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A variety of approximations are investigated which allow us to estimate rather simply the dominant dipole

part of the Coulomb-excited nuclear polarization corrections to the p,-4He atom in S states. In particular,

the unretarded dipole approximation provides an effective upper limit to this correction and lowest-order

Coulomb corrections have been calculated in this approximation. We find that —3.1 meV~20%%uo is a
reasonable estimate for the complete result.

INUCLEAR STRUCTURE Polarization corrections; muonic atoms; 4He. j

I. INTRODUCTION

The recent elegant experiment by Bertin et al. '
combines the diverse ingredients of lasers, atomic
and nuclear physics, and quantum electrodynamics.
Muons stopped in a helium target can form me-
tastable ions in the 2S state; these mere excited by
a laser to the 2P-,' state and the x rays from the
subsequent decay to the 1S state mere detected. A
measurement of the resonant laser energy pro-
duced aE(2P23 —2S-,') =1527.4~0.9 meV. A variety
of theoretical ingredients are required in order to
calculate aF. . A minor role is played by the well-
known atomic fine-structure splitting (-10% of aE),
mhile vacuum polarization provides the bulk of the
result (-110'%%uq of zE). Somewhat larger than the
fine structure is the effect of the nuclear finite size
(--20%). On the scale of 1% or less the Lamb
shift' and nuclear polarization enter. In spite of the
overwhelming size of the vacuum pol.arization con-
tribution, the limits on the uncertainty of theoreti-
cal calculations are probably set by the nuclear
finite size, characterized by the mean-square
radius ( r'), and polarization corrections, since
the dominant pieces of the vacuum polarization
can be calculated very accurately. Recent calcula-
tions by Rinker' and Boric~ provide an accurate
survey of the many contributions. Rinker finds a
theoretical result aE =1813.1 —102.0(r )+I meV,
which predicts (r') ' ' =1.674+0.004 fm. Very re-
cently, Sick, McCarthy, and Whitney' analyzed new
elastic electron scattering data and deduced (r') '~'

=1.674+0.012 fm, in excellent agreement with
Hinker's prediction. The main uncertainty in
Rinker's error estimate arose from the polariza-
tion correction ~F~, and similar considerations
apply to the analysis of muonic transitions in other
elements as well. Clearly, it is important to un-
derstand the polarization corrections as well as
possible.

A variety of techniques have been used to c31-

culate 4Ep. ' Basically, the polarization cor-
rection involves all processes where the hadron
(nucleus) is virtually excited and deexcited by
photon exchange with the lepton (muon). In prac-
tice, with the exception of Ref. 8, this usually
means only the dominant Coulomb force is taken
into account. ""' In light muonic atoms the non-
relativistic approximation is generally made for
the lepton as well, since binding energies are
typically kilovolts compared to the muon rest mass
of 105 MeV. This does not imply"'" that inter-
mediate-state muon energies are also small and
we will comment on this later. In addition, Cou-
lomb distortion effects on the muon mave function
are not large and are sometimes ignored. '

One of the more popular exercises'" recently
has been to investigate the form of the effective
potential which arises from two-photon exchange
for large separation r of the lepton and hadron.
The effective long-range polarization potential is
found to be V,'"(r)--on~/2r', where o is the fine
structure constant Bnd ~~ is the nuclear electric
polarizability. %his result illustrates a number of
important points: (1) while the potential is not
localized in the nucleus, it falls off rapidly outside
the nucleus; (2) the dominant nuclear physics in-
gredient in any calculation is likely to be the elec-
tric polarizability or something closely related to
it; (3) because of (1), the polarization corrections
affect primarily the S states; (4) attempts to cal-
culate ~E~ from V~" for S states must involve a
cutoff if a finite answer is to be obtained; (5) the
potential is attractive.

