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The Ford-%'ills-Barrett model-independent interpretation of muonic-atom transition energies is generalized

to the dynamic hyperfine effect. Parameters necessary for the analysis of the most important case

(quadrupole excitation by the 2p states) are calculated for all nuclei. These results are applied to new data

for ' 'Os. The sign of the quadrupole moment of the first excited 2+ state is found to be negative; a

previously reported measurement of its magnitude (—0.5 b) is inconsistent with the present experiment. Under

the assumption that the transition charge is located near the nuclear surface, a new measurement of the

quadrupole moment (Q,+ = —1.0 b) is obtained. The equivalent quadrupole radius of the 0+ ~2+ transition is

found to be 7.1 fm.

NUCLFAB STRUCTURE Model-independent method for interpretation of dynam-
ic hyperfine effect in muonic atoms. Measured muonic x-ray spectra '~~os; de-

duced electric moments, charge parameters.

I. INTRODUCTION

Si nce the beginning of muonic-atom physics, one
of the central issues has been the extraction of nu-

clear sizes and shapes from experimental transi-
tion energies. For monopole charge radii, recent
work has led to a so-called "model-independent"
method of analysis" which depends upon the use
of perturbation theory beginning from some rea-
sonable trial charge distribution. Similar but more
general methods also exist which treat both muon-
ic-atom transition energies and elastic electron
scattering cross sections within the same frame-
work. A recent review of this subject may be
found in Ref. 3.

For the extraction of information about nuclear
deformations, no similar theory has been con-
structed. Here the situation is complicated in the
most int. cresting cases by a strong quadrupole
mixing of the muon 2P levels with the low-lying nu-
clear states (dynamic E2 effect). The result is a
complex spectrum of many lines, which is custom-
arily analyzed by means of a specific nuclear mod-
el. This model approach is conceptually similar
to the early methods of analyzing monopole spec-
tra."'

The purpose of the present work is twofold.
First, we wish to show that the dynamic E2 effect
may be analyzed by means of a "model-indepen-
dent" method which is analogous to the monopole
theory mentioned above. Second, we report new

muonic-atom data for "'Os and interpret it using
this method. The paper is divided into six sec-
tions. In Sec. II, we summarize the calculational
procedures by which a specific nuclear model may
be compared with experimental measurements. In
Sec. III, we discuss general modifications which

may be made to these procedures to obtain "model-
independent" analysis theories for both the mono-
pole and multipole (I.& 0) effects. In Sec. IV, we pre-
sent the experimental methods and data for '"Os. In

Sec. V, we show how these data may be interpreted in

terms of the analysis theories. In Sec. VI, the re-
sults are discussed and compared with other stud-
ies of "'Os.

II. MODEL ANALYSIS

Given a specific nuclear model, it is in principle
a straightforward procedure to compute the muonic
energy levels. The Hamiltonian of the muon-nu-
cleus system may be written as
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and

H, ln(im& =E,'""' ln(im&,

(2)

where IM are the spin and projection of the nuclear
angular momentum, y is an auxiliary nuclear quan-
tum number, and net are the usual Dirac quantum
numbers of the muon.

In the present work we assume that all effects in-
cluded in H' are s mall and, therefore, ma, y be
treated in perturbation theory. These effects will
be neglected in the discussions in the next two sec-
tions. In many instances H, „, may also be treated
as a perturbation, so that the energy eigenstates
of the system are well represented by products of
the eigenstates of H„and H . This possibility
clearly depends upon making a good choice of
V "'(r); an optimum choice is

cf 7'
V «'(r) = (ylM

I
p(r'} lylM&,

V)

H =H„+H„+H~„,+H',

where H„ is the free nuclear Hamiltonian, H, is
the muon Hamiltonian including the static spheri-
cally symmetric patent a.l V '"'(r) which represents
the average monopole electrostatic field generated
by the nucleus, H,.„, is the residual. muon-nuclear
interaction [the difference between the true inter-
action V(r} and the approximation V "'(r)], and H'

includes all the otherwise neglected effects [e.g. ,
quantum electrodynamics (QED)]. We denote the

energy eigenvalues and eigenstates of H„and H„by

H„lyIM& =E,'„""ly IM&

where r) is the greater of the nuclea. r and muon
radial coordinates, and p(r') is the nuclear charge
density operator. This choice is optimum in the
sense that the first-order perturbed energy shift
caus ed by H, „, va nishes, except possibly for the ef-
fects of some higher multipoles in high-spin nu-
clei. The muon energy levels may now be found by
solving the radial Dirac equations in the potential
V «'(r) and accounting for H' and H„, in first- or
second-order perturbation theory. ' '

