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Multiyhonon K = 0+ states in even-even deformed nuclei.
I. Calculation of the norms
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The exact norms of the multiphonon states built upon a K = 0+ collective deformed phonon are derived.

Comparison with various approximations are carefully analyzed and the role of the Pauli principle is

emphasized.

NUCLEAR STBUCTUBE Norms of multiphonon K "=0+ states in deformed
nuclei. Exact and approximate expressions.

The explanation of anharmonicities of nuclear
vibrations is a very exciting and challenging prob-
lem. A rather large amount of work has been
devoted to such a program in spherical nuclei but
little has been done in the case of deformed nu-
clei. Among all the techniques available for the
treatment of anharmonicities in the spectrum of
even even deformed nuclei, the boson expansion
of fermion pairs is one of the best suited. Never-
theless„one is faced with difficulties concerning
the convergence of the expansion. Kleber' showed
that one way to get over this problem is to deal
with an expansion expressed at the very beginning
in terms of collective bosons; the price one has
to pay is the calculation of the norm of the states
with many phonons. Numerical computations using
such a method were carried out by Lie and Holz-
warth. ' An approximate recursion formula for the
norm was derived in the work of Holzwarth, Jans-
sen, and Jolos, ' and, very recently, Iwasaki,
Sakata, and Takada' proposed an exact recursion
formula for the multiphonon norms. However,
a numerical calculation becomes more and more
laborious when the number of phonons increases.
For the quadrupole vibrations of intrinsic states in
even even deformed nuclei the problem is some-
what simpler, since no coupling to good angular
momentum is needed. In the present paper we
restrict ourselves to 0' states built upon a single
collective phonon consisting of two quasiparticles
coupled to K'= O'. By a simple generalization of
Holzwarth's method' we derive exact and approxi-
mate expressions for the norm of the many-phonon
states. A numerical application is made in the
case of a simple model in order to compare vari-
ous approximations and to emphasize the role of
the Pauli principle. More realistic calculations
may be performed by the same procedure.

We consider a set of fermion quasiparticles et
(p labels the projection ofj onthe axis of symmetry

of the nucleus and all other quantum numbers ne-
cessary to specify uniquely the state) whose vacu-
um is denoted ~0) and which obeys the well-known
anticommutation ru' es

(n„, n„)=0= JLn'„, n'. &; (n„, n'. )= a„..

Let us define now an arbitrary transformation
which transforms the elementary excitation fer-
mion pairs e', cv„ into new phonons

Q'(i) = Q X,„(i)n',n'„

(x"),„=P x.„x„„.x, „,x, ,„.
(f;)

If the state Q't~0) is assumed to be normalized
one has

Tr(X') = -2.

(2)

The problem we want to solve is the calculation
of the norm of the multiphonon state (Q')" ~0), or
in other words,

(coupled to K'=0') under the condition that among
the set of Q'(i) ~0) one state Q' ~0) presents some
degree of collectivity. 2 indicates that some
order is specified for the indices p., v to avoid
the double counting due to the property o.t e„'
= -a~at. The X matrix may, for instance, be
chosen as the solution of a Tamm-Dancoff prob-
lem, but this is not a necessary condition for what
follows. Henceforth we consider only the collec-
tive operator Q' and thus suppress the index i
in the corresponding matrix. Moreover, we sup-
pose without any loss of generality that X is a real
matrix. Because of its definition X„„has a sense
only for a certain order of indices (p, v); we form-
ally put X„„=-X„„sothat Q'= ~Z, „x„„n„n„with-
out any restriction of the indices.

We shall need the successive powers of the ma-
trix X defined in the usual way
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N-„'=(o iq"(q')" io&. (4) This ends with

Owing to the Pauli principle, it is a cumbersome
task to get this quantity in a closed form; actually,
direct application of Wick's theorem would resolve
such a problem but its use seems very prohibitive
in the case of large n. It is more elegant and
numerically essential, to have a recursion formu-
la for the norm N„.

