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A general description of subtraction techniques in scattering theory is given, Applica-
tions with the objective of achieving reduced integral equations with nonsingular kernels
are applied to both the Faddeev and the Alt, Grassberger, and Sandhas forms of the
three-particle equations with and without three-body forces. In the Faddeev case a
method similar to one recently proposed by Karlsson is found which is analogous to well-
known procedures in the two-particle case. This analogy is shown to be fairly weak when
three-particle forces are included. In the absence of two-particle bound states phase-
space type integral equations are found which permit the generation of approximate 3-to-
3 amplitudes which satisfy unitarity and possess the correct representations of the dou-
ble-scattering poles as well as the proper connectedness structure. A generalization of
the so-called structure invariant perturbation theory to include three-body forces is
established using the Alt, Qrassberger, and Sandhas equations.

NUCLEAR BEACTIGNS Scattering theory, three-particle scattering, unitary ap-
proximations.

I. INTRODUCTION

Subtraction techniques appear repeatedly in a
variety of guises throughout the literature on scat-
tering integral equations. A typical member of
the latter class can be represented formally as

Often the kernel K factors into the product of a
term proportional to 8 and a propagator and this
leads to special simplification. The kernel K can,
however, always be decomposed into the sum of a
reduced kernel K~ and an essentially arbitrary
quantity Ks, namely,

K =Kz+Ks.
If we let I'„denote the solution of

F~ = 1+KzF

then

T =1„8+I'~KsT,

(1.2)

(1.3)

(1.4}

at least formally. Equations (1.1)-(1.4) character-
ize what we refer to as a subttnction technique.

Ks is usually chosen to fulfill a dual role. It
should be simple enough, or possess some special
property, so that the exact solution of Eq. (1.4)
can be regarded as well within one's computational
capacities. Given this stipulation the solution of
Eq. (1.3} is then usually more difficult. However,
the second function of Ks is to represent some
dominant feature(s) of the original kernel IC so that
either the solution of (1.3} is a somewhat simpler
task than the direct consideration of (1.1) or it is

feasibl, e to contemplate approximate solutions.
In the extreme situation when Ks so nearly ap-

proximates K that K„can be regarded as a very
small perturbation it is often more efficient to
exploit what might be called the two-potential real-
ization of the subtraction procedure. This is ob-
tained by interchanging the roles of K„and Ks in
Eq. (1.3) and Eq. (1.4) so that we have

r, = &+K,r,

T = ~s&+ ~sKsT.
We emphasize that Ks retains its role of a "sol-
vable" kernel while K~ continues to be regarded as
somewhat intractable yet comparatively unimport-
ant.

Karlsson' has recently introduced a subtraction
technique for reducing the partial wave analyzed
Faddeev equations for three-particle scattering
to two systems of integral equations analogous to
Eq. (1.3} and Eq. (1.4). One set, corresponding to
(1.3), involves only two-variable equations albeit
with nonsingular kernels, while the other' set con-
sists only of one-variabke equations. The off-shell
structure of the three-particle amplitudes is in-
ferred from these equations. Representations of
both the on- and off-shell amplitudes are obtained
in terms of functions which have no discontinuities
across the three-particle unitary cut although they
may possess discontinuities with respect to the
branch cuts generated by any possible two-particl. e
bound-state poles.

This is reminiscent of those techniques which
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have been used to deal with the simpler problem
of removing the fixed-point singularities which ap-
pear in the kernels of two-particle scattering in-
tegral equations. ' In both cases K~ is chosen so
that E„ is nonsingular. In the two-particle case
the class of kernels considered in Ref. 2 are such
that the partial wave amplitudes of the kernel of
Eq. (1.4) are separable. Similarly, in Ref. 1 Eq.
(1.4) reduces to a set of one-dimensional equa-
tions.

These types of subtraction techniques have proven
useful in the two-particle case in primarily two
respects. First, the reduction to a real nonsingu-
lar integral equation simplifies the numerical work
in computing the off-shell and on-shell scattering
amplitudes. Second, the explication of the off-
shell structure afforded by the representation in
terms of real amplitudes has served to suggest
approximations for those two-body off-shell am-
plitudes which are used as input into multiparticle
scattering integral equations. ' The possibility of
establishing similar attributes for on- and off-
shell multiparticle scattering amplitudes would
appear to be of considerable interest and this pro-
vides the primary motivation for the present in-
vestigation. In this regard, we recall that in many
formul. ations of N-particle scattering the input into
the scattering integral equations consists of the
off-shell N~-particle amplitudes, where 2 —N~

N -1.
In Sec. II we consider a simple modification of

the subtraction technique proposed in Ref. 1which
enhances the resemblance to the two-particle case
even further. The analysis is confined solely to
the physical situation considered in Ref. 1, namely,
when the interaction is considered to consist only
of pairwise forces.