Our primary objective in this work will be to
shed some light on the results of previous calcula-
tions of zF~, which are quite different in approach;
in particular, we will investigate the virtual dipole
excitations in the nonrelativistic approximation,
which are known' to dominate the overall Coulomb
part of ~E~. Within this framework an effective
upper limit for the polarization correction for S-
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state energies can be achieved using the unretarded
dipole approximation, which has been somemhat
useful in calculating dispersion corrections for
lom-energy electron scattering. "" Keeping only
first-order Coulomb distortion effects me mill find
for S states

&E,"= ~u —
I y(0)l'[o, g. +go~2p, (o', +ac, )],

where

g ), —= (d 0'~b3 (d dh) y

th

0' ),
= (d EF~b3 43 ln +A 2p. (d d4P ~

th

[These are Eqs. (26a) and (26c) of Sec. III.] In this
expression p. is the muon-nucleus reduced mass,
y(0) is the muon wave function at the nucleus,
o~&»(~) is the total photoabsorption cross section
of a nucleus for a photon mith energy ~, g is the
proton number, and a is a state-dependent con-
stant. Since g, is essentially proportional to ~~
and p,~, is a closely related quantity, observation
(2) above is confirmed. Both quantities may be
deduced from recent experiments. "'" This equa-
tion is one of our primary results; note that no
cutoff is needed. More accurate numerical results
than those given by Eq. (26) will be obtained by re-
laxing the unretarded approximation and will con-
firm the results of Hinker' and Bernabeu and Jarls-
kog s

II. GENERAL FORMALISM

Our primary assumptions in this work will be:
the nonrelativistic treatment of both the muon and
nucleus, and the ignoring of all but the static Cou-
lomb interaction between the tmo systems. The
first step" is to separate the Coulomb interaction
into a piece Ho mhich is elastic mith respect to the
nucleus and a piece ~, which generates only nu-
clear transitions. The first piece is treated to all
orders by including it as part of the unperturbed
lepton Hamiltonian, and it generates the usual
static hydrogenic spectrum modified by the nuclear
charge distribution plus recoil corrections. " The
second piece ~, generates nuclear transitions and
is treated perturbatively; it contributes to the en-
ergy in second- and higher-order perturbation the-
ory. Because both the nuclear finite size and the
nuclear polarization generate small corrections, it
is sufficient to restrict ourselves to a second-
order treatment of ~, and to ignore the nuclear
finite size while doing so. With these assumptions
the polarization correction in the lepton-nucleus

center-of-mass frame becomes

gE, = Q &0 I ~.l pr &

N~0

~E = g &o'
I ~, I

hl'& G(-E„)&~l nH, I
o'& . (2)

N ~0

A more useful form may be obtained by noting that
the nuclear matrix element &Nl ~, I 0) is just the
lepton transition potential 6 V„(r), where r is the
vector from the nuclear center of mass to the
lepton. This leads to

aZp= ~ a~N r t"c -F.Nir, r' ZVN r' (3)

in an obvious notation which emphasizes the lepton
coordinate. We wish to evaluate ~F~ for four spec-
ial cases: (a) ignore the Coulomb attraction in the

lepton states and use the nonrelativistic equivalent
of the nuclear model of Bernabeu and Jarlskog
(denoted BJ); (b) ignore Coulomb effects and use
dipole nuclear states only; (c) ignore Coulomb ef-
fects and use the umeIa~ded dipole approximation;
(d) work in the unretarded dipole approximation
and include first-order Coulomb distortion effects.

We begin our discussion by ignoring Coulomb
effects in the Green's function G„. in this limit G,
is essentially the nonrelativistic free Green's
function for complex momentum. We find that G,
-G.= -v, exp(-~„l r —r' I)/2vl r —r' I, where K„
—= (2p,E„)' . The first observation is that y„ is a
number which varies roughly from —,'--," over the
region of the intermediate nuclear spectrum which
can be expected to dominate the polarization cor-
rections; furthermore, the exponential is small
unless r and r' are «&g&~p equal. Clearly the
latter situation becomes a better and better ap-
proximation as FN increases. Therefore, as a
rough approximation we may write G, -=X5'(r- r')
and, integrating with respect to r, we find X = -1/
E„Substitutin. g this result into Eq. (3), we ob-

&ÃI ~II. I
o &, (1)

- n &O &n

where we have labeled by I N& each internal nuclear
state mhich has energy ~N mith respect to the nu-
clear ground state, and by I n& each lepton state in
the center of mass which has an energy g„. In ad-
dition, I

0'& is simultaneously the ground state of
the nucleus I 0) and the unperturbed atomic state
I i &, which we denote by p(r) in coordinate space;
the latter state has an energy eo. We have written
the lepton intermediate state I n& in a way that em-
phasizes that the bracket contains the Coulomb
Green's function. "" Defining E„=sr„—eo (&0),
the Green's function is denoted G(-E„) and we may
rewrite Eq. (1) in the form
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tain the semiclassical approximation

nz, = &f I v„(r) I f &, (4a)

i „(r)= +&01~,(r) ~,(~.)l 0&, (4b)
/~0 ~0-~~

o( (f q, q. , „( )p q
q

(5a.)

