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We discuss the equation of motion (fgfH, a ]~/(,,) = (Eg Eo) (Qga ~$0) in the subspace of states

~Q~) = X,P a,~po), where jQo) is the correlated ground state of a double magic nucleus. It is shown
that this equation can be solved with high accuracy if some low-order correlation functions of the expS
theory are known. Preliminary results are given for 'H and "N for four different nucleon-nucleon
interactions, i.e., the Reid-soft-core potential with and without the three-body correction of Blatt and
McKellar, the Hamada-Johnston potential, and the de Toureill-Sprung supersoft-core potential. The
connection with shell model states is discussed.

NUC LEAR STRUCTURE H, ' N, "0 calculated hole states He, ' O. Centroid
energies from microscopic theory.

I. INTRODUCTION

Nuclei adjacent to double-magic nuclei show an
especially simple structure: There are "domi-
nant" states, the properties of which are (partly)
described by the empirical shell model and which
are therefore called single-particle shell-model
states. These states are usually interpreted to be
one-particle or one-hole states of the exact ground
state of the double-magic nucleus. In addition to
these, there are other types of "one-hole" states,
e.g. , the Bruckner-Hartree-Fock (BHF) and re
normalized BHF states. " The connection between
these states and the above mentioned ones is quite
complicated because Koopmans's' theorem does
not hold for nuclei. Dieperink, Brussaard, and
Cusson' proposed an approach where the connec-
tion with experiment is clearer, but unfortunately,
it has not yet been applied in calculations going
beyond the renormalized BHF. We will show that
one can generalize their ansatz in order to obtain
an approximation for the dominant states, more
strictly speaking, for the energies, form factors,
expectation values, and transition probabilities of
these states. We will also demonstrate that the
expS theory' " is a very appealing and practical
method for solving this problem.

Clearly, one needs a unique definition of a one-
hole state. We define a subspace of the (A —1}-
particle Hilbert space by the states (a

~ g,&} (a is

an annihilation operator) and the one-hole states to
be solutions of the Schrodinger equation

within this subspace, where
~ g, & is the exact ground

state of the double-magic nucleus and the sum
goes over a complete set of single-particle states.

Because it is impossible to solve the full(A —1}-
particle problem even in this subspace, we solve
the equation of motion

(qs
~
[H, a j ~ y, &

= (Es —E,)(l/Js
~

a

in the framework of expS theory. The "sudden-
removal" method of Ref. 4 corresponds to a solu-
tion of our equation in a one-dimensional sub-
space.

In Secs. II and III we discuss the connection with
"experimental" single-particle wave functions
(form factors}, etc. We also justify the generali-
zation of the approach of Dieperink et al. ' In Sec.
IV we present the method in which (1.2) has been
solved and in Sec. V the fragmentation of one-hole
states by coupling to excited core states is briefly
investigated for "N. In Sec. VI we present our nu-
merical results. In Sec. VII we discuss the con-
nection with the empirical shell model. Our con-
clusions will be given in Sec. VIII.
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II. FORM FACTORS OF SINGLE-NUCLEON TRANSFER

REACTIONS AND SEPARATION ENERGIES

In this section we give some well known defini-
tions of the stripping and pickup form factors,
spectroscopic factors, and centroid energies.

The eigenfunctions of an empirical shell-model
potential are simple approximations for the form
factors"

+,( )=(&~ ))'"J A(,(()(:,(()
= P &4.

~
~.

~
4,&&r

~
o&, (2.1a)

a', (F)=(A)'" I( ((')(.'"((,)d(

= g &(t, ~s. ~)C,&&r~o& (2.1b)

S(B)=(C' IC' &= (2 2)

the corresponding energy is the separation energy
given by

&, =E,(A) E,(A-1). (2 2)

A typical distribution of spectroscopic factors is
shown in Fig. 1. Note that in most cases the domi-
nant state is the highest one (which has the lowest
excitation energy). The group (a) states, for ex-
ample, may be interpreted assuming that a one-
hole state Z, y, a

~ P,& couples with some core ex-
citation states

~ $,& in such a way that the one-hole
state splits up into states with small spectroscopic
factors and a dominant state

(2.4)

of the deuteron stripping and pickup reactions re-
spectively.

~ (,& and ~(c)~& are the true states of the
A- and (A+1)-particle systems (eigenstates of the
true Hamiltonian in the complete Hilbert space), $
stands for the coordinates (and spins) of all nu-
cleons of the residual nucleus, and (

~
o(&I is a com-

plete set of one-particle states. In the following
we discuss only the form factors of pickup reac-
tions for double-magic nuclei with A nucleons.

Whereas the many-particle states
( g, & and

~
gs&

are normalized, the form factors are evidently
not. The norm is just the spectroscopic factor

dominant state. On the other hand, if there is a
group of states which all have (nearly) the same
form factor (up to the normalization constant) and

if this group is orthogonal to the form factors of
all the states not belonging to it, then the centroid
energy

(2.5}

ZsS (B)es
Zs.S (B')

(2 g)

where the "state-dependent spectroscopic factor"'
S (B) is defined by

(2.7)

e shall show in the next sections that we can
calculate centroids of the form of (2.6) with an
arbitrary wave function

~

o& if we sum over all
(A —1)-particle states with given j, rn, and 7(.

lk
(Xi

LD

tY
C)

O
0
O
(D

indeed coincides with the energy E,(A) —Es(A —1)
given by the solution of Eq. (1.2) in the subspace
of one-hole states and the form factor coincides
with the wave function calculated from (2.lb) and
(1.2). We shall substantiate this remark in Sec.
III. A very similar assumption is made in the
separation-energy approximation: All the form
factors of a "group" are approximated by shell-
model functions (more strictly speaking by shell-
model functions times spectroscopic factors) which
are (up to the asymptotic behavior given by the
separation energy) nearly the same for all mem-
bers of the group. If this approximation holds,
the centroid of this group is given by

with small coefficients p'. Therefore, the domi-
nant state

~
(t)s& (shell-model state) is often said to

be the one-hole state; another approach is to say
that the centroid is the one-hole state. Qf course
both statements are simplifications. It is evident
that the true one-hole state defined by (1.1}yields
an upper bound on the (negative} energy (.s of the

(&}
SEPARATION ENERGY Eo(A} Eg(A-1}

FIG. 1. Schematic distribution of spectroscopic factors
of a {double magic —1)-particle nucleus {j,n fixed).
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III. ONE-HOLE STATES

In this section we show how the form factors,
spectroscopic factors, and centroid energies are
associated with the one-hole state. This compari-
son is continued in Secs. V and VIII.

A direct solution of (1.1) in the subspace of one-
hole states, given by

+ Q v....&q, la",a,' a. a.
I
tt, &

0I oS 304

p&+ 2 &»
I
I'D,

I p (3.9)

leads to the equation

(3 1)
where D, is the two-particle density matrix.

Now we would like to discuss the properties of
the operators C and D. Using (2. lb) and (2.3) the
C operator may be written in the following way:

Q Q, la'. ,Ha. lq, &p.*, =E;Q &)I), la.'.a. I((,&p,*..
a'

(3 2)

C, = |t, a', &B') &B a Ip, «B
B(A-1)

Unfortunately (3.2) requires the knowledge of two-
and three-particle density matrices. One can cal-
culate them, at least in principle, in the frame of
expS theory, but the evaluation of the three-parti-
cle density matrix would be very difficult. There-
fore we subtract from (3.2) the equation

or

B(A-l)
8 8 «8&

~ @8 @8 ()' «8
8{A"I'

(3.10)

(3.10a)

g &&I), la'. a Hl &t)„&p*.