In some instances the off-diagonal matrix ele-
ments of H, „in th. e praduct basis lyIM& ln(im& are
large and comparable to the corresponding diagonal
energy differences. This situation occurs particu-
larly often for heavy deformed nuclei, where the
muon 2P fine-structure splitting is of comparable
magnitude to the collective, low-lying nuclear
quadrupole excitations. The effects of this large
interaction have been described in detail by fi-
lets, ' Jacobsohn, ' and Acker. " Although in these
instances the treatment of H„, as a small pertur-
bation is not appropriate, it is possible to make
use of the solutions of H„and H„by constructing a
Hamiltonian matrix in the nearly degenerate sub-
space and diagonalizing it. The states of the sys-
tem may be constructed by coupling nuclear states
lylM) to muon states ln(im& to give total angular
momentum FM, denoted here by ln(iyI;FM&, or by
the shorthand notation

li&= ln, ., y, I,;F-, M, . . .

For a longitudinal residual intera, ction expanded in
multipoles I., the matrix elements of H are (Ed-
monds conventions")

(i lH li'& =[E"'+E"']I&",—e'(-1)" +" ' "'~G [1+(-1)"']
4~x 2L'1(2 j.l)(2 j"1) I2L+1 I)L gr (ii'&

o --.')
where l and j are the muon orbital and total angular momenta and

[p"'(r&r"'(r& ~ G"'(r&G"'Ir&((r&ll f d'r'&r( '&r lr'&r, /r,*'llr'r'&dr.
0

(6)

The Hamiltonian in this basis breaks up into sub-
matrices characterized by EM, which may each be
diagonalized to yield the muon-nuclear energy lev-
els. Truncation effects, as well as effects in H',
may be treated in perturbation theory. '

III. ANALYSIS THEORIES

It is clear that fitting nuclear models to mea-
sured tra. nsition energies does not fully answer the
basic empirical question of what the measurements
imply about the nucleus. This question is ad-

dressed with some reservations by the "model-in-
dependent" analysis theories of the monopole dis-
tribution' ' which we summarize here in order to
help develop the extension to the higher multipole
case. The monopole theories generally begin with
an approximate fit to the data with a trial charge
distribution p, (r), which provides a set of trial en
ergies E,'""'. Then if one considers arbitrary (but
small) functional variations in p, (r}, the change in
a given muonic energy level due to this change in
charge distribution is given to first order in per-
turbation theory as
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E(flK) E(nK) p2 d 3
p

/ p{rf} p rI} p (nK) rt

(7(
where

V (n~ i(rr}
"dr

[F (ns )(r)&+ G ( tK)(r}& ]

Thus the measured muon energies E'""' can be rep-
resented by corresponding equivalent radii R~,
which provide a simple and concise summary of the
measurements in terms of nuclear properties.

The muonic multipole analysis is slightly more
complicated, but it may be developed in essentially
the same way. In addition to the diagonal matrix
elements of H, one can obtain from the experimen-
tal data the values of certain off-diagonal matrix
elements as in Eq. (5). These matrix elements are
not necessarily to be regarded as independently

is the monopole electrostatic radial potential gen-
erated by the muon charge distribution, computed,
e.g. , from p, (r). Thus if one makes a reasonable
guess about the trial. nuclear charge distribution,
Eq. (7) provides a useful integral constraint upon
the true nuclear charge distribution p(v'}. That is,
if E'"K' represents the measured muon energy, then
the true nuclear charge distribution p(r} must sat-
isfy Eq. (7) to within the accuracy to which E(""' is
known. A similar analysis rr.ay be carried through
for elastic electron scattering cross sections. In-
stead of the muon-generated potentials V„(r'), one
obtains, in that case, other kernels which repre-
sent additional integral constraints.