The development of similar techniques in Sec.
III but including a three-particle potential shows
that the presence of such a force destroys the
analogy with the two-particle case rather thorough-
ly. %e find that the direct generalization of the
method introduced in Sec. II is a variant of a sub-
traction technique introduced by Brayshaw. '
Another technique which is somewhat more con-
venient for studying those amplitudes which cor-
respond to two-particle channels is also intro-
duced. 'The latter method turns out to be the gen-
eralization of the so-called structure-invariant
perturbation theory. '

t, (z) = t,'(z)+ t",(z) . (2.2)

These operators possess the following properties
pertinent to the present investigation with respect
to the appropriate two-particle subspaces:
(i) t'(z) contains the complete contribution of the
possible bound-state poles of t (z);
(ii) both f '(z) and I" (z) are, separately, bounded
on the cut in z from z = 0 to z =+~ and for negative
z as well except in the region of the (possible)
bound-state poles in the case of f '(z);
(iii) t,""(+)=t'"(v)t, where + refers to z=E+i0,
E real;
(iv) 4f~—= f', (+) -f'( )=d,f for -all real E;
(v) f" (z)=G, (z) 'r(z)G, (z) ', where r(z) is nonsin-
gular for real z and b,t"= b,v = 0;
(vi) the partial wave projections of t ', (z) can al-
ways be regarded as being of finite rank.

I.et us for the moment ignore any possible spin-
orbit coupling. Then the partial wave projection
of a half-shell partial wave amplitude can be writ-
ten in the factorized form

M~ (E+)= tz(E+)6z~+ f8(E+) Q 5»Go(E+)M„~(E+)

(2.la)
3

= f, (E+)5„+ M»(E+)G, (E+)O„ f, (E+)
~l

(2. 1b)
which we take to be defined upon the space of zero
total linear momentum. %'hen the total three-par-
ticle cm energy satisfies E &0, which is the phy-
sical domain of 3-to-3 scattering, the kernels of
the integral equations (2.1) are singular due to
the vanishing of the denominator of the on-shell
matrix elements of the propagator

G, (E+)= (E -H, +i0) '.
H, denotes the three-body kinetic energy operator
excluding the energy of the center of mass. Branch
cut singularities may also be generated by the pos-
sible bound-state poles of the two-particle transi-
tion operators f (E+) The in.dex o. on the latter
operators refers to the noninteracting particle and
in Eqs. (2.1) O z= 1 —5 z.

%e are concerned solely with those subtraction
procedures which result in a reduced kernel free
of the propagator singularity. The properties of
f, (z), where z is a complex parametric energy,
are very important pursuant to this end. In Ref. 5
it is shown that t, (z) can always be decomposed in-
to its so-called essential (e) and residual (r) parts

II. PAIRWISE INTERAC fIONS

In the absence of three-body forces the Faddeev
equations for three-particle scattering can be writ-
ten in the form

k
jkj

2 g
k', k t, kgkj (2 2)

where, as a consequence of off-shell unitarity,
f,(k', k) is real If f, (k', &) is no.nsingular, which
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is the case if t, (k, k;k'/2m)e0, then for positive
parametric energies one can take

k2
I it I I, yN

t".(E+}lz,q) =(E, alt". (E+)=0

which in turn implies the half-shell identities

(2.5)

t (E+)
l
E, q) = t ' (E+)

l
E, q), (2.6a)

(E, q l t, (E+)= (E, r/
l
t ', (E+) . (2.6b)

Let p~ denote the momentum of particle o rela-
tive to the c.m. of particles P, y, while the relative
momentum of the latter two is denoted by q, .
Three convenient choices of orthonormal bases
on the (P = 0} three-particle Hilbert space are
(lq, p ) ), oi, 2, 3. Then the matrix elements
of t (E+) are

.(q.', p.'l t.(E+) lq. ,p.).
=6(p-'-p. )«'lt. (z -p-'/» + t0}lq. ) (2 7)

It is convenient to define an energy shell projec-
tor

(2.4)

Next we state these properties of the two-particle
operators in terms of the operators defined on the
full three-particle space. Let lz, q) be any posi-
tive energy state for which G, (E+) 'lz, q) =0; q
refers to any other variables needed to specify
this state. Then from property (v) we infer that

a(qa ~ pa l fa l qa~ pa)a

In general the half-shell function which is diagonal
with respect to the total relative two-particle an-
gular momentum is a real matrix in the spin in-
dices. ' Finally, we suppose that Eq. (2.4) holds
so that

t:(E+)8t"(E)=f.s.(z+)t.{z+) (2.10a)

= t+ MG, 5t.