=E.2 &P. I"~ ' IP.&p* (3 3}

where the symbol g means summation over bound

states and integration over continuum states and
the wave functions (r I4s& are given by (2.1b). In
close analogy, the one-particle density operator
D reads

and obtain

g (g, la, .[H, a ]If,&p*,

with

ps = Eo(A) —Es(A —1) . (3.5)

=-es2 &&Ola'. a. l&0&p.
* (3.4)

(3.11)

The operators C and D and the one-hole wave
function Cs( r) are related to the single particle
Green's function. This is shown in the Appendix
A. From (3.10) and (3.11) it follows directly that
the C and D operators are positive and that the in-
equality

Using the definitions
—C Dm~in lg, I

B(A-I )
(3.12)

(0o I"-'-
I c.&

C . =-(&, Ia', , [H, a ]I&,&,

(3.6a)

(3.6b)

Ix&=g p„*la& (3.6c)

(c -e;D)lx)=0.
If the Hamiltonian is given by

(3.7}

we may write (3.4) as a general eigenvalue prob-
lem:

holds.
The one-hole function corresponding to the

(A —1)-particle state
I

&I~& is, of course, not given
by the solution (r

I
x& of (3.7) but by the function

Cs( r } resulting from substituting the state
I Ps& for

the exact eigenstate
I Ps& in (2.lb):

)=a f &) &.&&)&."&&), -

= Q &0;Ia.l
t„&&rlo)

=Q (p, la'. a l),&p*.(rln&, (3.13J,}

1
+ — zVO~N~QQ~QI Q~

1 2 3 4 1 2 4 3
R I C 2 ' 30' 4

the operator C reads

(3.6)
Employing (3.6c) the corresponding ket is given by

Icz&=Dlx) (3.13b)

and the corresponding one-hole strength by"
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(4 II I 4;) (xlD'I x)
&t))II)I;& (x ID I x&

(3.14)

In Appendix H it is shown that (3.7) can be solved
in a finite dimensional subspace with any desired
accuracy for

~
4s& and qs if the condition

S(B)t0 (3.15)

holds.
States

~
4s& (and ~X)}belonging to states

~
gs& with

different symmetry quantum numbers are ortho-
gonal because D and C commute with the operators
J', J„and TI. %'e stress that different one-par-
ticle functions 4s( r }belonging to the same quan-
tum numbers j, m, and z are never exactly ortho-
gonal. The orthogonality holds, however, for the
(A —1)-particle functions

~
)Is& defined by (3.1) be-

cause the metric of (3.7) is given by

0=&X (3.16)

&~IClo'& —@s(~- )S (B)~a
c)IDIn& g . S &B'

(3.18)

with an arbitrary wave function, e.g. , with ~4s&
itself:

&4'))ICI4's& (XIDCDIX&
(4; ID I 4;& (xlD'I x) ' (3.19)

Other choices are a natural orbital ~n& or a Har-
tree-Fock wave function. For the largest eigen-
value of (3.7) with given j and v the inequality

with j =j, p =p (3.20)

is fulfilled for an arbitrary wave function
~
a&, be-

cause the expression (3.17) is the maximum of the
quotients given by (3.18). Note also that the iden

tity

(gs I (H E,) I gs&-
&Psl 4))&

(3.21)

holds, where the energy E, corresponds to the
state I g, & which is, in practice, not the exact

Note that this equation holds also for the case that
(3.3) is not strictly valid for a (calculated) state

I g,&, provided that the operator C is Hermitian.
%e return now to the questions of Sec. II. The

eigenvalue of (3.7) may be written as

&Xl C IX& g, (XI 4,&(4, IX&~,
&x(D[x& g &xl~ &&~ IX&

(3.17}
a(~ ))S„(B)-es

XB (A-)) x(

One should compare this with (2.6). Once the op-
erators C and 8 are known, we may also calculate
a centroid

eigenstate of the Schrodinger equation, but an

approximate one.
Of course, for the experimental states with

given j and z the inequality

(3.22)

y= const. ~n&
= const. ~X& = const.

~
4s&,

t,.,„B. . BE S(B)~
)) B,n B,of) exy g S(B )

~

(3.23a)

(3.23b)

S(B)= p„= g &4,
~
4, &

= g S(B,) (3.23c)
B~ Bg

would hold because y( r ), defined as above, is an

eigenfunction of D and C, and therefore also a
solution of (3.7).

The fact that
~

)l)s& is a variational approximation
of the exact state

~
gs& is the main reason why we

generalized the work of Dieperink et al.4 Another
reason is that we hope to obtain wave functions
4s(r) which resemble the empirical form factors
of the dominant states more closely than the natu-
ral orbitals do.

Ne end this section with a rather trivial remark
about the asymptotic behavior of 4s(r). From
(3.7), (3.9), and (3.13) it follows that for neutrons
the radial part of the form factor 4s(r ) asymptoti-
cally goes over into the Hankel function
h")fi(2p~qs~)'~') ]; for proton-hole nuclei the
asymptotic form is given by the corresponding
Coulomb function if the two-particle density ma-
trix is replaced by the antisymmetrized product
of one-particle density matrices; this should be a
good approximation in the asymptotic region.

max qB ~ qB
B(j, r givea)

would hold if the "true" Hamiltonian were used in
the calculation of qB. Note that the state with the
maximum energy is, in general, a "dominant" one
(a shell-model state) if states with j, m, and v
occur among the occupied states (Fig. 1).

From the very definition of the state I gs& it is
clear that I gs& is a variational approximation for
the states with dominant spectroscopic factors
(Fig. 1). This interpretation of es is, in general,
simpler than the interpretation of, e.g. , qB c, or

as a centroid, because experimentalists sum
only over part of the states; in order to obtain
simple expressions, theorists have to sum over
all states which are not exactly orthogonal to
I4s& or ~n& (compare, however, Sec. V). If there
were a group of states (~gs &j all having the
same form factor y(r) (of course, up to normali-
zation} and if this function 9)( r) were orthogonal
to the form factors of all other states, then the
equations (compare Appendix 8)
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I
&&

= vvv(s& ~le& ( ( , y&„ , --~~ », &}
(4.la}

IV. EVALUATION OF THE ONE-PARTICLE DENSITY MATRIX

AND OF THE C MATRIX IN THE expS FORMALISM

In this section we present the method by which
we calculated the density matrices and the matrix
C defined by (3.6b). Our computation of the one
particle density and of the C matrix (3.9) is based
on the knowledge of the ground-state vectors

I
&l&,)

of 'He, "0, and "Ca. The necessary information
about these state vectors has been computed using
the expS formalism. ' " Since an extensive review
of the formalism and of these calculations has
been given, "we will give here only a brief com-
ment. The formalism is based on representation
of the state vector by

lowing the results of two truncations [GBHF and

FBHF(3)] of these equations will be used. Assum-
ing that the reader is familiar with Brueckner
theory we remark that GBHF (generalized Brueck-
ner-Hartree-Fock) calculations are closely re-
lated to Brueckner-Hartree- Fock calculations
(the effects of hole-hole scattering and some other
diagram classes are included in addition). In

FBHF(3) (Faddeev-Brueckner-Hartree-Fock} the
three-body Bethe-Faddeev equation is incorporated
self consis-tently. In terms of Goldstone diagrams
this introduces the particle potential to all orders
into the two-body equation and sums many other
diagram classes. The amplitude (S,) would be the
usual defect function in the truncation where we
only have the Brueckner-Hartree-Fock (BHF)
equations and thus our parameter

where 4 is a Slater determinant and S is the sum
of particle-hole excitation amplitudes

(vIsIv&= Q (vpIS,"S,Ivy&„ (4 2)

S= Sn,
n-"1

s„= ', , g&p, " p„Is„Iv," v„&„
vl» I

(4.lb)

xa a a aPI pn "n vl

Here v, p, &(p,o, r) label normally occupied (unoccu-
pied) states and the labels ot, 8, y are used for both
kinds of states. A is the number of particles. As
a subscript A means antisymmetrization without
normalization, e.g. ,

~I~2 g = ~I~2 — "~~If ~

The expS hierarchy constitutes a set of nonlinear
coupled equations for the amplitudes (S„) which is
equivalent to the Schrodinger equation. In the fol-

is a generalization of the usual "convergence"
parameter' s. In FBHF(3) calculations it is up to
40% larger than in BHF calculations (depending on
the t&tN potential}. Still it is argued" that conver-
gence seems to be very good and that taking into
account higher-order equations should not change
the results appreciably.

In the expS equations the so called "reduced
subsystem amplitudes" ( j')""are of some in-
terest. They are the simplest quantities in terms
of (S) amplitudes where (V, ,)(„"& remains always
finite in the case of a hard core potential. Where-
ever V, , occurs in the expS equations it occurs as
(V,,X„"). (X,) is a "generalized" Bethe Goldstone
wave function and (y, & is related to the Bethe-
Faddeev amplitude. In terms of (S) amplitudes the
&y„'~& are given by

(o&ozos' onIx, Iv&'''v, &~=(@Iov&'''s, n, ''' „e n~ ~ e I@) (4.3a)

v. v, &„+&~,o, IS, (4.3b)

&~,o, p. I
xl"'I v, v, v.& =&.(&o, p, Is, I v, v.&&o, I v.&}+~.{&o,p, Is, I

v, v, &&+,
I
v, &)+ &o,n, p, Is, I

v, v, v,&„. (4.3c)

Here A„antisymmetrizes with respect to the la-
bels v, e.g. ,

A„( I
v, v, ) I

v, )}=
I v, v,)„I

v,) —
I v, v,)„I

v,)

(S,) = 0 ~ (4
I

{{&&
= max, (4.4)

—
I
v, v, &„Iv, &.