For the analysis of muonic-atom data alone, a
further approximation may be made. The kernel
V,'""'(r) [or V,'""'(r) —V,'"" '(r) for a transition n((
-n' ('I (may be approximated by the empirical form

V, (r) =A+Br'e

where values for the parameters A, 8, k, and n,
which depend upon the nucleus and the muon states
under consideration, can be obtained from numer-
ical fits to the computed muon potential. The con-
stant term A contributes nothing to the energy shift
in Eq. (7) since the va. riation of p, (r) is constra, ined

by charge conservation. The energy shift thus be-
comes proportional to (r ' e '"}—(r "e '")o. A mod-
el-independent radius parameter R„can be defined

by the relation

R)l(

r 2+0 e-a rdr (r 4 e-a r)
R~

so that R~ is the radius of a uniform charge dis-
tribution which has the expectation value (r'e "}
Equation (7} then reduces to

measured quantities as are the energies in the
monopole case. Bather, they result from adjusting
the Hamiltonian matrix to fit several observed ei-
genvalues simultaneous). y, and their determination
may depend upon providing some physical con-
straints since the matrix rrsay be underdetermined
by the available experimental data. Such con-
straints can be obtained in various ways; one com-
mon method uf providing them consists of using a
specific nuclear model (e.g. , the rotational model)
to calculate relationships between the various ma-
trix elements. The model parameters are then ad-
justed to best fit the observed data. A more gen-
eral procedure which does not require the use of a
particular nuclear model will be developed in the
following paragraphs.

We assume for the moment that we have deter-
mined a set of matrix elements (i ~lH (i') as in Eq.
(5). The energy E„'' is io be interpreted as in the
monopole case through Eq. (7) or Eq. (11). Apart
from the nuclear energy E„"', which is presumed
knov n from other experiments„we are left with
the fitted quantities W "' '. These can be rewritten
as

gr ((i'& d 3 rr p (rr) V (i(')(r r) (12)

is the reduced nuclear transition charge density, and

where

V„'*' '(r') —j dr [F"'(r)F"'(r)
- r,

r L

+ G (i)(r}G(i')(r)] (14)

V (i(') r L(g Rvme-sr) (15}

the muon- generated radial transition potential.
Thus the main physical result of such a fit is the
determination of the values of certain we:ghted in-
tegrals over the nuclear transition charge densi-
ties. In analogy to Eq. (7). Eq. (12) provides a
constraint which any candidate for the true transi-
tion charge density must satisfy. There is, how-
e& er, an important difference between the mono-
pole a.nd multipole treatments. Equa. tion (7} is val-
id only in perturbation theory, so that a reasonable
initia, l guess for po(r} is required. Equation (12}
does not depend explicitly upon perturbation theory,
so tha. t no a Priori knowledge of p. ..(r') is required;
rather, any candidate which satisfies Eq. (12) is
acceptable.

The constraint represented by Eq. (12) may be
parametrized in a. way similar to that of the mono-
pole case. We approximate the muon-generated
transition potential by
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and determine the parameters A, B, m, and n as
in the monopole case. In addition, we note that the
reduced nuclear multipole matrix element is

O.I5

M"'= d'rp;;, rr~, (16) 2.0

and

B(SL;yl-y'I') =
(2 I+1)

and can be related to the transition strength B(EL)
and static quadrupole moment Q, via the equations
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Further, we can define an equivalent multipole
radius R by means of

M (ll')RIII e 0IRm — d 3y p (r)y. L+m e- rN
m 5$

in which case

W "' ' =M "' '(A+BR e 'a~) .m

(19)

(20)

z
FIG. 2. Values of m and 0. fitted to the computed

2P,,2-2P3„quadrupole potential. Shown are the best
fit values obtained by allowing both m and 0, to vary,
as well as the values of m resulting from holding n
fixed at zero and from using the 0. specified by the mon-
opole formula of Ref. 13 [curves labeled {a)].

R can be interpreted as the radius of a 6-function
representation of p;;,. The sensitivity of R with
respect to variations in W ""' for fixed M ""'may
be obtained by differentiating Eq. (20}. As in the
monopole analysis, this quantity is useful in as-
sessing the significance of experimental uncertain-
ties or model differences.