(5b}
which has the classic form of a polarization poten-
tial and is the "A" term of Ref. 9. Rather than
proceeding along these lines, it is profitable to
Fourier transform the matrix element in Eq. 3
(using G, ). We also write ~, in the form

where p(r} is the nuclear charge operator, and
its Fourier transform satisfies P(q =0)=Z. We
also define f exp(iq r) (t((r) d'r to be (t((q). We
obtain

(4r)'o' ~, . . .-„&oIp(-q')I && &l(fl P(q")I o&

1~0 @ +9
(6)

n.Eo=-Bo'I y(0)l' . '; (i&g, (Ba)
o q ~,„~+(f

mhere

w'. (e, ~) = Q I&h'I p(q)l o& I'6(~ —~~)
g&0

(Bb)

is the usual inelastic Coulomb response function
obtainable from electron scattering~'" above the
inelastic threshold &u„,. We will evaluate Eq. (8)
using a crude model in Sec. IV.

Equations (7) and (8) demonstrate the fact that
the convergence of the q integral may be drastic-
ally altered by approximations and that the model

One of the primary approximations used in Refs.
6 and 8 (besides the replacement G, -G„.) results
from the recognition that the momentum compo-
nents of the atomic wave function p are confined
to reasonably small values. For the 1S state, for
example, P(q)-P/(q'+P2)', with (8 =P&p roughly
an MeV in size for p-He. All the other energy and mo-
mentum scales in Eq. (6) are considerably larger, and
thus p(q}=0 unless q=—0. The expression for p
above is an adequate representation for a 5 func-
tion provided P is small and we may approximate
&(((q) by p(0)(2w)'6'(q) for any S state. For lack of
a better name, me will call this low -Z approxi-
mation the wave function app~oxin~ation, mhich
simplifies Eq. (6) to the form

~E 2
'

I @(0}l.~ d'ql&&lp(q)l &

(( ~~ q4((u„+q'/2p)

after dropping &0 compared mith u„, this is the
nonrelativistic version of the model of Bernabeu
and Jarlskog. ' The comparison is most easily
made by dropping all magnetic (transverse), re-
tardation, and other relativistic effects in the re-
sults of Ref. 8 and re(writing Eq. (7) in the form

dependence of the r(: ul (iE~) depends in a signifi-
cant way on the extent to which the q dependence of

W, is needed to cut off the q integral. Because me

are dealing only with inelastic virtual transitions,
the threshold behavior of W, is determined by di-
pole states and g, -q' for small q'; thus there are
no small-q (infrared) problems with Eq. (8). A

natural approximation would be to ignore the q'
dependence of the denominator. This is the same
as Eq. (4b) after the wave function approximation
and places the burden of convergence on W, .
Clearly, results obtained using this approximation
could be quite model dependent. Furthermore, for
small IL(, some damping must be provided by W, or
the nonrelativistic approximation mill be completely
inadequate for lepton intermediate states. This is
the case for electrons. "'" For muons, p, is suf-
ficiently large that the denominator in Eq. (Bc}pro-.
vides most of the convergence needed in the non-
relativistic regime.

Experience'~'" has shown that dipole excitations
are the most important in calculating polarization
corrections. For nuclear transitions from spin-
less ground states to 1 states, angular momentum
considerations lead to

&Nl p(q)l 0& =iq ~ D~oFN(q2),

where F„(0)= l and D is the nuclear dipole oper-
ator. The unretarded dipole appxoxi mati on consists
of neglecting I „; although it is clearly incorrect
for large q', it guarantees the correct threshold
properties. Furthermore, it relates the matrix
element of p to photoabsorption, s4nce at lorn pho-
ton energies the unretarded dipole approximation
is excellent and current continuity" then relates
current matrix elements to D„„. An alternative
derivation of the same result in coordinate space
is instructive. We expand I r-r„l according to
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its angular momentum content and keep only / = 1
components. We find

l r-r„l '-=r ~ f„r,/r, ',
where r, and r, are the smaller and larger of l rl
and l r„l. If we keep only those terms where the
lepton is outside the nucleus, we can approximate O'1Kb(((d) = 4(f n pl Dpro l (d5((d (drr) r

N~0
(18a)

and a further simplification results if we note that
the cross section for photoabsorption in the un-
retarded dipole approximation is given by

=r ~ r«/r = -r« ~ v(I/r) r (10) and consequently

and it is easy to show using Eq. (5) that this is
identical to the unretarded dipole approximation ~

Introducing Eq. (10) into V„, Eq. (4b), leads im-
mediately to V&", since ne-=2np„„ol&ÃlD, l0)l /(d«.