Then in the notation of Sec. I we take

Ks =fSt6GO

so that

Zs = t"6Go

where

t =t fSt, -

(2.1a')

(2.lb')

(2.11a)

(2.11b)

= t, (E+)S,(E+)f t . (2. 10b)

This is legitimate so long as f„ is well defined
which we suppose to be the case for manipulative
purposes. Those instances when f possesses
poles are best treated as limiting cases in the final
equations.

Again for manipulative convenience we write
Eqs. (2.1) is an obvious matrix notation where we
also suppress the dependence upon E:

where

x e(s, ),(q„p, l,

s =2p, E- p
'

2p,

(2.8)

and we see as a consequence of Eq. (2.9) that the
propagator singularity in Ks has been neutralized.
Other choices for K~ achieve this aim as well, e.g. ,
t~6G, or t'6"6G, in the case Eqs. (2.10) are not
valid. Corresponding to Eq. (1.4) we have with the
kernels (2.11)

and M = Fst+ I'„fSt6GOM, (2.12)

pa =
mmmm y(ms+ m~)

p,
a =m [(mq+ m„)/Mj.

A positive parametric energy projector 8"(E)
with respect to t (E+), cf. Eq. (2.V), is obtained
from Eq. (2.8}by replacing (s ) '6(q —~s, ) by
unity.

The generalization of Eq. (2.3) on the three-par-
ticle space is then

t (E+)lz, q)=f 6 (E)t (E+)lz, q), (2.9)

where f is the operator representation of the half-
shell function on the three-particle space. In the
special case of no spin-orbit coupling the matrix
elements of f, are simply

M = I'„fSM + I' t (2.13)

If we introduce a half-shell quantity I' defined by

(2.14)

and the resolvent I,= I'~ —1 corresponding to K„,
Eq. (2.13) can be rewritten as

M =ESM + 6t(6G )' . 0

Half on-shell (2.15) becomes

(2.15)

where I'„ is defined by Eq. (1.3) and Eq. (2.11b) and
we note that in this instance SI'~ = 8. So if we mul-
tiply (2.12) on the left by I'„f8 we obtain

I'„fSM = I'sf St+ I'„fSt6GPI

which when subtracted from (2.12) yields
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M
i E, rt& = ESM i E, rt& . (2.16)

By definition (2.14) ES possesses at most discon-
tinuities across the branch cuts generated by any
possible two-particle bound-state poles. In the
absence of the latter E is real and (2.16) is an ob-
vious solution of the half-shell form of the general
discontinuity relation satisfied by M,

~=M(+)(I+ 6)nG~(+}

+ [M(s)G, (s}6+ljnt [1+6G, (v)M(v)], (2.17)

or, equivalently,

(E, r}' ~E,.(E+) ~E, q&= 6,.(E, r}' ~E, r}&. (2.18b)

The sum of the discontinuities of t across any pos-
sible bound-state poles is denoted by &t, and, of
course, in the absence of these poles &t, =0. Even
in the latter circumstance (2.16) is remarkable in
that it is not a form which is necessarily implied

provided only that E satisfies the on-shell condi-
tion

(2.18R)

by (2.1V) as we shall see in Sec. III. On the other
hand, if t)t, o0 the restrictions implied by (2.17)
on E are certainly much more complex. In either
ease, by (2.14) the half-shell function satisfies
the nonsingular integral equation

Ea-(E+) IE ~&= 6a.f (E) IE &&

+ &„&+ x E)„S+ E

(SMS) = St'8+ St~5G+(SMS) (2.20)

which is an integral equation for the on-shell ma-
trix elements corresponding to 3-to-3 scattering.
It is instructive to express (2.20) in an explicit
form in terms of the canonical Faddeev amplitudes
T =M(1+ 6) with respect to an arbitrary initial
state ~E, )()&:

(2.19)

As in the analogous two-particle case the on-
shell matrix elements of M can be expressed in
terms of E Inse. rting (2.16}into the kernel term
of the on-shell version of (2.1a') we obtain

a(4s pslSa(E»s(E+) IE ~& =s(ql. palSs(E}ts(E+) IE ~&

+ dq'r' dR a qs~pa +a~ &+ q~ ~pe
Y~i

(Ir r 8(as)) ( sg ptz~T (E )~E
s&

(2.21)

where

&~(r+) $&s(r))E((( )rg (:.(r+=)r„(r+)