Often the magnitudes (and sometimes the signs)
of M "' ' are known from other sources, such as
Coulomb excitation measurements. In this case,
Eq. (20) can be used to determine R . In any ca.se
Eq. (20) provides a concise way of specifying quan-
tities actually determined by experiment. M "' '

here plays the role of normalization, as does the
nuclear charge Z in the monopole case. However,
in the multipole case normalization is known much
less accurately and can introduce a significant un-
certainty into the interpretation.
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FIG. 1. Muon-generated quadrupole radial transition
potentials for Z=60, defined by Eq. {14).

1

p(r) = p, h+exp
L a (21)

with c = (1.183A' ' —0.414) fm and a = 0.55 fm,
where A is the average mass for a given value of
Z. The general appearance of the muonic kernels
is illustrated in Fig. 1, where we have plotted the
potential V„"' ' for Z =60, both by itself and divided
by 'v for 'the 2p3/ p 2p 1/ 2 transition and the 2p3/

2p3/ 2 diagonal ca,ses . Because of the close simi-
larity of these two curves, we have fitted only one
of them, the 2p, /, -2p, /, potential, with the analytic
form given in Eq. (15). The results of these fits,
for values of Z covering the entire Periodic Table,
are shown in Fig. 2. The curves labeled m(best
fit} and o. (best fit) result from a least-squares ad-
justment of all four para. meters to fit the transition
potential over the radial range where the nuclear
charge is significant. The values of n are given to
a very good approximation by the formula

In a way which is similar to the combined muon-
ic-atom elastic electron scattering analyses, ' it is
evident thai the muonic multipole data may be com-
bined with results of inelastic electron scattering
experiments" to provide more information about
transition charge densities. The multipole radius
R is similar to the transition radius R„often de-
deduced from such scattering experiments, with
the exception that different kernels are involved.

For numerical calculations, we now specialize
to the most important case: the L =2 dynamic in-
teraction involving the muon 2P states. The results
presented here are obtained using the ground-sta. te
nuclear charge distribution
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FIG. 3. Errors in the analytic approximations to the
muon transition potentials. The values correspond to
the choices of n shown in Fig. 2.

ure may be altered using Eq. (20) to accommodate
other choices of R„.

It is possible to imagine two distinct systematic
"model-independent" approaches in analyzing dy-
namic hyperfine spectra. One is to determine the
parameters A, B, m, and a and use Eq. (20) to
extract R directly, given known values of M "' '

and fitted values of W"' '. This procedure contains
no direct reference to a nuclear transition charge
density, and allows one to avoid computing muon
wave functions and matrix elements as in Eq. (6).
It should be noted, however, that the apparently
strict model independence of this approach is
somewhat compromised in two ways. The first is
that some additional corrections are usually nec-
essary (e.g. , nuclear polarize. tion and vacuum po-
larization), and these are somewhat model depen-
dent. The second is that there is insufficient ex-
perimental information to determine the 2P3/2 2PQ/
and the 2P, /, -2P, /, matrix elements independently;
rather, they must be constrained in the fitting pro-
cedure and this constraint may introduce a slight
model dependency. Nevertheless, this approach is
useful and straightforward. To implement this ap-
proach, we have determined that the values of A
and B are given (to within an a.ccuracy of better
than 2% for Z & 50) by the formulas:

a(best fit) = 0.00285Z —0.0000126Z',

while

m(best fit) = 2+ 0.0065Z —0.0000SZ'.

(22)

(23)

,sl
1 t I i I I I

A good fit may also be obtained using values of n
given by the formula of Engfer et a/. "for mono-
pole kernels. These values are indicated by the
curve labeled o. (a) in Fig. 2. The best values of m

when o. is fixed at n(a) are given by the curve
m(a). For yet a simpler representation, one may
fix a =0; the appropriate values of m for this case
are also shown in Fig. 2. The accuracy of these
three fits is illustrated in Fig. 3, where we have
plotted the fractional error, averaged over the nu-
cleus, of the different approximations. As for the
monopole kernels, the n =0 approximation is sig-
nificantly less accurate. However, the inherently
lower accuracy of the quadrupole information can
make this approxima, tion quite useful.