Generalizing Holwarth's method, we define the
following operators:

A, (n) = 2" ' Tr(X'") . (16)

A first expression for the norm is thus provided
by the two recursion formulas (13) and (15) with
the initial condition (16). A more convenient form
of this recursion is obtained by removing the A«(n)
quantities from these equations. This is achieved
by introducing a new quantity X „related to the
norm by

and

ft«p+& [[ft««~ Q ls Q'] '

(5)

5(„=(n!N„}-',

leading to the relation

(1'7}

(18)

It is only a matter of algebra to show that

2««-i g (X«« i)
(6)

It is easy to check the following properties:

&o haft„„U io&=o= &o tuft„io&

for any operator U,

(8)[ft,„„q']=0=[q, ft„],
(0 ~qft, ~, ~0& = -2' Tr(X'~'),

(0
~
R,«q'

~
0& = -2'« ' Tr(X'«") .

Let us proceed now to the derivation of the norm
with the help of the previous quantities:

tt~1

N„-'=&Olq"(q')" Io&= 2 I (n)

where X, =- j. by definition.
The second term of the right-hand side of rela-

tion (18) is the exchange term measuring the dif-
ference with the norm of a pure boson. We re-
mind that result (18) is nothing else than Wick's
theorem written in a more convenient way.

The physical quantities are the traces of the pow-
ers of matrix X. 'The time needed to compute those
expressions increases rapidly with the power of
the matrix and the necessity to look for approxi-
mate relations occurs naturally. We define an
approximate expression of order p by the follow-
ing prescriptions:

R~, scatters in all the states,

R~ scatters only in collective states.

Repeating exactly the same kind of calculations,
the pth approximation X'„' of the norm looks like

where

x Tr(X'«")3f'««. (20)
= L;,(n) A,+(n),

with

A, (n) = (Q 'ft, (q')" '&. (12)

N„' = C„'N ', + CP, (n) . (13)

[The C«are the usual combinatory quantities C«

=n!/P! (n —P)!.] We now define the mean values

(14)

Proceeding exactly in the same way as above, the
following equality can be shown:

A«(n) = -2" 'C' „Tr(X'«")N '~, +C' «A~, (n). (15)

l,et us note that L,(n) = (Q" '(Q') '[Q, Q']&

=(Q '(Q')" '&=N„, '. Eliminating the f, , quantities
from (10), we get

We note that the pth approximation gives exactly
N2 Np+1 The most difficult trace we have

to calculate in that case is Tr(X2™).The approxi-
mate expression of Holzwarth et a/. ' just corre-
sponds to our first approximation.

Comparing relations (20) and (18}, it is seen
that in the pth approximation the long time-con-
suming terms

Q Tr(X""}6!„,,

are replaced by (n —P) Tr(X"~')3t„'««' (and also the
exact norms are replaced by the approximate
ones). The violation of Pauli principle is caused
by that replacement.

These general considerations are applied to a
simple model consisting of 2m particles in 2m
pairwise degenerate levels. The distance between
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two consecutive levels is assumed to be a constant
2D and the particles interact by a pure monopole
pairing force. Moreover, it is assumed that the

j, projection Q„of all the single particle states
are different. All these conditions give to the mod-
el a number of symmetries which enable us to
make exact calculations very rapidly. Neverthe-
less, it is complete enough to provide general fea-
tures valid also for more realistic cases. An

usual Bogoliubov-Valatin transformation is per-
formed to take care of the pairing modes and the
X matrix is obtained by solving the Tamm-Dancoff
secular equation and keeping only the most col-
lective root. The nonconservation of the number
of particles introduces some spurious states which
may be important for dynamical aspects. But, as
far as the kinematical constraints are concerned,
they are quite unessential. The important features
of the Pauli principle which arise in the exchange
term of relation (18) are mainly sensitive to the
collectivity of the state which is a decreasing func-
tion of the ratio D/& (where & is the gap param-
eter).

In our simple case, only "diagonal" matrix ele-
ments X„„=-X „„exist and hence the set of physi-
cal quantities (Tr(X'~), p = 2 to n) is an alternating
series whose general term is decreasing with the
collectivity of the state. To allow a comparison
with earlier work we plot in the table and figure
the variable defined by Holzwarth et al. '.

(21)

which measures the deviation of the fermion state
(Q')" ~0) from a pure boson one (8')"~0).