E(luations (2.21) are a set of phase-space type of
integral equations which reduce after a partial
wave decomposition to a set of one-dimensional
integral equations with finite domains of integra-
tion. Fina11y, we remark that since Sa(E)t~(E+)
= Sa(EQ~(E+)Sa(E+)f(r) is always true, given the on-
shell two-particle amplitudes, any real two-par-
ticle half-shell function satisfying 8fS = S, and
any real, connected Ec such that ES= (f+Ec)S
satisfies (2.18), E(ls. (2.21) generate, provided
that &t, =0, a unitary, properly connected 3-to-3
scattering amplitude which possesses the correct
representations of the double-scattering poles.

K(luation (2.1b'), which we rewrite as

m= t+mr",
can be analyzed in a similar manner. In this in-
stance we choose

K"= G06tSf

so that

K =G 5P.
Corresponding to (2.15) one finds that

M=MSE" + (6G ) '6l"

where

SEtr Sft I tr

(2.22)

Noting that

(R" = (6G ) 'S,=R"(6G ) '

where 8~ satisfies

= 5GO P5GO+ 5G t N

=5G t"5G +8 t"G 5,

I'„" is defined by (1.2) with K„replaced by K„",
and 8" is the resolvent corresponding to the latter
kernel. E" is evidently subject. to the constraint

SE"S= S.
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we can combine Eqs. (2.15}and (2.22} into the
single symmetrical expression

M =J'SMSE"+ (5G ) '6l"(5G ) ' (2.23)

Uso (E+) = 5s~ Go(E+) ' + Q 5s „M„„5„ (2.24)

Equation (2.23} can be regarded as the three-par-
ticle generalization of an analogous expression for
the two-particle transition operator. ' %hen &~ = 0
the resembl. ance is even more striking for then
(2.23) constitutes a representation for M which
manifestly satisfies the off-shell unitarity rela-
tion (2.1V) when F, E", and@" are real

Our principal results which consist of Eqs.
(2.19), (2.21), and (2.23) have their formal counter-
parts in Ref. 1 in terms of somewhat differently
defined quantities. 'The equations in Ref. 1 corre-
sponding to Eqs. (2.21) involve the partial wave
amplitudes of s(qs, Q ~

Ts(E+)
~
E, q), where the

magnitude of q~ is again taken to be equal to Ms~
but for the extended range -&8&2p E. For
s~ &0, these amplitudes coincide with the physical
on-shell amplitudes; however, for sz &0 one has
introduced an analytic continuation of the ampli-
tudes ordinarily defined by Eqs. (2.1}.'

The continuation is defined in Ref. 1 in the course
of executing the subtraction technique. Instead of
(2.11a) one chooses

Ks=f t'5GO.

Here f' involves an analytic continuation of the
two-particle half-shell function. For instance, the
partial wave amplitude of (q', p'

~

f' ~q, p ) is
defined as ff (q', ~s ) for all -~ &s &2tl. E.
t '(E+) differs from t (E+) only in that the former
is obtained from the latter by replacing the mag-
nitude of q', by ~s& where it enters into the partial
wave amplitudes of (q', p' ~t (E+}(q,p ) . As-
suming that these (two-particle) continuations have
been well defined the same manipulations which
led to (2.16) can be carried out only now the de-
finitions of I' and the effective meaning of 8 are
changed in an obvious way. Simil, ar remarks apply
to Eq. (2.23} and to Eqs. (2.21). The latter still
reduce to a set of one-dimensional integral equa-
tions but now possess infinite rather than finite
domains of integration. Rather more information
is implied by these counterparts of Eqs. (2.21)
than is needed to determine the physical 3-to-3
scattering amplitudes.