Values for the sensitivity of R„ to changes in
W "' ' as expressed by the derivative M "' 'dR /
dS'"' ' a.re shown in Fig. 4. These values are
nearly independent of the choice of n, if m is cho-
sen appropriately. The derivative is, however,
sensitive to the choice of R, which here is taken
to be equal to c in Eq. (21). The values in the fig-

7
lo

6E
lo

D M

5
IO

lo
I I l

0 20 40 60 80 lOO

Z
FIG. 4. Values of the derivative of Eq. (20) in the text,

evaluated for R =1.1834' —0.414, where A is the aver-
age atomic mass for each Z.
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FIG. 5. Spectrum of muonic 2p-ls transitions observed
for ' 20s. The peak numbers correspond to the transi-
tions listed in Table I and Fig. 7.

A = 3.0657 x 10 '+ 9.0899 x 10-10

x (g3. 5033e-0.01797z) I -3

and

g = ].1752 x 10 6 —7.7990 x 10 '

x (Z3. 4458e-0. 00908z} Im- (3+F1

(24)

(26)

800—

The corresponding values of m and n are given by
EIIs. (22} and (22). It is this approach which is de-
veloped in Sec. 7 for "'Os.

One may also follow a second approach which is
closer to that usually used in the monopole case.
This involves using a specific nuclear model for
the transition charge densities, and fitting the ex-
perimental data in the usual way, i.e., by adjusting
the appropriate nuclear model parameters. Then
the model-independent parameter R may be ex-
tracted from the fitted charge density by use of
EIIs. (16)and (19). This approach has the advantage
of having fewer fitted parameters, since only m and
oI must be known (even the derivative MdJt/dW may
be calculated for the problem at ha. nd by making
small variations in the transition charge density).

Both methods for obtaining R„are in principle
equivalent; which is more appropriate in a particu-
lar case depends upon the point of view and the re-
sources at hand.

IV. EXPERIMENTAL RESULTS

'The muonic x-ray spectrum of an isotopically
separated target" of "'Os was obtained at LAMPF
during an initial period of low intensity accelerator
operation. The experimental arrangement and the
data analysis techniques were essentially the same
as those of Ref. 7. The primary difference between
this experiment and that reported in Ref. 7 resulted
from the higher x-ray energies of muonic "'Os as
compared with the x-ray energies reported in that
work. In particular, calibration of the '"'Os muon-
ic x-ray energies was derived from a simulta-
neously accumulated spectrum of an isotopically
separated '"Pb target. The energies of the '"Pb
x-ray spectrum were taken from Ref. 15. Correc-
tions were included for geometrical effects and de-
tector system nonlinearity. '" Portions of the
spectral data which are relevant to the present dis-
cussion are shown in Figs. 5 and 6. In these fig-
ures the lines are numbered to correspond with
Table I which lists the measured line energies and
relative intensities.

V. ANALYSIS

%e proceed to interpret the observed muonic hy-
perfine structure of "'Os using the methods dis-
cussed in Sec. III. In this discussion we will con-

TABLE I. Experimentally measured K and L transi-
tion energies and relative intensities of ' Os. The sta-
tistical errors listed were used to determine the uncer-
tainties of the hyperfine splittings and do not include er-
rors due to uncertainties in the calibration energies of

Pb. This calibration error is about 400 eV for the K
transitions and about 100 eV for the L transitions. These
errors should be added to the listed statistical errors to
obtain absolute errors. The relative intensities for each
group of transitions (K and L) were normalized to 100%.

CA

& 400—
O

200-

Qs L x RAYS

9

2
H(n, y) H

.4+ ~
1 I I I

2IOO 2200 2300 2400
FNERGY (keV)

FIG. 6. Spectrum of muonic 3d-2P transitions observed
for Os. The peak numbers correspond to the trans-
itions listed in Table I and Fig. 7.