It should be noted that the (S„) are zero if on the
left (right) hand side there is a normally occupied
(unoccupied) state label. In writing (4.3) we have
assumed

which is the maximum overlap condition. ' " (4.4)
is a condition for the Slater determinant 4 and
implies that the single-particle particle states
have to be determined self-consistently. In the
formalism developed here and in our calculations
this condition is always used. It makes the ex-
pansion of the density matrix simpler.

Computation of a "true quantity" like the density
(D„) is much more delicate than computation of a
model quantity like (y„&. This is clearly seen if we
look at the energy which in the expS formalism is
computed as "model energy":
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= Q &vl rl v)+ —Q&vv'Ill&(, Ivv'&„.
1

V VV

The "true" energy

(QIH lg&
true {pl y&

(4.5a)

fulfilled explicitly in the expansion of the density
matrix we will now give. For condition (i} this is
shown by relating the truncation of the equations
[here FBHF(3)] to a truncation of the density ma-
trix. The same truncations are used for varying
the true energy (4.5b) to obtain the truncated etlua-
tions and for the density matrix given here. Ac-
cording to Ref. 14 condition (i) is fulfilled if we
put

(p, p„lD„lv ~ ~ v &=0 for n~3

+ —P ( P, P, I Vl aa,&(a,a, ID, I p, p,&, (4.5b)

(ls I at ~ ~ at a- ~ a I ls&

(a ~ tr ID I p e p &- 7 Sl Bn te2 tel
l n n 1

Qltfl&

(S„&= (I(„&= 0 for rt o- 4,
which we will use in the following. We remark
that, in general, condition (iii) is only fulfilled
explicitly for the nondiagonal elements

should have the same value, but the expectation
values of the kinetic and potential energies have
much larger absolute values than the correspond-
ing model tluantities. In our i" matrix (3.9) both

D, and D, are needed and we regard it as quite
important to take this cancellation into account.

The conditions for our density matrix are'4

of the density matrix. We use (4.6) in writing the
expansion but it will not become more complex by
including higher-order terms. " To obtain the ex-
pansion for the one-body density matrix we use„. in
a first step,

1=ese 8

and write

true model &

(ii) Q (n, a, lD2I a, a2&

=(A 1)g&,ID, I,&

=(A —l)A [trace conversation (Ref. 15)],

(iii) D„=D„(Hermitic ity) .
In Ref. 14 it is shown that conditions (i) and (ii) are

(4 I
esres

I 4&

Then we insert a unit operator

l=l4t&(4tl+ at ~ ~ ~ at a ~ ~ ~ g I4t&
1

nel

(4'la ~ ~ gt a ~ ~ aVl Vtf Pn P1

to obtain the expansion

(4.7)

(4»)

&alD, lp&=(4 le asa e I4»+ Q, (v, v„ID„lp,. p„&(@la„, g„a a„e atsg, e Ic».
1

ffP)V)

Using

e B 8es = 8+ [8,S]+ —,[[8,S],S]+

(4 3)

(4.9}

this is easily evaluated and we get

VgOyfy2

&plD I'&= 2 &vl" ID. I«&&pa Is. l""&+" ~

V1VPZ

A diagrammatic representation of (4.10) is given in Fig. 3.
For (p ID, I

v& we use a different expansion which is developed by writing

(4 I esta ese-sgoes
&4, I);ieB I ~&

and inserting a unit operator in (A —1}-particle space

(4.10a)

(4.10b)

(4.11}
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lz, =g a„lC'&(O'Ia„+
~ ), a, , ~ ~ at a„~ ~ a„,a I4'&(4latat, ~ ~ at a, ~ ~ ~ a,

1
(4.12)

We get

(4.13)&». ID. lvP &&PP, IS,I» &'-, Z &» "ID.lvP, P.&&PP.P. IS*I» v.&+"1

~lP'1 p&jpi

(vlD, IP) is then determined by condition (iii). (4.13) is represented by diagrams in Fig. 3.
Equations (4.10) and (4.13) are determined mainly by the two-body density matrix which we will now

evaluate. The basic expansion is obtained by writing

(4.14)

Inserting a unit operator in (A —2)-particle space [similar to (4.12)] and using the definition of the (y„& we
get

&a, a, lD, I p, p,&= Q&P, P, ID, IP, P,&&a,a. lx, lu, P,&+ —, p&P, P,P , ID, Ifi. , e,.P,&&o o P. lx "'Iu P P,&+" .
1

(4.15)

(a,n, ID, I
v, v,) and [by condition (iii)] also

& are determined from (4.15). They
are given diagrammatically in Fig. 4. It is worth-
while to look closer at Fig. 4. (a,a, lD, I v, v,) may
be regarded as the true quantity corresponding to
the model quantity (a,a, l&(, lv, v, &„. The first term
in the expansion of (D,) is seen to be (g,& weighted
with the probability that the hole lines entering
(y, & are occupied. In second and other higher-or-
der terms (y,&, (&(,&, . . . are introduced. They are
also weighted with quantities which measure the
probability with which the hole states and parti-

cle-hole excitations really occur. These are just
standard constituent features of the difference be-
tween model and true quantities.

To get a solvable system of equations for the
density matrix we still need expansions for
(Pv ID IvP & &uv v ID. lvPiP~& (P P ID-Iv v, &

and (P, P,P, ID, I
v, v,,p,). These expansions can be

obtained in different ways; if we want to fulfill
conditions (i) and (ii) we have to expand as in (4.7),
inserting the unit operator in A-particle space
(4.7a). We get

&Pv, ID, lvP, &=&...((P Iv&&v, ID, IP &)+",
&» "I» I

vP P.& =&...«P I
v&&" "ID.I P P.&)+ "

D, I v, v, &
= &P, P, I

v, v,&„p&P,&—ID, I
a, a,&A„(&a,a, js, jv, x)&P, I

v,&)

(4.16a)

(4.16b)

1—Q &».ID. I a.a».«a, a. lS. I».&&P I
v &}+ —, Z &P P. ID. la, a,&&a, a. lS. I "&.+".

&P.P.P. ID. lv "P.& =&.«P P. l ""&&P.ID IP.&}+" .

(4.16c)

(4.16d)

The diagrammatic representation of (4.16) is given
in Fig. 5. For the higher terms we refer the read-
er to Ref. 14.

It is seen that the terms in Figs. 2, 3, and 5 are
now all related to the nondiagonal elements of the
two-body density in Fig. 4. Thus we obtain a solv-
able coupled system of equations for the one- and
two-body density matrix which, according to Ref.
14, satisfies conditions (i) and (ii) and moreover

is equivalent to FBHF(3) calculations in the sense
explained after writing conditions (i)-(iii).

In our first calculations reported in this paper
we neglected the second term on the right hand
side of Fig. 3. (S,) is hard to calculate even if the
solution of the Bethe-Faddeev equation is known.
Note also that all the terms neglected here and in
the other approximations contain expressions like
(S„)(S ) (n+ m ~ 5) and (S„&(y ) (m ~ 4). We now see
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FIG. 3. Graphical representation of (4.13).

the term given by Fig. 6(d). Our average one-body
occupation probability in this approximation is
thus

V D1 V = 1 —— V go V

= 1 —y+ 2v' —4x'+ 8v' —~ ~ .

(4.19a)

FIG. 2. Graphical representation of the Kq. (4.10). whereas Brandow" claims that it is

1 —I(+ 2g' —5y'+ 11y'— (4.19b}

that inserting Fig. 5(a) into Fig. 3 gives

( p I
D,

I
v) = 0 ~ (q I

a'„a.
I q&

= max . (4.1 t)

VI

we get the approximation

(vl ~t v)
1+ 2(v I ~ I v&

(4.18a)

(4.18b)

by multiplying (S,) on top of Fig. 6 and neglecting

Thus, in this approximation we also fulfill, in ad-
dit''on to (4.4), the natural-orbital condition. ' "
Also Fig. 5(d) is zero so that we are left in Fig. 4
with the first term on the right hand side. Insert-
ing Fig. 5(c} into Fig. 4 we get Fig. 6. The second
and third terms on the right hand side are clearly
occupation probability insertions of the usual kind
whereas the last term is a correction term.