In the figure the degree of validity of the first-
order approximation is visualized as the function
of the collectivity. When the number of phonons
increases, the first-order approximation deviates
more and more sensitively from the exact norm.
However, when the collectivity of the phonon Q'

2 3 4 5 6 7 8 9 10

FIG. 1. Comparison of exact (solid lines) and first-
order approximation (dashed lines) of the ratio (~„)H
defined by relation (21) for different collectivities of the
Tamm-Dancoff solution. For D/6 =0.04 the (&„)H differ
by less than 10% and the corresponding plots cannot be
distinguished.

is strong enough (e.g. , D/&=0. 04), the first-order
approximation is extremely good. This is not sur-
prising since the origin of the approximation is
based essentially on the fact that R, scatters in
collective states only and this is more and more
efficient when the collectivity increases. One also
notes that the effects of the exchange term in rela-
tion (18) diminish with increasing collectivity.

In the table we compare the exact norm with
approximations up to order 5 for a model with 10
levels (so that N„' =-0 for n & 10) and for a typical
average value D/&=0. 2 Several instructive re-
marks may be made.

TABLE I. Exact and approximate values of ratios (x„)H defined by relation (21) for multiphonon states (Q+)$0) with
1—n —10.

Numbers of
phonons Exact Order 1 Order 2 Order 3 Order 4 Order 5

1
2

5
6
7
8
9

10

1
0.8274
0.5562
0.2979
0.1244
P 3944x 10
0.9136x 10
0 1456x lp
P 1428x 10 ~

0.65P4 x 1P ~

1
0.8274
0.5418
0.2613
0.8092 x 10
p.1109x lp

—0.3943 x 10
0.8186 x 10 4

—0.3115x 10
0.1723 x 10

1
0.8274
0.5562
0.3112
0.1739
0.1353
0.1480
0.1946
0.2965
0.5120

1
0.8274
0.5562
0.2979
0.1103

—0.2252 x 10
—0.1136
—0.1142

0.6105 x 10
0.4282

1
0.8274
0.5562
0.2979
0.1244
0.5764 x 10
0.1007
0.2054
0.2598
0.3204

1
0.8274
0.5562
0.2979
0.1244
0.3944 x 10

—0.1857x 10
—0.1562
—0.3905
—0.5465
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The approximations of order p with odd p lead
to negative values of X'~' which are, of course,
senseless. When p is even the norm X'~' passes
through a minimum and then diverges, which is
also senseless. It is interesting to notice that
the troubles appear (by trouble we mean a devia-
tion of more than 50' from the exact result) qual-
itatively for a unique critical value N, of the num-
ber of phonons whatever the order P is. (In the
case of Table I, N, =6.) This result is very gener-
al, irrespective of the range of the parameters.
For each set of parameters D/& or of the number
of levels, there exists a number N, for which all
approximations with p &N, fail. If p &N, the norms
are exact up to N~„but are completely wrong as
early as N~, (see, for instance, order 5 in the
table}. The origin of such a number IV, is not yet
well understood but it seems to be related to the
cutoff factor of a SU(6) scheme for a boson ex-
pansion. ' To describe physical properties in terms
of boson expansions it is meaningless to deal with
a space including more than N, bosons. For low

values of the number of phonons n, p odd approxi-
mations lie under the exact norm, while p even
approximations lie above it. This fact is due to the

previously mentioned property of the set LTr(X'~});
it is an alternating series.

These alternating terms also insure the conver-
gence of the exact norm 5, ~

Tr(X'~')0I„, „while
the approximate expression of it, —,(n —P) Tr(X'~")
&& X„~, does not converge with increasing n and

leads to the troubles already mentioned.
The order of approximation to choose in realis-

tic calculations depends on what one needs. If the

phonon operator is very collective or if we need

an overall approximation for the norms N„of
states with different n, the first-order approxima-
tion is certainly the best suited. But if the phonon

is not very collective and if we want a good ac-
curacy for the norms of low n values (this is the

case for a boson expansion) it would be preferable
to use approximations of higher order. In any

case it is very important to have an estimate of

the cutoff factor N„ for instance, a comparison
of X„"' and X„"' may give an idea of N, . Lastly,
a criteria of collectivity is provided by the ratio

which is qualitatively (at least in our academic
case) independent of k.
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