The exemplar of all subtraction techniques in
three-particle scattering theory is that introduced
by Alt, Grassberger, and Sandhas' in connection
with their formalism which is phrased in terms
of the operators

U = 5G, '+ 5tG, U. (2.25)

The Alt et ul. class of subtraction techniques is
defined by decomposing t into two parts. The de-
composition (2.2} corresponding to which we take
Zs = 5t'G, yields as the realization of Eq. (1.4)

U = U" + U "Got'GOU,

where

(2.26a)

U"= I:-'+ Ot"G.U" (2.26b)

is an integral equation with a nonsingular kernel
which possesses no discontinuities across any of
the unitary cuts whether or not there are any two-
particle bound states. Equation (2.26a) reduces to
a set of one-dimensional integral equations for the
so-called vertex matrix elements of U~ after a
partial wave decomposition in virtue of property
(vi) of t'; arbitrary matrix elements of Us can
be determined by using (2.26a) as a quadrature
rule. Clearly this subtraction technique is well
definedwhether the balf-shell functions are or not.
Equations (2.26) form the basis of the so-called
structure invariant perturbation, theory. ' The
generalization of Eqs. (2.26), and therefore of all
of the associated remarks, to the case where
three-particle forces are included is considered in
Sec. III.

It is instructive to restate Eqs. (2.26) in terms
of the M operators» This statement is facilitated
by the definition of S" as the solution of

S"= 1+ t 5 Go S"

so that

V'= 5G '+ 5Z"t "5.

(2.2V)

Then one finds that M satisfies

M=S"t+S"t 5G M. (2.28)

Thus the subtraction technique introduced by Bray-
shaw' is merely the M-operator realization of
Eqs. (2.26) at least in this instance where there
are no three-particle forces.

In contrast to the M~ the matrix elements of the
preceding operators are directly related to the
scattering amplitude for the processes o -P for
e, P =0, 1, 2, 3, where the zero index refers to the
channel with three free particles. In connection
with this Eqs. (2.1) are also defined (trivially) for
zero indices with the stipulation that t, -=0. The
combination of Eq. (2.23) and Eq. (2.24) yields the
general, although apparently uninteresting, rep-
resentationn

U=5G '+KESMSE"5+G, '5I"G, ',
while from Eqs. (2.1) we infer the integral equa-
tion
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Finally, if instead of the decomposition defined
by(2. 2)wetakeinEqs. (2.26)f8finplaceof f'sothat
t" is replaced by f we obtainthe U-operator realiza-
tion of previous the subtraction technique which
culminated in Eq. (2.23). The equivalence of the
two sets of equations is provided by (2.28) in which
Z" is replaced by I'„and t ' by f8 f. Although these
altered forms of Eqs. (2.26) are not especially use-
ful for practical calculation they do illustrate the
point that any subtraction involving a decomposi-
tion of the two-particle transition opex ators is
very efficiently formulated in terms of the Alt et
al . equations.

U= 5G0 '+ V, + [5t+ V~(1+Go&)]GOU

=5G, '+ V, +UG, [(fG0+ 1)V,+ f5).

(3.2a)

(3.2b)

These equations differ slightly from equations for
U derived elsewhere. ' However the two sets can
easily be placed into congruence by means of the
identities

G~U~o=5~ +G Uo

U~ Go = 5~ + U~G~

which follow from the manifest channel degen-
eracy of Eqs. (3.1). We point out that Eqs. (3.2)
form a closed set with respect to the nonzero-
indexed operators. That is, a submatrix of Eq.
(3.2a), for example, consists of a set of equations
which couple together only those U~ for 0., P 0.
The fact that Eqs. (3.2) can be regarded as closed
in this sense is a consequence of the fact that all.

III. GENERAL THREE-PARTICLE INTERACTIONS

We next suppose that the total interaction con-
sists of a three-particle potential V, in addition
to the pair potentials V„a= 0, 1, 2, 3 with V, =-0.
Whether or not V40 the Alt ef al. ' operators are
defined quite generally in terms of the total Green
function G(E+) = (E H+ f0-) ' by means of the rep-
resentation

G(E+) = 5~OG~(E+)+ G~(E+) U~~(E+)Gl(E+), (3.1)

where the e-channel Green function is denoted by
G (E+)= (E-H, —V +f0) ' Equ.ations (3.1) ensure
the direct relationship between the channel matrix
elements of U~ and the scattering amplitudes for
the processes e-P. We remark that for manipu-
lative purposes Eqs. (3.1}are most efficiently
utilized when expressed in the (four-dimensional)
matrix form

G (1+ 5) = G + G UG, (3.1')

where (G)~, = 5~ G, .
It is a simple matter to deduce the integral equa-

tions satisfied by U from (3.1') and the resolvent
identities for G. Qne finds

of the sums over indices are weighted by t, and
therefore receive no contribution from the t, =0
terms. As in the case of only pairwise forces one
finds that the zero-index operators can be deter-
mined from the nonzero-index operators by using
Eqs. (3.2) as quadrature rules.