For the true occupation probability defined by

The difference arises because not as many hole-
line insertions are taken into account in our ap-
proximation as in Brandow's approach. It would
not be hard for us to take them into account by ex-
panding Fig. 5(c) further (compare Ref. 14). But
in particular condition (ii) for the two-body density
would then be violated. In Fig. 7 we give the con-
tribution to the trace according to the basic ex-
pansion (4.15) using Figs. 6 and 5(b) and the defini-
tions

I
(4.3(b) and (4.3c)] of (x,) and &X,&. It is seen

that the contributions from (D, S,) and (D,X,) can-
cel. Consequently, taking into account higher-or-
der terms in (4.19a), we have to introduce higher
(x„) to fulfill condition (ii). Evidently our condition
(ii) insures that particles and holes are treated to
some extent symmetrically in our density matrices.

Using our expansion we may evaluate the matrix
such that only Fig. 6 and Eq. (4.18a) have to be
used in the calculation. We get from the Eqs.
(3.9) and (4.15)

c.s=&ol»
I
P&+ g &v, v, ID, Iso &&« ll'x, lv, v,'&.

vlv2fx2

&' ""ID.I ~,p.&&», p. l
I'„x!"'I.. .). ".1

VI V2V3P3 2

and using (4.16) the result

(4.20a)

c..=&~I», lv&+ g&~~, II'x, lv'i, &,&v'ID, lv& —g&o~, lI'x, lvv& &v, l~. li.&

"@2 V 2V2

1 2 D2 " ~2 +2 Xo 1 2 A 2 3 D2 I 2~3 ~2~3 12X3 2 3 A

1 (4.20b)



1658 K. EMRICH, J. G. ZABOLITZKY, AND K. H. LUHRMANN 16

c., = &o I
»

I
P&+ 2 2 &v v ID I PP &&uP.

I
Vx,

I
v v.&

u~p2

(4.20c)g (v, v, ID, IPP,&&avP,
I V„x,""Ivv, v,)„.

vgvp3

The interaction part C~ of C „and C, is given diagrammatically in Fig. 8.
ln our first calculations we solve the equation of motion (3.7) only in a one-dimensional subspace (com-

pare Ref. 4). We obtain from (3.7) and (4.20b)

&s, v=
ID "I =&vI TIv&+ p &v~

I Vx.
I
vP&,

C„„

~ &vp, I Vy, I vv, &„&v, ig, i p, &

1 (via, iv&

&v~ v2 I D2sa I v&2&&v&2 I Vy2 I viv2&~

1 ~ (v, v, ID, IP,P,&(vP,P, I V»X,'"'I vv,, v, &„

(4.21a)

(4.21b)

(4.21c)

(4.21d)

The first term on the right hand side is then the
usual Brueckner- Hartree- Fock energy

fined by

h„=(vI TI v&+ g (vP
I
Vy, I

vP&„. (4.22}
&) p, V/2 vp, (4.22)

It is seen that the corrections due to the other
terms will depend sensitively on the value of
(v

I v, I
v&, which in turn is quite different from the

usual y. The leading diagrams of the four inter-
action terms of (4.21) are given in Fig. 9, where
Fig. 9(b) refers to the first, Fig. 9(c) to the
second, and Figs. 9(d} and (e) to the third "cor-
rection term. " (4.21b) is the "true renormaliza-
tion term" for one-hole states, (4.21c) a correc-
tion originating from "hole-hole ladders, " and

(4.21d) is a part of the three-particle effect; ano-
ther one is calculated in the FBHF(3) approxima-
tion (Fig. 9).

For 'He and "O the matrix elements (vI x,
I
v) are

diagonal for trivial reasons and the diagonal ele-
ments are nearly the same for all v as we shall
see in Sec. VI. The term (4.21b) is therefore
given by

(4.2 lb) = —U„" 1 —v.

where U„ is the self-consistent BHF potential de-

~12 ~X

FIG. 4. The basic expansion {4.15) for occupied states

and R,. the mean occupation probability defined by

K2 VK2 V (4.23)

Note that the true "renormalization term" (4.2lb}
is given by neither (- U~) nor (- UR, ) [compare
(7.4a}]. In fs,ct it is smaller than the former and

larger than the latter term. In the second-order
approximation the following equations are valid:

—U ' =-Uz(1 —v),
1 —R,

—U R, = —Uz(1 —2z),

and therefore

(4.21b) = —U 2 (g+ R, ) .

(4.24a)

(4.24b}

(4.24c)

In an alternative treatment of one-hole states in

the expS formalism, equations for the A —1 nucleus
are derived in a model space treatment" (the
iterated equations are equivalent to degenerate
perturbation theory). Then occupation probabili-
ties are not introduced explicitly. We are quite
sure that in the calculation of closed-shell nuclei
it is not useful to introduce them (compare the
discussion in Refs. 10 and 13). However, in the
calculation of the A —1 nucleus the knowledge about
the A-particle closed-shell nucleus is used and the
situation is different. For this reason we are not
sure which theory is preferable. In any case, in

order to compare the two formalisms our formu-
lation has to be developed further and the total
wave function (2.4) of the (A —1)-particle nucleus
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- ~~ l 1 +. .

w. . . (b)

FIG. 5. Graphical representation of (4.16).

has to be included. Work in this direction is un-
der way.

V. COUPLING OF THE ONE-HOLE STATES

TO EXCITED CORE STATES

In this section we shall briefly discuss the con-
nection between centroids and the exact eigen-
states of 'N and 'H. If the excited states of the
double-magic core nucleus are known, we can use
the expansion (2.4) and, instead of (3.7) the analo-
gous formula

S

Q gl.-c.*;*-(E,-~JD*.*.((((*.)'=0 (( ()

with

—c',,' = &qs1a' [H, a, ,]1y,,&

+ &ala'- a. 14 &«s E.&—
D".,' = &q, 1a' a, 1q,.&.

(5.2)

It is easy to see that the additional terms origi-
nating from coupling the one-hole state to ph ex-
citations of the core are of the kind in Fig. 10. It
is clear that the coupling strength of the most sim-
ple terms is given by &V)(,& matrix elements (the
G matrix) and is therefore large. On the other
hand, the energy of the particle-hole excitations
of the core is large in the case of "0 and 4He and

one may therefore employ perturbation theory:

The Pauli rearrangement term [Fig. 10(a)] yields
the correct order of magnitude. This is, in gene-
ral, not true for heavier double-magic nuclei and

especially not true for the 1s state of "N because
the energy of the latter state is approximately the
energy of a p state plus the energy of a p-h pair.
Dur results show that the centroid energy defined
by (3.18) does not considerably depend on whether
we use for 1a& the natural orbital state or the state
14li) or an empirical shell-model state [we shall
discuss this point in more detail in Sec. VIII, com-
pare (8.1)]. There is, however, another point
which is much more important: Experimentalists
do not average over all states 1gs& if they deter-
mine the centroid energy defined by (2.6). We now

discuss this point for the example of "g.
From Ref. 18 the spectroscopic factors are

known for states with excitation energy up to 11
MeV, corresponding to about 23 MeV separation
energy. The p' ' state of "N is "split" into three
state@ with appreciable strength because the low-
lying excited "0 states, especially the four-par-
ticle-four-hole states, couple to the one-hole
state. From the fact that this splitting is not very
strong we may conclude that the corresponding
"coupling strength" is rather small. Therefore,
high-lying four-particle-four-hole states will be
rather irrelevant for the centroid energy given by
(3.18); we know that the one-particle-one-hole
states have a large "coupling strength" approxi-

Dg

02 I I

s,g — Cs, i
~Xg~ +Xz~

(a) (b) fc)

FIG. 6. The resulting inhomogeneous equation for the matrix elements &n(n, ~Dt( ( ((,).
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&(I ] ) =&(

Y
(o, s, )

]\ 'II + li

il3

( 03 X3)

F/Q. 7. The conservation of the trace of the two-particle density matrix.

mately given by the G matrix (Fig. 10). Never-
theless, the influence of this coupling may be cal-
culated in perturbation theory because the sepa-
ration energy of the (2h-1p) states is about 43 MeV
or more, compared with about 15 MeV of the one-
hole states. From the homogeneous Dyson equation
the formula"

&&le;,.+&(~)l &'&=e;(~)~... e;(~) = ~

follows with

(5.3)

(d —g g + 2tlk&d

n = n(v„p, ), he@„,= 14 MeV.