Transition Index

2p fg

3d-2p

5592.67
5502.76
5387.49
5366.55
5297.00

2309.19
2204.96
2173.08
2&14.51

0.59
0.10
0.20
0.09
0.17

0.07
0.06
0.18
0.08

2.9
41.8
9.3

35.1

10.9

35.9
47.2
4.7

12.2

Experiment Statistical Relative
energy error intens ity
0 eV) 0 ev) P.)
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FIG. 7. Energy level diagram of muonic '8 Os. The
highly mixed 2p state wave functions were calculated
to be

(1)/;-g/p = —0.9904(2p g/t, Of ) +0.1374(2P 3/ty 2f )
+ 0 01731i2P)/t~2f) ~

(2)/ 3/t 0,876212P3/Q ~ Of ) +0.448012Pf/t 2f),
—0.1773[2P3/2 » 21 &

+ 0 0»0(2pi/t& 22)

—0.0054 ) 2P 3/z ~ 2f ) ~

13)/, =s/t =o.462712P3/2, of) —0.881812P&/t 2f)
+0.0582i2P3/p. zf) +0.0220izpi/2, 2f)
—0.0673 ~2P 3/p, 2f ) .

The dashed lines represent the unperturbed positions of
the (2p&/z, cf), 12P», , of&, and I2P f/t 2f) levels.

sider only the dynamic hyperfine effect in the 2P
states. A separate analysis performed as part of
this work indicated that the dynamic hyperfine in-
teraction in the 3d and higher muonic states is
quite small (&300 eV in the M states). These ef-
fects, although small, were included in the final
analysis. An energy level diagram of the observed
muonic states is shown in Fig. 7. In the figure, the
dynamically mixed 2P levels are shown along with
the positions (indicated by dashed lines) at which
the levels would occur in the absence of the dy-
namic interaction.

To obtain approximate nuclear charge parame-
ters for "'Os so that, for example, the "unper-
turbed" binding energies of the 2Pg/2 and 2P, &, mu-
onic states can be computed, it was convenient to
assume a specific form for the nuclear charge dis-

tribution and adjust the parameters of that dis-
tribution until the 1s,&, muonic binding energy was
reproduced. For this adjustment the K and I. tran-
sitions which involve the ~2P, /„O', F = —,') state
(lines 1 and 8 in Fig. 7) were used since this state
is the 2P state least affected by the dynamic quad-
rupole interaction. A three-parameter Fermi dis-
tribution [Ref. 17, Eq. (8)j was used to represent
the nuclear charge distribution. In this model P
was fixed at 0.1V, a reasonable value in terms of
the measured B(E2;0'-2;).""The pa. rameters c
and t were adjusted to fit the observed energies of
transitions 1 and 6. In this adjustment, correc-
tions were included for quantum electrodynamic,
nuclear polarization, electron screening, and rel-
ativistic effects. ' Such a. procedure allows an ap-
proximate representation for the monopole part of
the nuclear charge distribution to be extracted
from the observed spectra in spite of the presence
of the large dynamic quadrupole interaction.

The second step in the analysis was an iterative
process in which the coefficients W""' of Eq. (5)
were varied to fit the hyperfine splitting of the 2P
states as obtained from the observed Sd-2p and 2P-
1s transitions. This involved making an initial
guess of the values of the coefficients [guided by
measured quadrupole moments or B(E2) values and
employing Eqs. (17), (18), and (20) "I followed by
a diagonalization of the Hamiltonian matrix of Fq.
(5). This diagonalization yields mixed wave func-
tions which are then used in a cascade calculation
to compute the expected x-ray intensities and ener-
gies for that set of O'" '. The procedure follows
the calculational techniques discussed in Ref. 5,
except that matrix elements are varied indepen-
dently rather thar. being calculated from a specific
nuclear model.

When an approximate fit to t;he 2P hyperfine
structure was obtained, the monopole charge pa-
rameters e and t were slightly adjusted to correct
for the small quadrupole perturbation of lines 1 and
6. The procedure was iterated until a best fit to
the entire experimental spectrum was obtained.

Table II summarizes our results for the mono-
pole part of the nuclear charge distribution of
'9'Os. Also given in Table II are the calculated en-
ergies of the "equivalent" muonic transitions in the
absence of the dynamic quadrupole interaction, the
parameters used to fit the muon-generated radial
potential, and the sensitivity C~.