The Mz operators can be introduced just as
before [cf. Eq. (2.24}], namely

U= 560 '+ 5M5, (3 3)

+ ~g0 ~[5) MXa (3.4b)

1 ~V=tq5q~+ —+ MN„GO -a(1+Gotl)
X=y

+ Mjsxk o& (3.4b)

We see that if a, P4 0 Eqs. (3.4) couple only non-
zero-index operators together. The latter can be
used to determine the zero-index operators by
utilizing Eqs. (3.4) as quadrature rules. Only the
operators M& for e, PWO enter into the statement
of the 3-to-3 scattering amplitude but it is clear
from (3.3) that M„and M~, are needed to describe
every other scattering process.

The preceding results indicate that just as in
Sec. II the M operators are particularly useful
for the description of the 3-to-3 process. Qn the
other hand, the U operators lend themselves more
readily to the characterization of scattering pro-
cesses with no more than one channel with three
free particles at least within the context of the
subtraction techniques considered here. 'The gen-
eralization of these techniques to the case at hand
follows along the lines of Sec. II. However, in
order to avoid notational confusion we segregate
the description of this development from the set
of equations introduced thus far in this section.

A. N operators

In this subsection we confine ourselves solely
to the M~~ operators defined by Eqs. (3.4) for

except that the operators M, and Mz, are not
necessarily trivial as they were in Sec. II. The
integral equations for the M operators are ob-
tained by inserting the expression (3.3) for U into
Eqs. (3.2) and using the fact that 5 ' = (5 —2)/3 in
four dimensions. After some manipulation it is
found that all zero-indexed operators can be elimi-
nated from the sums over indices appearing in
these equations with the result that the M opera-
tors satisf'y for all a, P = 0, 1, 2, 3,
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a, P w 0.. All equations which are written in a ma-
trix notation in the channel indices refer to this
3 x 3 channel space. This opportunity is presented
to u,s because of the closure properties of Eqs.
(3.4) which were referred to previously. If we
write

u -=—'(1+ 6},3

then Eqs. (3.4) can be written in the compact ma-
trix form

M = t+ (1+ too)'0(g+ GOM)+ tc06M

= t+ (y+MC, }'0(I+G,t}+MSG,t.
, (3.5a)

(3.5b)

'U =Vs+'VR,

where

(3.Va}

The generalization of the discontinuity relation
(2.1V) can be deduced from Eqs. (3.5):

nM =M(s)(1+ 5)nc M(+)

+ {M(+)o,(+)[&o,(~)+3]+[~o,(~)/3+ I])
x nt, {[1+O, (v) (&l3)]+ [5+O,(+)V]o,(v)M (+)j .

(3.6)

However, Eqs. (2.1V) and (3.6) are identical pro-
vided only that 4t, = 0, namely, that there exist no
two-particle bound states, viE. ,

&M=M(a)(1+ 5}~,M(w), &t, =O. (3.6'}

I.et us next apply the same sort of analysis which
led to Eq. (2.15) in the case V, = 0. In order to de-
fine an appropriate Ks when the latter condition is
not true we employ a device very similar to that
introduced by Brayshaw' in that we decompose Q
into subtracted (gz) and remainder (~s) parts:

where

8 =t ' +-'U +-t '"6 '0
SsR S,R 0 ~

Then corresponding to (1.4) and (2.12) we have

M=r„a+r~, M, (3.10)

where I'„ is defined by Eq. (1.8) and Eqs. (8.9).
Multiplication of (3.10) on the left by I'„f6 yields

r„fSM = I'„fSB+ r~~M
which then subtracted from (3.10) yields

M = I"„fSM + I'„3„. (3.11)

Equation (3.11) differs from (2.18), or equivalently
(2.15}, in two important respects. First, due to
the presence of the three-particle potential KR is
still singular and therefore I"„fS is not a real
operator. Second, while SX'RBR = IB„=0 we have

I'ROARS w 0 so that the second term on the right-
hand side of (8.11) does not vanish half on-shell.
This is, of course, correlated with the fact that
rs fS is not a real operator in general.

Nonetheless, (8.11) does simplify considerably
half on-shell. In fact we find that corresponding
to (2.16)

M
~
E, q) = o r„o,fsM

~
z, q&

+(G. '»)(r -I)I«&
where

(3.12)

= 1+ (o~„)r„.
We note that the kernel G+„ is nonsingular so that
I"„is a real operator.