(5.3) yields the energies of the fragmented states.
R(&o) is evidently the contribution to the self-en-
ergy originating from the "Pauli rearrangement"
term shown in Fig. 10(a). The corresponding sin-
gle-hole strengths of the fragmented states are
given by"

1
I-did(oft ( }

(5.4}

In the 'He nucleus the excited states have an ex-
citation energy of more than 20 MeV. The coupling
to complicated states will probably be rather weak,
but the coupling to particle-hole states is impor-
tant for the 'H and 'He ground-state energies.
Again, we have approximated this effect by (5.3)
using the Pauli rearrangement term for R(&u).

As mentioned above, we only claim to give here
the correct order of magnitude of the coupling of one-
hole states to the excited core states. A treatment
avoiding perturbation theory is in preparation.

VI. PRELIMINARY RESULTS

In this section we report some numerical re-
sults obtained within a one-dimensional subspace.
They are preliminary insofar as the approximate
center-of-mass correction given in Appendix C by
(C5) is used and the energies &s „defined by (4.21}
are calculated instead of the eigenvalues q~ of
(3.7); the Coulomb correction, i.e. , the difference
for proton or neutron levels is taken from experi-
ment. We performed calculations for four differ-
ent NN interactions: These are Hamada- Johnston"
(HJ), Reid soft core" (RSC), de Tourreil-Sprung
supersoft core-" (SSCB), and RSC plus the effective
two-body force obtained from a two-pion exchange
three-body force by Blatt and McKellar. The force
of Ref. 23 is in error"' due to a numerical mis-
take, but our results indicate qualitatively the ef-
fect of a three-body force. Also different approxi-
mations for the ground state of the double closed-
shell nucleus were used.

In Table I we give results for 'H. In the third
column we give the BHF energies h„used in the
determination of the 4He ground-state wave func-
tion. ' 'o This is the leading term of (4.21). In
this equation there are three correction terms:
the renormalization contribution, the hole-hole
contribution, and the contribution from the three-
particle Bethe-Faddeev amplitude. The last one
is, of course, equal to zero in a GBHF-type cal-
culation. The size of these terms depends critical-
ly upon the value of v, defined by (4.18a). These
values are given in the fourth column of Table I.
They depend strongly on the NN interaction used
as well as on the approximation to the closed-shell

l
1

~~ L

XQ QX

~I I I

QX g +12 JXQ

V

CX P

i l I

w }(}~x,~ ~i 2 fx~

FIG. 8. The interaction part of the operator C.
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F
(c)

Go
I(

+ . . . + ~ ~ ~

+ + + + + 0 ~ ~

FIG. 9. Upper line: the leading diagrams of (4.21). Second line: some terms of the BHF energy h~ calculated in
FBHF(3) and given here in terms of the 6 matrix. Third line: sum of diagrams which disappear because of (4.4).
The wavy lines which are not denoted by E represent the (antisymmetrized) 6 matrix.

wave function. The latter dependence is due to
higher-order correlations which increase the value
of v, .

The first of the correction terms in (4.21) depends
on the self-consistent BHF potential

& vlUI v& = g &vv, I vxa I
vv

P2

whose values are given in the fifth column. The
next three columns give these three correction
terms from Eqs. (4.21). It is seen that the renor-
malization term is the largest one, partially
being cancelled by the hole-hole term. The renor-
malization is further reduced by the three-particle
contribution. This is quite in line with the corre-
sponding contributions to the two-particle (Bethe-
Goldstone) equation of the expS hierarchy (see
Refs. 9 and 10). The leading diagrams of these
three terms are given in Figs. 9(b), 9(c), and

9(d) and (e), respectively. Note that all the dia-
grams of Fig. 9 and many more complicated ones
are really taken into account in our calculation.
The next four columns of Table I give the total
values for (4.21), the c.m. [from Eq. (C6)]and Cou-
lomb corrections, and the total result for the
centroid energy a~ „. The values show a trend
which was to be expected: Those potentials yield-
ing small binding energies for the closed-shell
nucleus yield small separation energies as well,

and vice versa. The same is true for the transi-
tion from the simple GBHF approximation of the
closed-shell wave function to the more sophisti-
cated FBHF(3) approximation. To compare these
results with experimental values, i.e., the separa-
tion energy, we have to add the Pauli rearrange-
ment term, taking into account the coupling to ex-
cited particle-hole states of the core as described
in Sec. V. Instead of the separation energy we give
in the next column the triton binding energy itself
which we obtain from the separation energy and
the 'He energy given in column 15. This calcula-
tion of the triton energy should be considered to
be a test for our approximate c.m. correction.
[From our results we conclude that the c.m. cor-
rection given by (C6) probably is sufficiently ac-
curate for the calculation of ' O and Ca separation
energies because it is much smaller for these
heavier nuclei. ] The last two columns give the
binding energy per particle and the charge radius
for the double closed-shell nucleus 4He.

Table II gives the corresponding results for "N
in the GBHF approximation, i.e., without inclusion
of the three-body correlations. The correction
terms were calculated with an average value for

The individual values as well as the averages
are given in the fourth column. It is seen that
the use of the average is very well justified. The
same trends as in Table I are observed.

+ + +

(b) (c) (d) (e)

FIG. 10. Diagrams representing the coupling of p-h states to the one-hole state; compare the text.
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Table III gives the "N results with FBHF(3)
wave functions. The averaged value for ~, has
been used. The values for v, as well as their av-
erage is given in the fourth column. Again the av-
eraging is very well justified. The values are
larger than those given in Table II because of the
additional correlations taken into account. In the
language of BHF theory, this reflects the influence
of the particle potential taken into account nom as
part of the three-body Bethe-Faddeev amplitude.
For the same reason the BHF single-particle
(s.p.) energies are more attractive than in GBHF,
as is the s.p. potential U. In addition me have a
contribution from the three-body Bethe-Faddeev
amplitude (column 8). Since the renormalization
term is larger, the total results for the 1p holes
are only about 1 MeV more attractive than in
GBHF (column 9). The values given are averages
over proton- and neutron-hole states, i.e., the
average separation energy for "0 and "N. The
correction from the c,m. motion is given in column
10. To obtain the "N separation energies we have
to add —,

' of the Coulomb energy. %'e take this cor-
rection from experiment and give the numerical
values in the 11th column. Thus we obtain the
centroid energy given in column 12. To compare
with experimental values" where the centroid is
taken over the low-lying states only (up to about
11 MeV) we have to eliminate the influence from
the high-lying tmo-hole-one-particle states. This
is done in perturbation theory as described in Sec.
VI. The resulting Pauli rearrangement is given
in column 13. The last tmo columns give the "0
binding energy and charge radius for comparison.
The final results for the separation energies are
given in Fig. 11 together with the experimental
values. " The latter ones are given for the domin-
ant states (Exp. 1) as well as for the centroids
(Exp. 2).

From the Tables I-III one may draw the follow-
ing conclusions:
(i) As was to be expected, the BHF energies are
a very bad approximation to the separation ener-
gies. The BHF energies are purely theoretical
quantities used in the description of the double
closed- shell nucleus. They are introduced without
aiming to describe hole states, i.e., neighboring
nuclei. '4

(ii) The separation energies as well as the spin-
orbit splittings (p», vs p, &,) are too small in ab-
solute magnitude for potentials yielding too small
a binding energy for "0; compare the second to
the last column of Table III. With increasing
binding for "0 the separation energy increases
as mell as the spin-orbit splitting. For the SSCB
potential, which almost yields the correct "0
binding energy, we obtain separation energies in
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excellent agreement with the experimental values.
Thus it is clearly seen that the old argument that
energy differences may be described well by an
prescription yielding wrong absolute values for,
e.g. , the ground-state energy, is not justified. On
the contrary, a prescription yielding too small
values for the ground-state energy will yield too
small absolute values for the excitation energies
too. Thus the level spacing comesouttoosmallas
well. This could easily be understood by introduc-
ing a "strength multiplier" greater than unity to
the potential. Thereby the ground-state energy as
well as all other energies will be enlarged. Thus
the same holds true for energy differences.