In "'Os the dynamic quadrupole interaction is
dominated by the first excited nuclear state (I' =2',
E =205.8 keV). The second excited state (I'=2',
E = 489.1 keV) was included in the calculations but
because the excitation energy of this level is far
removed from the unperturbed 2p fine-structure
splitting energy (=153 keV), the influence of this
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TABLE II. Parameters derived from the monopole part of the nuclear charge distribution
of ' Os. The "equivalent" transition energies listed were calculated from the monopole part
of the charge distribution in the absence of the dynamic E2 interaction (see text). The errors
given for g and R~ Qisted in parentheses) represent only the experimental errors and do not
include theoretical uncertainties, i.e. , those due to nuclear polarization. The parameter n
was obtained from the prescription given in Ref. 13.

Equivalent transition

2P & /2- 1~ i /2

2p3/; —fs
3d3/2-2p
3d3/2-2p3/p
3d5/p- P3/2

Equivalent energy

5373.49 (50)
5526.85 (50)
2302.51 (20)
2149.16(20)
2 180.98 (20)

2.2929
2.3073
3.6172
4.0206
4.0206

0.1445
0.1445
0.1445
0.1445
0.f445

—1 .650 x 1 0
—1.582 x 10

f.235 x 10
1.822x f0-2

1.803 x 10 2

n (fm ') Cz (fm jkeV) R„(fm)

6.9198(8)
6.9209(8)
7.011(2)
7.037 (4)
7.037(4)

state on the observed spectrum is small. Hence,
it was not possible to determine from our data the8'"' ' which involve this state. Nevertheless, the
state does have a slight influence" and its effects
must be included in the calculations, at least ap-
proximately. We estimated the relevant 8'"' ' for
this state (see Table III) from measured B(E2) val-
ues' o and the theoretical quadrupole moment via,
Eqs. (17), (18), and (20).

In order to limit the number of fitted 8' "' ' to
two, use was made of the similarity of the (2P, &,-
2p, &,) and (2p, ~,-2p», ) muon kernels as illustrated
in Fig. 1. According to calculations using various
model charge densities, the difference in the W '" '

which involve the two kernels is less than 1.0%.
Furthermore, this difference is insensitive to the
choice of nuclear charge model used in the calcula-
tions. '4 In the present calculations using a three-
parameter Fermi model the (2p, &,-2p, &,) kernel is
la, rger by 0.4%. We have constrained the 8'"' ' us-
ing this numerical value.

The values of the 8'"' ' and R derived from the
"'Os data are given in Table IV. The error values
given in parentheses result from the following con-
siderations. First, there is experimental error
due to uncertainty in the determination of the hy-
perfine structure. This error contribution was de-
rived from the least-squares fitting routine used to
determine the fitted 8'"' ' and took into account the

TABLE III. The W " ' and M " ' relevant to the sec-
ond excited state in Os (see text). The M '~ were
taken from Refs. 18—20 and 23.

correlation between the fitted elements. Second,
there is error due to uncertaint:y in the W "' which
involves the second excited nuclear state. This
error was estimated by individually varying the
W "' ' involving this state by 101 and refitting the
data. The final error is due to nuclear polariza-
tion and is perhaps the largest source of uncer-
tainty in the present work. This error arises from
two considerations. First, nuclear polarization
corrections cause the measured matrix elements
to be renormalized by a few percent. " We have
chosen this renormalization factor to be 1.04
+0.03, in agreement with values given in Ref. 6.
Second, because the nuclear polarization correc-
tion in the 1s,/, muon state has a significant un-
certainty, there exists an uncertainty in the de-
termination of the monopole nuclear charge dis-
tribution and consequently a slight uncertainty in
the 2p fine structure splitting which is computed
using this charge distribution. The uncertainty in

TABLE IV. The W ",M ",and R for ' Os. Only
the 8' ' involving the (2p3/2-2p3/2) muon kernel are
given. Those involving the (2p&/2-2p3/&) kernel are 1.004
times larger. The M " were obtained from the Cou-
lomb excitation data of Refs. 18—20 and 25. The equiva-
lent quadrupole charge radii R are given fox the transi-
tional 0'

2& and static 2& 2& nuclear charge densities.
Only an upper limit is placed on the static R~ since the
value given for M " is not compatible with the measured

in this case (see text). The parameters of Eq. (15)
used to represent the muon-generated quadrupole radial
potential were the "best fit" values discussed in Sec. HI.
The sensitivity of R is M '~ dR /d 8' " = —1.5x f0
fm4.