Our primary task is to investigate the dipole con-
tributions to zp~. A common and very useful ap-
proximation is to assume' "that E„(q') is a uni-
versal (this is, transition-independent) function,
F(q'); this approximation has some limited the-
oretical validity" and we will use it. Further-
more, angular momentum constraints allow us to
write ppr. ol&&ID ql 0) I'=gpr. .l&&ID.I 0&l q', and
consequently

nE =-8 'I @«)I'+ID„,I'
ao d Fot 2)

pro o (dN +q /2&

a' „—= aabs e CO d(u — ~ e DN0 CuN 13
~1h N~0

so that

tpEp =-~tpnl(p(0)l'c 3/2 /)r (14)

~E; =-,. I y(0)l'
O'1Kb, ((d) d(d " d(IF'(q')

40 0 g +2/, 4)

(15)

Because the integrand in Eq. (11) is positive de-
finite and F'~1 for any nonpathological form fac-
tor, Eq. (14) is essentially an upper limit for the
dipole part of ~F~ within the framework of our
approximations; that is, l tpEp l &l aEp l.

~p- r)~n I((o)i (==)'"
*pl

*I-'r*)/ (12)

Dropping the q term in the denominator is equiv-
alent to calculating the matrix element of Vp("(r) in
the wave function approximation. Numerical re-
sults for Eq. (11) will be calculated in Sec. IV.
This equation is the analog of Hinker's calculation
if we neglect Coulomb distortion and relativistic
effects. A very useful result is obtained if we
make the unretarded dipole approximation. Using

f,"dq[(d„+q'/2'] '=(r[lp/2(d„]'/', Eq. (11) can then
be written in the form

III. COULOMB CORRECTIONS

In the previous section we derived the nonrela-
tivistic, no Coulomb distortion results correspond-
ing to those of Hefs. 3 and 8 as well as an effective
upper limit for the dipole case. In this section we
will derive the Coulomb distortion corrections of
order (Zn) and Zn ln(Zn) to the unretarded dipole
polarization correction for S states. We use Eqs.
(8), (5), and (10) in the dipole approximation and
project out the /= 1 part of the lepton Green's function
to obtain

nEup'=4)rn' Ql D'„, l'
g(-(d r r')

dr dr'(P(r) "', '
(P(r'),

0
(18)

where the dipole Green's functiong(-E;r, r') sat-
isfies the equation (with l =1)

1 d' l(l +1) Zn
2p, dr 2pr

= 5(r r') . (17)-
At no extra cost the multipole Green's function g,
can also be obtained for all / by applying the usual
conditions of regularity at the origin and at infinity,
continuity at r =r, and a discontinuity of first de-
rivatives at r =r' of amount 2p, in order to obtain
the right-hand side of Eq. (17). The solutions of

the homogeneous equation are the Whittaker func-
tions M„„»,(r/P) and W„„,/, (r/P), which are
regular at the origin and infinity, respectively.
We have defined « =Zn((p/2E)'/' and P = (8(pE) '/',
assuming that F. is positive. Using the Wronskian'
MdW/dr —WdM/dr =-I'(2l +2)/pl'(l + 1 —«), we
immediately obtain

r(l+1 —«)g((-E; r, t') = 2l(l3 F(2l-+ 2)

xMK((+1/2( &/tl) WK, (+i/2(r&/P) (18)

where r, and r, are the lesser and greater of r and
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Given this relation and explicit forms for the
multipole transition charge density, the integral
in Eq. (3) can be done numerically in a brute force
manner. Gur interest, however, is directed at a
variety of approximation schemes.