I.et us write

'Qr, =fS'Q, (3.Vb)
rR= 2+A„ (3.13a)

so that 8'UR = 0. Also ee write

t=t +t", (8.8a)

t~ =fSt = t'S"'. (3.Sb)

z,,„=[t'"5+~,,-„+t'"cp&]o. (3.9a)

(3.9b)=Ks, RGO ~

Evidently SKs=K, any SKR=O but KR~0 as a
consequence of the '0 terms so that K„ is still a
singular kernel. Again exploiting the notation of
Sec. I and our decompositions for t and '0 we see
that the Born term in Eqs. (3.5) can be written as

Then corresponding to Eqs. (2.11) and to the nota-
tion of Sec. I we define

where A~ is real, connected, and satisfies

Pcs = Qc(1+ 5)S. (3.13b)

Then for any such A~ and any two-particle half-
shell function f such that SfS = S, one easily es-
tablishes that when nt, = 0 Eq. (3.12) provides a
solution of the half-shell form of the discontinuity
relation (3.6').

%e can also formulate a unitary on-shell formal-
ism for the 3-to-3 amplitude when &t, = 0 in terms
of a generalization of Eq. (2.20). That is, if we
use (3.12) in the on-shell form of (3.5a) we obtain

(SMS) = s{t'(I —g)+ ,'ft 6+ (I+ t ' )oe]r„—] 3

+ S{[t'6+ (1+ t 'Go)]rsoo f)(SMS) . (3.14)

It is obvious that (3.14) reduces to (2.20) in the
limit V, =O. In the case &t, =0 given any I'R satis-
fying Eqs. (3.13) and any f such that SfS= S one
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easily proves that the solution of the phase-space
integral equations (3.14), which can be rewritten
in a form similar to (2.21), corresponds to a uni-
tary, properly connected 3-to-3 amplitude which
possesses the correct representation of the double-
scattering pole.

The representation (3.12) of the general three-
particle half -shell amplitude demonstrates that
the presence of three-body forces destroys the
similarity to the two-particle case which was ex-
hibited by the representations (2.15), (2.16), and
(2.23) when V, =O. The reason for this is the lack
of any intrinsic factorization properties associated
with an amplitude generated by a pure three-par-
ticle force or which are implied by three-body
unitarity. This is best seen by examining Eqs.
(3.5)-(3.14) in the limit of no pairwise forces,
namely t„=0, for all o, .

The representations of the two-particle ampli-
tudes t which resemble (2.15), (2.16), and (2.23)
are direct consequences of two-particle unitarity.
As we have seen in Sec. II these intrinsic factori-
zation properties persist in their influence upon
the structure of the three-particle amplitudes
when V, =0. By way of contrast, the connected
three-body operator

where

&=-t+ 5 'V (1+G t)

v'„, = t+ (1+tG, )V,6 ' .

(3.16K)

(3.16b)

We confine Eqs. (3.15) and Eqs. (3.16) and all sub-
sequent equations to the 3 & 3 channel space which
is pe~missible since Eqs. (3.2) are closed on this
space. The subtraction technique which is intro-
duced as a generalization of the method of Ref. 5

appears to be inapplicable to the 4 x 4 versions of
(3.15); we comment upon this later.

We suppose t is decomposed as in Eq. (2.2) and

that

= V'„+ V,", .
(3.17a)

(3.17b)

T T + T

e r
tr tr tI'&

where

(3.18a)

(3.18b)

Equations (3.17) are to be interpreted as (diagonal)
matrix equations; e.g. , V,6~ =(V~+ Va)6a . V'"
and V'„'" remain to be defined. However, with Eq.
(3.2) and Eqs. (3.17) we see that r and r„break
up into "essential" and "residual" parts:

t, == V, + V, (E —P„—V, + t0) ' V,

has no intrinsic factorization properties which
follow from the unitarity relation

7""=t~'"+ 5 'V""+ 5 ~V6 t""
4 0

T'"=t'~+ V'~5 '+t"~G V 6 '
tr tr 0 4

(3.19K)

(3.19b)

8. U operators

The method of H,ef. 5 is designed to be applicable
even if the half-shell operators f possess poles.
It is interesting, therefore, to generalize this
method to the case when V4w 0.

1.st us rewrite Eqs. (3.2) in the form

U= 5G, '+ V, +B'G,U

0
'+ V4+ UG0

(3.15a}

(3.15b)

~t, = t, (+)nG, t, (-) .

One could continue on from Eq. (3.11) with the
development of the representation of M to obtain
an expression analogous to although hardly as in-
teresting as Eq. (2.23}. In summary, when V, e0
the subtraction technique considered here has only
one of the attributes possessed by similar tech-
niques in the two-partic1. e and the V, =O cases.
Namely, we achieve a reformulation in terms of
quantities which satisfy nonsingular integral equa-
tions.

