

21 j N, F, N2

12 1 F,'+ N& r t ~ vs, + v((2 1 —
f pf

7'sz. (4.12)
2 1 2 2

Equation (4.12) contains four terms: Two of them
correspond to allowed transitions in which isosyin
is not changed from a- P and two of them describe
forbidden. transitions where it is changed. Further-
more, it can be seen that with increasing z the
strengths of the allowed terms decrease in favor
of the forbidden terms. This is a consequence of
unitarity. In the limit of strong mixing, Eq. (4.12)
attains the form
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f '*' = 2 To/(4TO+ 1) (5 1)

gives the maximum off that is expected to arise
from external mixing alone [see Eq. (4.7) and the
discussion leading to Eq. (4.9)].

(ii) EoaPorafion sPectra Most .of the results
collected in Table I are based on studies of eva-
poration spectra of (n, a'), (P, p'), (P, a'), and

(a, P') reactions, all leading to the same compound
nucleus. The principle is as follows. If isospin
selection rules do not play any r6le, then the ratio
of cross sections

tuating cross sections have been measured. The
contribution of direct reactions was determined
from the variances of the excitation functions. "
Hauser-Feshbach calculations have been performed
that yield the expressions formally called" T

and then from Eqs. (4.1) and (4.6) the factor f was
determined. The result is given in Table I. We
have reanalyzed the higher energy data of Ref. 9,
performed the Hauser- Feshbach calculations, and
obtained f (see Table I). For comparison, the
quantity

Sec. IV this may be expressed as

R«=R(comp mix}

T T s Tp Tps

(5 3)

The quantity R« is not exactly unity because the
angular momenta involved in the four types of re-
actions may not be the same. If isospin is strictly
conserved, then R is larger than unity since the

(p, p') reaction can proceed through both classes
of levels, while the other three reactions feed only
class 1 levels. From Eq. (4.2) one obtains

R~=R(no mix)

1 1 1
eX N acr PZ N P'a+ P2 N P~2

1 2

N Tps~ Tp' N Te r

(5.2) =Rcl[1+N, /(4TO N2)] . (5.4)

is approximately unity. Within the framework of

Compound Excitation
nucleus energy T0 f orP

EP'
C

30p

52Cr

"Mn
"Fe

Ni
63Cu

"zn

"zn
"Ga

20.4
25.4
20.5
24.2
21.8
23.9
23.3
19.9
17.6
19.0
20.5
22.0
23.5
22.7
17.4
18.4
20.4
22.4
20.9

2
5
2
3
5
2
5
2
3
5
2

0.25 + 0.05
0.06 + 0.03
0.20+ 0.17
0.37 + 0.07
0.33+ 0.20
0.44 + 0.22
0.37 +0.21
0.46 + 0.21
0.70+ 0.15
0.55 + 0.16
0.44+ 0.11
0.34 + 0.15
0.40+ 0.12
0.68 +0.10
0.41a 0.04
0.45 + 0.03
0.39+ 0.10
0.34 +0.09
0.68 + 0.14

0.44 52
0.45 110
0 46 36
0.45 110
0.45 130
0.46 27
0.45 300

170
110
78
67
51
24
19
8.9
4.6

0.48 0.18

TABLE I. Isospin mixing in various compound nuclei.
The quantities f, p, and f~~~ are defined by Eqs. {4.7),
{5.6}, and {5.1), respectively; T0 is the isospin of the
residual nucleus that remains after proton emission;
0~~ is an upper limit of the Coulomb matrix element
{see text}. This table is based on Table II of Ref. 36
except for the first two entries, which are from Refs.
8 and 9.

With the help of Eq. (4.12) the general ease ean
be worked out (see Appendix):

R/Re „=1+[(1—iJ.)N, /N, g]—
x [(1, pÃ2/N~)2 To+ g ]

Here, the abbreviation

g= I"2/I',

(5.5)

(5.6)

(5.7)

Gm~= 1+N, /(4TO N2) . (5.8)

(iii) Discussion. Inspecting the results in Table
I, two different approaches for their interpretation
may be taken. Firstly, these results can be ex-

has been used. Equation (5.5) allows the determin-
ation of g provided ReMand the ratio N, /N, may be
calculated from level density expressions. ""
Since with the inequality (4.5}f= p [see Eqs. (3.8),
(3.9), and (4.7)), the results of the fluctuation ex-
periments are directly comparable to the results
from the evaporation spectra and they are all listed
under the common heading "f or p" in Table I.
The theory on which Refs. 14-17 are based as well
as its refinement in Ref. 36 is different from the
present one. An argument why this arises is given
in the Appendix. We have therefore recalculated
p, from the quantities G and G~„given in Table II
of Ref. 36 using Eq. (5.5),
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plained without any internal mixing since the quan-
tity f~'„calculated from Eq. (5.1) is in only three
cases out of 19 significantly smaller than f de-
termined from experiment. Secondly, if f is used
to estimate Coulomb matrix elements as in Refs.
20 and 36, the result has to be considered as an
upper limit II,~, because internal mixing is then
taken as the ohly source for isospin breaking.
Using the definition (5.6) and Eqs. (3.8) and (3.9),
we express p, as

p, = (Nz/z+Nz/N, + 1) '. (5.9)

Solving this for r/N, = I",/I", and setting

I,' = 2v(H™)'/D,

in analogy to Eq. (3.2), one gets

ma 2
t

2v 1 —p(N, /N, + 1)
' (5.11)

Note that this expression is different from Eq. (9)
of Ref. 36 even in the limit of negligible N, /N„
since in Ref. 36 (using our notation) 1, appears in-
stead of I', . We have recalculated H, '" from the
values of p, in Table I and the information given
in table II of Ref. 36. The level densities 1/D„
and 1/D, are listed there as well as I', . The de-
cay width I", can then be found from the relation

I'~ = I', DQ, /(D, N, )

(5.10)

(5.12)

[see Eq. (3.1)], since the ratio N, /IV, is given by
Eq. (5.8).