In this regard, particularly useful is identity
6.669.4 of Ref. 23 which allows us to write

g, ( E; r-, r')

=-2g~rr' dx exp —r +r' cosh x 2P
0

,„(, )
sinhx~rr'

p

(19}

Our primary interest lies with the 1S and 2S states
and for these states the following general identity
for S states is simple and useful:

where the analytic result follows from integrations
by parts and Spence function identities"; since the
Spence functions cancel from the final result, more
elementary means presumably exist for obtaining
the integral. For a =0, the integral (21b), I~, may
be shown to possess a logarithmic dependence on
X and X'. Consequently great care must be exer-
cised, and one finds by a very tedious application
of integration by parts and partial fractions that

I~=2p(l+2p(). +X') In[2p(X+X')]+0(Zn)'}. (23)

For the two special cases, X =X'g0 and ~ =0, as
well as X =V = 0 and i. w0, the integral (21b) was
evaluated numerically for a range of small values
of the parameters and compared to the results (22)
and (23). The differences were quadratic in the
parameters and the coefficient of the parabola was
not large, indicating that the expansion is probably
a good one. We thus obtain

y„s(r}=—y(0) Pre 'I z=x
- j.

&a
BA,

(20a)

(20b)

I„= 2P(1 +2P(X+X') ln[2P(X+X')]

+~(2 ln2 —1)j +O(Za. }', (24)

where X„=Znp/n, ao—= 1, and . a", = (n —1)X„. In ad-
dition a,"-(Zn)'. Inserting Eq. (19) into Eq. (16)
and using identity (20} for both initial and final
states ().' and X, respectively), we obtain for I = 1

and performing the X derivatives we find

n E", = Svn'-(-.'g)'"
I y(0)l' Q „";„(I+~„),

g&0

(25a}

SE~p =-Szn')y(0)('P~P~, Q) D„*,['I„, (21a)
+&0

I„=
3

dx . ' z'(x), F,(2, 2, 4;z(x)),P
" coth" (-,

' x)
shah x

(21b)

z(IS}=4pk, ln(4pX, ) +2pX, (2ln2 —1}

= 4pX, ln(8pX, ) —2px, ,

a(2S) =Spa, In(4pX, ) + 5pa, + 4@., (2 ln2 —1)

=8/X ln8PX, +PA,

(25b)

(25c)

lnx, 1-x
I„=Px dx, '2x+(1+x') ln

0 X 1+x

= 2Px(2 ln2 —1}, (22)

where z (x) = sinh2(x)/ [2pA. +cosh(x)] [2pX' + cosh(x) ].
The Gauss's hypergeometric function may be ex-
pressed in the elementary form -6 [2z +(2 -z}log(l
-z)]/z'. Although the integral is difficult, our
interest extends only as far as the terms of order
Zn and Zn ln(Zn). The possible logarithmic terms
are a serious complication since a power series
expansion in Ze would not exist. The Zz-depen-
dence of I„resides in three places: in ~, A, , and

The derivatives implicit in P cannot change the
order of a given term since the coefficient of (s/
sX)' is (Zn)', although a, term such as (Zn)' lnZn
can be converted to (Zn)'. We first observe that
the integral (in z) becomes quite elementary when

g =A. =X' = 0 and we find that I„=2P in this limit and
reproduces Eq. (12}. For small K (and X =A' =0) a
power series exists and the first term I„has the
form

Using Eq. (13) we obtain

n.E", = -~~u. —
I y(0)l'(o, I, +Zn~p (o', +ao, ))

(26a)

a(1S) = —,', a(2S} = ln2 —,'-, (26b)

th

(x&'b, ((u) (u "In(Zn(2p, /(u)'I'}du)

-=g „In[zn(2p. /(o)'I'], (26c)

where the last relation defines (d. We will see in
Sec. IV that u -= 30 MeV and thus the logarithm in

Eq. (26c) has the value -3.25. Consequently the a
term is quite small and similar in size for the 1S
and 2S states. Using the fact that ~p(0)~'=(pnZ)'/
m~z', we see that the polarization corrections for
the 1S and 2S states should differ almost exactly
by a factor of 8; this result agrees with Rinker.
In addition we see in Eq. (26) the natural emergence
of the wave function approximation as a low-g
limit.
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In Sec. IV we mill estimate Coulomb corrections
to forms of ~E~ which did not involve the unre-
tarded dipole approximation. This will be done by
using the factor (I +I,„}inside sums over states.
Although this is only correct in Eq. (25), it is
probably a reasonably good approximation in gen-
eral.