%e warn the reader, however, not to draw the
conclusion that the SSCB potential yields a reason-
able description of nuclei. For the ground state
of "O the energy is described well, but the charge
radius and charge form factor are reproduced quite
badly. " Also a preliminary calculation for ~Ca
shows that this potential overbinds that nucleus
with a correspondingly much too small radius and
much too high central density. This is why the
separation energies come out much too large in
absolute magnitude; compare Table IV.

In Table V we give some results for the usual
BHF method in comparison with our GBHF method.
The difference is essentially due to the hole-hole
ladders taken irate account in GBHF. It is seen
that the hole-hole 1adders are of the same impor-
tance as the three-body Bethe-Faddeev contribu-
tions; compare Tables II and III.

TABLE IV. GBHF calculations for Ca with the SSCB
potential. For Ca we obtained for the energy Eo/A
=- —8.77 MeV (exp. : —8.55 Mev), and for the charge ra-
dius r, =-2.92 (fm) Iexp. : 3.44-3.47 (fm)]. Results for
other potentials may be found in Refs. 10 and 25.

State ~ Ih, (p) + h„{n)] ~z, „(corr. , n)
Exp. : Dominant

states (n)

1Si/2
P3/2
Pi/2
ds/2

2S1/2
d3 /2

—76.6
—54.2
—47.3
-32.7
—26.3
—21.9

—74.3
—52.6
—46.0
—31.9
—26.2

—22.0

( 50.0)
( 30.0)
—27.0
-21.9
—18.2
—15.6

The separation energies e'-"~, of Table V were
calculated from (4.21) taking into account only
terms up to the order (S,) in the correction terms
Comparing the GBHF results of Table V with those
of Table II it is seen that the higher orders are by
no means negligible. The importance of higher-
order terms may also be observed in Table VI
where we compare the values for the Bethe pa-
rameter ~ with the values for x,, where 1 —(v~lc, ~ v)
is the occupation probability for the state p. Thus
it is clearly seen that the low-order prescription
l —~ for the occupation probabilities is a bad ap-
proximation! Instead the true occupation proba-
bilities 1-a, have to be used, i.e., the higher
orders of renormalization have to be taken into
account.

As we have seen, Eq. (3.18) yields the energy
of the centroid over a/l states; its strength is
given by

-10-

x -20-

IX
UJ

-30-
Z
Q

UJ

p1/2

g1/2

Both the energy and the strength depend on
~ o) but

the values are very similar (up to 1%) if we take
for ~n) a natural orbital, or the wave function ~C»),
or an empirical shell-model wave function (com-

TABLE V. Comparison of BHF and GBHF calculations
for '60. The values are averages over ' N and ' 0 sepa-
ration energies.

-50-

RSC RSC+ YMcK ~CB Exp1 Exp 2 Potential State hu

BHF
(1)fa
B,v

GBHF

h„ (1)
BpV

FIG. 11. The separation energies for the i5N states.
The dot-dash lines denote the BHF energies in the
FBHF(3) approximation (sum of the third and the eleventh
column of Table III}. The full lines give the results of
(4.21) including c.m. and Coulomb corrections and —for
the p states —the correction originating from the solu-
tion of (5.3). Further explanation is in the text.

RSC

HJ

S1/2

P3/2
P i/2

Si/2
P3/2
Pi/2

—38.1
—19.2

15.9

—31.0
-15.3

13.1

31.7
15.1

-12 ~ 0

—24.2
—11.0
-9.05

-39.4
—20.0

16.7

—33.7
-16.2
—13.0

—16.3
—13~ 9

—12.2
-9.9

-32 ~ 8 -26.6
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TABLE VI. Comparison of K& and K for the RSC poten-
tial ~

given by (compare Table Ill)

& v ID, l v& = I - & v I ~, l v& = I - ~, (7 2)
Nucleus Kp

'He
"o

0.117
0.100

0.140
0.122

pare Sec. VIII). For the natural orbital centroids
the strengths may be taken from the Tables I-III.
They are about 10 j& less than one.

By the procedure described in Sec. V the centroid
over all states is fragmented into a centroid over
the low-lying states and some high-lying levels
with very small strengths. The relative strengths
are given by (5.4). Multiplying these with the fac-
tor (6.1) we obtained for "N and the HSC potential,
one gets the results given in Fig. 12.- The cen-
troid over low-lying states is, of course, further
fragmented by the coupling to the low-lying excited
"0 states. Combining the experimental relative
strengths" 0.86, 0„07, and 0.07 of the low-lying
'N states with our result one gets a strength of
0.72 for the dominant p,.&, state in "N. For the

p, ~, state the coupling to low-lying "P states is
found to be very weak in experiment: up to 11
MeV excitation energy there is only one state (the
ground state) having an appreciable strength. "
We obtained a strength of 0.82 for the centroid over
the weakly excited states.

VII. COMPARISON WITH THE SHELL MODEL

In this section we compare the interaction part
of the operator C with the shell-model potential
and the wave function (r I4~& with the shell-model
wave function. This discussion is continued in Sec.
VIII.

In the following we denote the interaction part of
the operator C by Cv. The Eq. (3.7) may then be
written in the following way:

(T+C"D, ' —e;) I C;) =0. (7.1)

It is evident that the operator C~D, ' corresponds
to the empirical shell-model potential. It is, how-

ever, not identical with a shell-model potential for
three reasons:

(i) First, the operator CvD, ' is not Hermitian
though it has a real spectrum as shown in Sec.
III.
(ii) Secondly, it describes only one-hole states
and no one-particle states.
(iii) Thirdly, it has a purely negative spectrum.

If the calculated C is Hermitian the operator C~D, '
is, up to a few percent, Hermitian in the subspace
of occupied natural orbital states. This follows
from the fact that the matrix elements (vlDJ v) are

so that TD, is Hermitian, and with TD, the opera-
tors C~ and C~D, ' are Hermitian too. This may
also be seen from the diagrams of Fig. 9.

Hermitian expressions for C~D, ' may also be
obtained in the following way: approximating Q

by its leading term, i.e. , the (D2) (Vy, & term of
(4.20a) and the matrix D, by

&~,o,lD.I ~l~l& = &~,ID, I o', &(o,lD, lo', &

-&~,ID, I ~;&(~,ID, I ~;&, (7.3)

one obtains the "renormalized Hartree-Fock" ex-
pression'

l&nlc; &I'
s(Si) =g l&nlc-&I'

n=~ &n n=l

or

l()lo, )l*()- )
= F I( lo;)I*(

(7.5)

(7.5a)

From this equation we get

&~l C'D I(3& = P &«, II'x, IPv. & &v, I D, l o,&5.,8
VgV2 Q2

(7.4)

which is evidently Hermitian in the subspace of
occupied states if (Vy, ) is replaced by an Hermi-
tian G matrix. " In this space one may also ap-
proximate (7.4) by

(vl c'D, 'I l &
= &vl vl v.&(I - ~, ) . (7.4a)

One should compare this with (4.21) and (4.24c).
Note, however, that for the nuclei we calculated
(7.2) is much better fulfilled than (7.3) and (7.4).

We would like to warn the reader against a too
simple Hermitianization procedure in the con~Piete
Hilbert space. If one would drop the restriction
that In& and IP) belong to the occupied states one
would obtain an Hermitian operator with a real but
non-negative spectrum. This would not be a good
approximation for hole states.

It has still to be shown that the functions (rlC e &

have the form that one expects for shell-model
wave functions. For simplicity we will show this
for the case where only one occupied state exists
for given j, v, and m (this is trivially fulfilled for
He, "0, and "Ca with the exception of the s states

of 40Ca). We denote the BHF state with these quan-
turn numbers by n =1 because it is a natural or-
bital in our approximation. Now (3.14) may be
written, using (3.13b), as
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l(&le;&I' s(k), (, s(&) )-' that the quotient ( i.6) is greater than 170, i.e. ,

(&@,"I@;))" j7.7)

Preliminary results show that for an occupied
state the strength S(B) is, at any rate, greater
than 0.6 and p„smaller than 0.01for n ~ 2. It follows

and this is a very conservative estimate. It is
well known that for light mass nuclei the empiri-
cal shell-model functions well resemble the single-

1 0-
{a)

08-

06-
LLj
CC
I—

!

o«

02-

0 I

-20
I

-30
I

-40

„ 043
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l

-50

,.003 ~.009
I

I

-70 -8O

SEPARATION ENERGY (MeV)
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(b)
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t—

04-
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I

-20 -30
I

-40

023 031
4

I
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I

-70

004 005

-80

SEPARATION ENERGY (MeV)

FIG. 12. The fragmentation of the p states of '~N by the coupling of p-h states to the pure one-hole states. The cal-
culation is performed with the RSC potential.
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where

Q &(I&, lariat a a,, lq, &pf(B) p, (A) '0„, ,aa'6P

(V.8)

&Q;lg;& = p(g. Ia(ta„l(i&,&p~(B) p, (ff) = I =&&pig„-& .
hy

particle BHF functions and therewith also our func-
tions 4e(r}. At the nuclear surface there may be,
on the other hand, an appreciable difference be-
tween C~(r) and the BHF function (and between the
Brueckner-Hartree-Fock and the shell-model func-
tion) even if the overlaps &nlc d) & are only a few
percent or less for n&1.