In order to derive reliable Coulomb matrix ele-
ments in highly excited compound nuclei, external
mixing has to be estimated from theory. This
amounts to making a model for x in Eq. (2.6). The
strong absorption model used for the estimates
f~„quoted in Table I is certainly not realistic
since the experimentally determined quantities f
and pare in many cases smaller than the theo-
retical ones.

Further, it is interesting to note that the upper
limits of 0, in the case of highly excited nuclei are
much smaller than the Coulomb matrix elements
found at low excitation energies and that H, is a
rather strong function of excitation energy. The
fact that there is no "typical" Coulomb matrix ele-
ment for any given nucleus could be explained by
the assumption that any given class 2 state mixes
only with its antianalog" configurations. There is
only the fixed number 2TO of them available, which
means that the average mixing matrix element has
to decrease inversely proportional to the total num-
ber of levels in class 1.

YI. CONCLUSION

We have shown in the present investigation that
the possibility of extracting mixing matrix elements

for nuclear states at high excitation energy is
hampered by external mixing which has so far
been completely neglected in theoretical analyses,
A formula for the determination of an upper limit
of the Coulomb matrix element has been given in

Eq. (5.11}. Despite the fact that we were able to
estimate the importance of external mixing, we
should not overlook the inability of the present
theory to predict reliably this quantity or alterna-
tively the quantity x in Eq. (2.2). If x & 1 then ex-
ternal mixing is uniquely connected to the trans-
mission coefficients [see Eqs. (2. 1) and (2.3)].

The theory has been applied to experimental
data. Two sets of experiments were analyzed,
excitation functions of fluctuating cross sections
for isospin- forbidden reactions and evaporation
cross sections in mainly isospin-allowed nuclear
processes. The former exyeriments are more
sensitive to isospin mixing because it enters into
the latter ones only as a correction. However, the
comparison of an allowed and a forbidden reaction
can only be done in selected cases.

The suppression factor f that is usually extracted
from the comparison of an isospin-allowed and a
forbidden compound nucleus reaction has been re-
lated to the fractional mixing parameter or the
ratio of spreading to decay width [see Eqs. (3.8),
(3.9), and (4.7)].

A new formula for the extraction of the fractional
mixing param, eter from evaporation spectra is
given in Eq. (5.5}. We note that by using the ab-
solute values of all four cross sections o(a, a'),
o(p, P'), o(a, P'), and o (P, a') the three parameters
of the theory can all be determined. These are
the numbers N, and N, of open decay channels and
the fractional mixing parameter p, . If only the
cross section ratio R of Eq. (5.2) is used, then N, /
N, has to be calculated. This was implicitly done
in Refs. 14-17 and 36. However, the formulas of
these references. have a structure basically dif-
ferent from the theory presented here.

The present formalism gives new results on the
correlation functions of statistically fluctuating
cross sections. They are characterized by two
correlation lengths.

Two of us (H. I,.H. and A. R.) thank D. Hobson for
extensive and enlightening discussions about the
subject of isospin mixing in highly excited com-
pound nuclei.

APPENDIX: EXTRACTION OF THE ISOSPIN MIXING

PARAMETER FROM CROSS SECTION RATIOS

In this Appendix, Eq. (5.5) shall be derived.
We use the abbreviation (5.6), from which follows

by virtue of Eq. (3.5)
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1,/I'~ = p, N2/N, .
Note that the transmission coefficients for the
z-particle decay channel are

Tog Tgg

7,=0,

(Al)

(A2)

(A2)

and for the proton decay channel

r~, = r~ 2TO/(2T, + 1),
r~, = r~ /(2 To+ 1) .

(A4)

(A5)

Using Eq. (4.12), the cross section ratio R reads

R = T~ 1 —jl T~p 4TO 7'p 1 p, Tp~ + 4TOTp +Ting+ Tl —(1 g)Tpg

1 N 1 ' 1 N
X T —1- p, —2T Tpp+7 —pT, 2T T —1- g —T +T —pTI N 1 I

0 p g @ e P ~ e
1 1 1

If one assumes that N, and N, have the same dependence on the total spin, then

7 T g 7 7 T 7 g 7 7

is equal to R«defined in Eq. (5.3), and R may be rewritten in the form

R =RcM [((1—p N /N)2TO) + 2( 1—p N /Ni)2ToiI + (1—p)(1 —p N2/Ni)Ni/Nm] [(1—gN2/N)2TO+ p] ~

=RcM+RcM[(l —g)N /N12p] [(1—pÃ2/N~)2TO+ y] (A&)

which proves Eq. (5.5).
For g«l and N, /N, »1, Eq. (A7) can be

approximated by

R/Rcl= 1+(1—p)(2To+ P) N~/N, . (A8)

This formula resembles Eq. (8) of Ref. 15. How-

ever, the theory of Ref. 15 as weQ as its more
sophisticated version in Ref. 36 is different from
the results of the present paper even to first order
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