0' 2'

2' —2'
1 2

22-22

~(ff')
(x10 fm )

2.25

6.75

2.26

M {i$')

(xl0~ fm2)

0.45(i)

1.34(6)

0.45

2+
1

21~ 21

7.07(21)

6.55(58)

gr (cc )

I-I' (x10 ~ fm )

M
(from Coul. excit. )

(x10 fm )

1.43(2)

-0 ~ 66 (26)

Rm

(fm)

7.27 (22)

=5.8(~)
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the 2P fine structure splitting due to the uncertain-
ty in the nuclear polarization was estimated to be
400 eV. The 8'"' ' were refitted using this change
in the 2P fine structure in order to determine the
uncertainty introduced by the effect. The final error
quoted in Table IV is a quadratic sum of all the
sources of error discussed above.

VI. DISCUSSION

It is evident from Eq. (5) that the calcula, ted hy-
perfine structure depends upon the relative phases
of the W "' for the various states. The phase de-
pendence is similar to that encountered in. the
analysis of Coulomb excitation experiments. -"

However, in the case of the muonic dynamic hy-
perfine interaction, information can be derived not
oniy from the observed hyperfine energy separa-
tions but also from the relative intensities of the
var ious hyperfine components. When the experi-
mental data are of good quality, this additional in-
forma. tion can be used to decide among the various
pos s ibie relative phas es.

In the nuclear reorientation measurements of
Ref. 26 two phase combinations" gave equally sat-
isfactory fits to the "'Os data and therefore a
unique determination of the sign of Q,.was not pos-
sible. We found, when analyzing the muon c x-ray
data, that hyperfine structure computations which
used the phase combinations that correspond to a
negative quadrupole moment for the first excited
2' state gave significantly better agreement with
the observed hyperfine transition intensities than
did those with a positive quadrupole moment
(iI'/degree of freedom =1.1 and 9.5 in the
two cases). Therefore, we are able to determine
that the sign of the quadrupole moment of the first
2' state of '"os is negative.

In comparing the values of R and R~, it is clear
that the 0'-2' transition quadrupole charge density
is concentrated near the nuclear surface. This ob-
servation is consistent with electron scattering re-
sults from spherical nuclei" and. with results of
muonic x-ray studies of strongly deformed rota. —

tiona, l nuclei such as tungsten. "
Simila. rly, a value of R can, in principle, be

computed for the static (2'-2') quadrupole charge
density of the 2' state by combining the 8'"' ' mea-
sured in this work with the value of M "' for
this state derived from Refs. 25 and 26. However,
when this procedure is attempted, no physical so-
lution for R can be obtained, indicating that the
value of Q,. reported in Refs. 25 and 26 (-0.5 b) is
inconsistent with the W "' ' measured in the present
work. With presently available data, we are there-
fore unable to derive a value of R for the 2' state
of 1920s

Hov ever, if we assume, following the prediction
of the rotational model, that R for the 2' state is
equal to the value of R obtained for the 0'-2'
transition charge density, it is possible to derive
a value for M "' ' and consequently a quadrupole
moment for the 2' state from our data. With this
assumption we obtain a value Q,.= -1.0 b. We note
that this value lies between the rotational model
prediction (-1.3 b) and the prediction of the triaxial
model " (-0.8 b) but is not in agreement with the
prediction of Kumar and Baranger" (-0.36 b).

In order to resolve the discrepancy noted above
and to exploit the full power of the proposed method
of quadrupole analysis to provide insight into the
radial distribution of the quadrupole charge densi-
ty, it is clear that a remeasurement of Q,.- is de-
sirable.

Note added in Proof. A recent Coulomb excita-
tion measurement [P. Russo, D. Cline and J.
Sprinkle, Bull. Am. Phys. Soc. 22, 545 (1977) and
P. Russo, private communication gives for "-'Os
a value Q,+= —0.81(15) b. Combining this value
with the 8' "' measured in the present work yields
R 5 6 3 l fm for the static quadrupole charge
density of the 2' state. Although the uncertainty
is large, this value is reasonably consistent with
the value observed for the 0'- 2' transition charge
density.
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