If there are several occupied states to given
j,m, m one can analogously show that the occupied
states yield the overwhelming part of the right
hand side of (7.5}. From this and the approximate
Hermiticity of C D, ' in the subspace of occupied
states it follows that the functions @~ are approxi-
mately orthogonal; note also that the correspond-
ing (A —1)-particle functions l(I)s ) are exactly

i
orthogonal.

%'e now discuss matrix elements of one-partic)e
operators 'O. In the one-hole approximation they
are given by

'0"" =
&(C'ill olfe&

14;&
I9 s [s(jy)]1/2 (V. 10)

%e stress, however, that, e.g. , in the calculation
of transition probabilities, the replacement

ly;& =Q p a„lq,&-p.a. lq, & (V. 11)

is not a good approximation because

p. =&+;I D, 'lo&

and D, rapidly decreases for unoccupied states.
In fact, our first results show that the coefficients
Pp are, in general, by no means small compared
with p, . For this reason the difference between
expression (V.8) and the shell-model approxima-
tion (7.9) will, in general, be large; it is given by
the following expression:

If the two-particle density matrix is approximated
by an antisymmetrized product of one-particle
density matrices one obtains the usual shell-model
approximation

'op& = 5;„&y,-I'oly. & -[s(B)s(A)]'"&q-I'ol9 -&

(7 9)

where
I y8& and

I y„-& are normalized states defined
by

'0;„--'op= -(x„-l», lx;& p&al»2'olo&+&x;I», 0», lx;&+ g &v,v, l D, &, lv', v,'&p. ,(A) p.*,(B) 'o„...,
i

+ PiP~ ~2D2 Pxa2 Pp & Pp &

&pi p2 ls I v v') & v,v2 I D, I p', p, & [p~,(A) p p(8) '0„„+p„(A)p d, (B) 'Ov p
f i i

P, ,( A)-P:,.( I)I'o.. . ,P, ( A)-P,*.,( I)I'o;...]

+ g &v,v. lD, lp, p.&'0..., [p.,(A)pg(B)+p, ,(A)p+, (B)],
i i

where the operator 0 was assumed to be Hermitian and K, is defined by the equation

(7.12)

K2= V V —Dj. (7.13)

which is a generalization of (4.18a). It is remarkable that the expressions containing the coefficients P~,
e.g. ,

&, .ID. ld.d.&'O...,d. ,(d)d;, (d) = I,(, .la. l d, d&'o...,d. ,(d) ]&P, I &( la, 'I r'&& 'ld,"&d d ',

(7.14)

have a behavior resembling the Migdal force, i.e. ,
small in the nuclear interior and strong at the sur-
face.~

If the one-hole state is expanded into exact eigen-
states of the (A —1)-particle system, i.e. ,

or

lo;& =Jr; I e. . &

I4;& =Jr, lc„&,

(7.15)
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there arise, in addition to the dominant state, a
lot of other states. In this sense it is a matter of
taste whether we call our state a "one-hole state"
or a "quasihole" state. The term quasihole state
might remind the reader of the state-independent
effective interaction between quasiparticles and
quasiholes shown by Landau" for infinite systems.
Calling our state a quasihole state does not imply
the existence of a similar effective interaction for
finite systems as used, without proof, by Migdal. ~

VIII. CONCLUSION

l&g „-c;,I
&o.03 Me~,

for the p states of "N and all four potentials we
use. This difference mould be of the same order

(8.1}

In this section me start mith some concluding
remarks on the general relationship between our
calculated and experimental energies. Then we
discuss whether the empirical sheQ-model poten-
tial can be calculated from ~VN potentials and mhat
conclusions can be dramn from the comparison
between our calculated and the experimental en-
ergies.

With our methods we may calculate two different
quantities, i.e., the centroid energies q~, and the
solutions ee (and lX)) of (3.'I). The state i/3) cor-
responding to the latter energy is clearly a vari-
ational approach to the dominant exact state lge),
the so-called shell-model state. The energy &~

and the transition probabilities and expectation
values correspondingly are the variational approxi-
mations for the dominant states. We stress that
the energy ep should not be compared with an ex-
perimental centroid, as discussed below.

We would like to make a remark about the re-
lationship of the centroid energy to experiment.
Experimentalists cannot investigate centroids of
the form (2.5) because the radial dependence of the
form factors needed in DWBA calculations is, at
least in general, not known. They assume there-
fore that the form factors may be approximated by
shell-model functions multiplied by spectroscopic
factors. Vile believe that this is a reasonable ap-
proximation2 '; if this mere not true it would be
very hard to define a reasonable experimental
centroid and it mould therefore be necessary to
calculate the single form factors themselves and
then use them in DWBA calculations. In this con-
nection it is very remarkable that our theoretical
centroid, given by (3.18), does not strongly depend
on la) provided that "something like a shell-model
function" is used for the state la). In fact, our
calculations show that the difference between the
"natural-orbital centroid" &~, and the centroid
energy defined by (3.19) is very small, i.e. ,

if me take an empirical shell-model wave function
instead of l@e) in (3.18). Our theoretical cen-
troids are therefore less state-dependent than the
experimental ones. This originates from the fact
that C and D are calculated integrating over the
mhole nucleus whereas both the DWBA and the ex-
perimental cross sections mainly depend on the
surface parts of the mave functions. Of course,
there are centroids mhich differ appreciably from
c~ „e.g. , if one takes in (3.18) a state lot) having
a wave function which is small in the nuclear in-
terior and large at the surface. The eigenvector
lX) of (3.7) is just such a function as may be seen
from the Eq. (3.13), i.e. ,

and the centroid taken mith this function has just
the energy ea; compare (3.17). First results,
which me do not give here, show that the difference
between &~ and g~, is of the order of

g~ —g~, =+2 MeV. (8.2)

It is, of course, positive because &~ is the maxi-
mum of the theoretical centroids or, more precise-
ly, the maximum of the centroids over all states.

Comparing e~ „(which is the sudden-removal en-
ergy of Ref. 4) with experimental centroids we have
to consider that experimentalists do not average
over all states but only over a part of them. For
this reason we approximately eliminated the con-
tribution of the two-hole-one-particle states by
solution of (5.3}.

Nom we discuss the question of whether the shell-
model potential can be calculated from the nucleon-
nucleon forces. If we are speak.'ng about the shell-
model potential me almays mean the e~~~pirical shell
model, which describes either the dominant state
energies or the centroid energies and the corre-
sponding single-particle (or single-hole) wave
functions. Though these potentials are not uniquely
defined, the underlying conception is very beauti-
ful and simple and it should be explained by cal-
culations starting from nucleon-nucleon forces
without using further parameters. This work is
an attempt to do so for one-hole states. There
are other, more "theoretical, " definitions of the
shell model used in order to obtain more rapid
convergence in BHF theory. ' ' Our definition is
in principle different from those.

We may nom define the shell-model potential for
the centxofds of the (2 —1)-particle states. From
the discussion above it is evident that it is suf-
ficient to solve (7.1) in the subspace of occupied
states. We have shown in Sec. VII that the operator
'Q D y

' is near ly Berm itian in this subspace if a
natural-orbital representation is used. In this
sense the operator C~D, ' corresponds to an em-
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pirical shell-model potential. For the agreement
with experiment one should compare Fig. 11.

Usually, the parameters of the empirical shell
model are chosen so that they describe the cen-
troids over the weakly excited states rather than
the centroids over all states. Therefore the ex-
pression

should be compared with the empirical shell model
where R is a self-energy correction like that given
by (5.3) and [e, ~

is somewhat smaller than
~ e~ „~.

In our approach the self-energy correction R is
Hermitian; this holds in higher approximations too
(Fig. 10).