All of our conclusions regarding the M amplitudes
in the V410 case remain unaltered if we were to
carry out the same sort of forrnal analysis but
using the specific definition of the subtraction pro-
cedure of Ref. 1 which was described in Sec. Il;

Then, for example, Eq. (3.15a) can be transformed
into the integral equation

U = U"(1+ 5 'GOV4)+ U"(Gor'Go)U, (3.20a)

Ut' I 1 gTt'C Uf'
0

If V" is such that

V "8=0
then

(3.20b)

(3.21b)

V'= V Sf'
V —V —V ~

(3.22a}

(3.22b}

With the decomposition (3.22) r' exhibits the same
type of finite-rank characteristics possessed by
t' 'If f is not wel. l defined, we can take in its
place in Eqs. (3.22) any convenient two-particle
operator3with the property SfS=S and still obtain
all of the desirable features which follow with the

and the kernel of Eq. (3.20b) is manifestly non-
singular. One obvious choice for V'" which is con-
sistent with the conditions (3.17a) and (3.21a) and
which is open to us if the two-particle half-shell
function is well defined is simply
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decomposition (3.22).
The formalism is completed by noting that the

zero-indexed operators can be calculated, in prin-
ciple, from the nonzero index operators. ' For
example, it follows from (3.1) that for any at 0

U„= t~+ (1+ t~G, )U~„(G,f~+ 1) .

However, as noted in Ref. 9 this is not likely to
be a convenient way of calculating U«and methods
based on the M operators are to be preferred.
Nonetheless, this finishes the generalization of
Eqs. (2.26) to the case V, vO and provides the basis
of a structure invariant perturbation theory of the
type described in Ref. 5.

Similar results follow when one begins from Eq.
(3.15b}. In place of Eqs. (3.20) one obtains

M = S"u+ S"Z'm, (3.24)

very finite-rank attributes which motivated this
subtraction technique in the first place.

In Sec. II we established the connection between
the U operator and Brayshaw' subtraction tech-
niques in the case V, =0. We next inquire as to the
general connection between the two methods. For
V, 0 the intrinsic asymmetry in the generalized
U-operator formalism between the treatment of
nonzero indexed and zero indexed makes the trans-
formation of the M operators using (3.3) exceed-
ingly cumbersome. It is much simpler to inspect
Brayshaw's equations. Employing the decomposi-
tions (2.2) and (3.17) one easily obtains from Eqs.
(3.5a) for the operators M~, with a, P x 0,

U= (1+ V,G, 5 ')U"„+ U(G, T'G, ) U"„,

where

(3.23a)

(3.23b)

where

S"= 1+K"Z"

Ke, r (Ie. r 5 + IO e, r + Ie, rG + }G0 0&

In this case V"„ is chosen so that SV"„=0. Then
S~"„=0 and the kernel of (3.23b) is nonsingular.
Possible choices for V',;" are

V~, =fSV,

V"„=V, —V'„.

Since Eqs. (3.15) hold on the 4 x 4 channel space
the question of the possibility of carrying out the
same formal manipulations which led to Eqs. (3.20)
and (3.23) is of some relevance. Obviously the
same results are obtained given the extended de-
finitions (2.2) and (3.17). When V, =O no problems
are encountered with the extended equations (2.26)
because f, =O and (f'), =(f"),=0. However, both
(V'), and (V')„e.g. , cannot be zero. However,
unless V,"=0, Eq. (3.20b) possesses a singular
kernel (in the U," case). But if V,'= V„which is
necessitated by this alternative, then not only are
Eqs. (3.20a) no longer closed with respect to non-
zero indexed operators but ~' fails to possess those

0= t+ 3'U+ tGO'U.

Whatever the choices of I,
" and 'U" so long as V,

e0, K' is a singular kernel although K"=G+"G, '

certainly is not if S'0'=0. Equation (3.24) is then
rewritten in terms of the real operator Z" =

G,Z"G, ' [cf. Eq. (3.12}]:

I= G Z"G,n+ G,-'Z" (G~'G, )~. (3.25)

This last equation can be placed in a form similar
to Eqs (3.20) or (3.23) after an off-shell trans-
formation in which an operator equivalent to M
on shell is introduced. This dissimilarity in
structure as well as the distinct choices of the de-
composition of V4 which are required to achieve
an expression in terms of operators satisfying
nonsingular integral equations makes the connec-
tion between Eqs. (3.24} and the U operator for-
malism appear to be rather remote when V, W 0.
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