The shell model may also be defined in such a
way that it describes the dominant states as one-
hole or one-particle states. For one-hole states
this corresponds, as we have seen, to the solution
of the Eq. (7.1) in the complete Hilbert space of
one-particle functions. In this space the operator
C D~

' is not Hermitian. This means that the form
factors of the dominant state cannot be described
in good approximation by an Hermitian operator.
But this is not astonishing: provided that ~go) and

~ gs) are not pure (antisymmetrized) products of
single-particle states, form factors belonging to
the same symmetry quantum numbers cannot be
exactly orthogonal if the corresponding (A —1)-
particle wave functions are orthogonal. This holds,
however, for both sets, the exact states

~ gs) and our
calculated states ~P&). On the other hand, the differ-
ence between the energies &~ and &3, is not very
large and the wave functions C ~ are very similar
to the single-particle wave functions of the empiri-
cal shell models. It will therefore not be difficult
to find some empirical shell-model potentials fit-
ting the calculated data &~ and@~, at least, if the
nucleon-nucleon force from which one starts is not
too unrealistic.

From our preliminary results we may conclude
something about the two-body potentials we used.
One should keep in mind that the results for the Is
state cannot be compared directly with experiment
for two reasons. The coupling to the p-h excita-
tions of the ' 9 core is certainly strong and, fur-
ther, for states in the continuum one needs the
spectral function as defined in Ref. 31.

We believe that we have calculated the density
matrix and the operator C with sufficiently high
accuracy. The uncertainties in the nucleon-nucleon
interactions together with corrections of the kind
discussed in Sec. V are therefore responsible for
the largest part of the uncertainty in the calcula-
tions.

As may be seen from Fig. II and Tables I and
III the HJ potential yields absolute values much too

small for both the separation and ground-state en-
ergies. Note that the dominant states have an even
higher (less negative) energy than the centroids.
From the SSCB potential" there results a very un-
realistic spectrum of "Ca (Table IV) and a much
too high central density in 'Ca and in "0 as shown
in Ref. 25. The SSCB potential is therefore also a
bad approximation to the NN force. The RSC po-
tential yields much better results especially if the
three-body correction of Blatt and McKellar is
taken into account

The spin-orbit (so) splitting of the BHF energies
is nearly the same in GBHF and FBHF(3) calcula-
tions. For the final separation energies it is re-
duced by the "renormalization term" shown in
Fig. 9(b) and some three-body correction terms,
the most simple of which are shown in Figs. 9(d)
and 9(e) and enlarged by the Pauli rearrangement
term [Fig. 10(a)].

The final result for the BSC potential is 3.85
MeV and for the (RSC+ VM, K) potential, 4.65 Me&.
This is much too small if it is compared with the
experimental values of 6.32 MeV for the dominant
state and 6.87 MeV for the centroids. " Since the
Pauli rearrangement term [Fig. 10(a)]enlarges the
spin-orbit splitting by about 1 MeV in the case of the
(RSC+ VM, K) potential, one may argue that the in-
fluence of the "higher" terms of Fig. 10 is non-
negligible. This means that the second term on the
right hand side of (2.4) has to be taken into account.
On the other hand, Fig. 11 shows that the spin-
orbit splitting is very different for various Hamil-
tonians; 2.6 MeV for the HJ and 6.5 MeV for the
SSCB potential, for example. It may therefore be
that a relatively large part of the difference of
about 2 MeV between the experimental and our
theoretical value is due to the uncertainty in the
Hamiltonian —especially in view of the approxi-
mate nature of the force of Blatt and MeKellar.

It was seen that the theory presented in this
paper is consistent with basic experimental facts.
Therefore we think that it ean be regarded as the
lowest-order approximation. We suggest that in
treating higher orders the contribution of excited
core states should be taken into account.
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APPENDIX A gD..=A. (B2)
The single-particle Green's function is defined

by

g (rt, r't') = —.((I), I
t'a(r, t)a'(r ', t')

I $,&

In its diagonal representation (natural-orbital re-
presentation} the operator D may be written in the
following way

g(r, r', t —t'),

a(~r t) et/it a(P) ei ttt

a(r) = P a.(r ln),

(Al) p Q Q ooo

Q p Q ~ oo

Q Q p ~ ~ o
3

where E is the time ordering operator. The Four-
ier transform is given by

d(r, r', te)= f drd(r, r', r)e'

8((I'. I a(r} I4&((t' I a'(r') l e.)
(u —[Es(A+ 1}—E,(A)]+ i6

B (Ae 1)

((t(, I
a"(r') I (I),&((I)t) I a(r) I g,)

~ —[E,(A) E,(A 1)]

(X I D IX,
(Vt) I &7)&

= (B4)

Because the operator D is compact there is a fin-
ite dimensional operator D'"' so that

where the multiplicity of every eigenvalue is finite.
The positive cempact operator -C may be written
in a similar way.

To prove the assertion )reade after E(I. (3.14) we
assume

8gC= lim
p gg

(A4)

1D= —. lim g(r)
p

(A5}

APPENDIX 8

We remark that both operators D and C are com-
pact. Because they are positive and negative, re-
spectively, we have, following, e.g. , theorem 42
of Chap. 5 of Ref. 33, only to show that the traces
of these operators are bounded. This is evident
because from (3.9) and (3.6) there follows

g C..=&&OII'I4&+2&&0!I'IPO&

=2E, - (P, I
T

I P,&,

Using (2.1) this reads(, )
4 s(F)4)st'(r')

(u —[Es(A+ 1)—E,(A}]+i5
B ++j.}

B
~

4s (r)4 st'(r')
(u- [E,(A) —Es(A —1)]—i5

'

B(A-j )

(AS)

The functions Cs(r) evidently diagonalize the
Green's function at the poles. The right hand side
of (A3) is, however, not a spectral representation
of g because the form factors are in general, not
orthogonal. The operators C and D are related to
the Green's function by the equations

with

(B6)

where ~ is an arbitrarily small positive number if
X is large enough. The compact operator C may be
analogously decomposed. If we let

0~g~6,(XtDiX&
(X IX)

(»)

it follows that

(X I C IX) (X I
C" IX) (X I C IX&

(xIDIx& (xlD" lx&[1+t}/((I-t})] d

(xl c"lx)
(X ID" iX)

where, for large N, ~ can be neglected compared
with the first term. Note that the absolute value of
this quotient cannot be small because the inequal-
ity (3.12) holds.

The wave function !4s& is given by

I4.&=DIX&= E Dln&&nl» Z Dln&&nl».

(BQ)

For large N the second term is negligible; the con-
vergence is especially rapid if one uses the set of
natural orbitals for (In&j. We have still to prove
that equations

Z &x I)t& p„&n Ix&
(B10)
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I
n& = natural orbital DIX) =o, (B13)

and

(X iD'D [X&

&X & D )X&
(B11)

and therefore (Bll) holds. Vice versa, from
(Bll) follows the equations (B13) and therewith
(Blo}.

a,re equivalent. From (B10) it follows that

&nIX& =0 (B12

for all n because D is positive. From this it fol-
lows that

APPENDIX C: CENTERAF-MASS CORRECTIONS

Though the energies h„contain the usual A-par-
ticle c.m. corrections, there arise additional cor-
rection terms if separation energies are calcul-
ated." We start from the exact equation

&&. I ff~t s. I &0& —&&s I o.If'.~ I &0& =Ãs(& —»- &o(»R&. I s. I &o&

with

«;l» l&s.,(&; =—,F. », ( -„-)Z',„'-„-Z,'„',&),

where 1$„& and
I gg are eigenstates of the particle number operator. We obtain from (Cl) and (C2)

(4 1-—T-„—T»+V . 4 -»»&41(T+T»)s. 1&0&=-~.&41s. l&.&

where

(C1)

(C2)

(C3)

pe T„,2m, 2m

We replace the exact solution
I gs& by the ansatz (3.1). The term (7+T»)/4 in the commutator is already

contained in C so that we obtain, instead of (3.V), the corrected equation

c...~ z & (g &x, I
rl r,&&~r. ID, I

~'r,
&)

+
2 p 5',1.I T» I .1&y&~ .1yID. I

»'1,1.& ~;&~ ID, I
o'& J3." =O

1

The correction term containing the operator T is in first approximation given by the expression

g».J&... o.,g & I& I&&-& I&l"&). (c5)

It is evidently of the order A T. The corresponding correction for the energy as „, given by (4.21), reads

1 1
A &a - » & - &. »&, &.& Q &"

~

(C6)
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