IV. RESULTS AND DISCUSSIQN

We will discuss and evaluate the various approxi-
mations we have developed in the opposite order
we presented them. As we discussed in the intro-
duction and as emphasized by Bernabeu and Jarls-
kog, ' the value of the electric polarizability or,
equivalently, 0, in the unretarded dipole approxi-
mation, "is crucial in determinations of ~E~.
Early experimental determinations of p, for
'He (73+4x10 ~ fm'/MeV} are in agreement with
recent efforts" (72+4x10 ' fm'/MeV), where all
five photodisintegration channels were separately
detected, measured, and summed. It was found
that only the well-measured (y, p) and (y, n) chan-
nels contribu e significantly to 0 „and the contrib-
ution from multipoles higher than E1 is probably
very small. Rinker has developed a simple param-
etrization of the photoabsorption cross section and
his form leads to o, =75x10 ' fm'/MeV. His
value for o, is 23.Vx10 ' fm', mhile Arkatov et
al."find 24.5+1.5x10 2 fm'. For reasons of con-
venience we mill use Rinker's parametrization in
what follows.

Although the semiclassical unretarded dipole
approximation to ~E~ ' is divergent for S states,
a reasonable assumption for a cutoff produces" a
value --7 meV for ~E~. Our unretarded dipole
approximation [Eq. (14)] yields -4.76 meV without
Coulomb corrections (o 3' ——4.14x10 2 fm2MeV '~2)

and -4.19 me V with Coulomb corrections (g = 30.1
MeV) using Eq. (26). This is a reduction of about

12/(} and agrees with the estimate of Ref. 10 based
on the results of Ref. 9.

We must remember that Rinker's calculation
used the Dirac Hamiltonian IID for the muon and a
Breitlike equation" for the muon. -nucleus system;
that is, the complete Hamiltonian was taken to be
H =HD +H„+bHc, where H„ is the (nonrelativistic}
nuclear Hamiltonian. Aside from the transverse
electromagnetic interaction not included in ~~,
this differs" somewhat from the approach of Ref.
8. We can estimate roughly the effect of relativis-
tic kinematics in the wave function approximation
by writing p(r) =p„R(0)(1,0, 0, 0) where the latter
construction is the four-component spinor and (I5„~
is the nonrelativistic muon wave function. The
Green's function becomes [Z - (a p+tlm) -v„] '
= (E -~„+u .p+ J3m)/[(E -~„)'-p'-m']-G„'(p')

=-(1—(u„/2p, )/(-(o„'/2p, +p'/2p+(o„), where we
have used (n} =0, (p) =1, E =m, and have replaced
the muon mass m by p, the reduced mass. We may
utilize this result by replacing (q'/2p +&u„)

' by
-G„'(q') in Eq. (11); for &„«2p they are identical.
The denominator in the final expression above can
vanish if (d„&2p, and could produce an imaginary
part of the amplitude for the scattering of zero
kinetic energy muons. This is clearly impossible
and is caused by Brown's disease, ~ a defect of
relativistic Breit-like equations. " In our case

«2p, , so the problem is more conceptual
than of numerical importance. As before, the un-
retarded dipole approximation can be evaluated
and the q integral produces v[p/2m„]'~'(I —u„/
2p)'~ =v[p/2'„] ~'(I —~„/4tL). The correction
factor modifies Eq. (14) to the form

With the Hinker parametrization we find o,~2/
(4po, ~, ) =0.083 and this correction agrees well
with the unretarded dipole result obtained using
G„'(q ) in Eq. (12) and including Coulomb correc-
tions, -3.82 meV. These relativistic corrections
are therefore not particularly large.

Using the dipole form factor reduces this result
considerably. Various forms may be used. The
Goldhaber- Teller model" ~ of the giant dipole
resonance predicts that E =I „ the ground state
elastic form factor: that is, (N ~ p(q}( 0)
=tD„O qFo(q ), and sum rules29 suggest a similar
behavior. The transition charge density in this
model is proportional to dpo(r)/dr, while Hinker
uses rdpo(r)/dr The lat.ter form is harder to
work with, except for a Gaussian p~(r), where
one obtains a modified Gaussian form F(q )
=F,(q'), F,(--,', —,'; —,

' q'(r')). If the confluent hyper-
geometric function, F, is expanded to first order
in q', it has the same effect as a 20/(} increase in
(r') in the Gaussian F,=exp(- —,

' q'(r')). Indeed,
the modified Gaussian results obtained using Eq.
(12) are virtually identical to those obtained using'
a Gaussian F with (r') =(1.65 fm)'-1.2(r'). The
Gaussian results for the no-Coulomb, Coulomb-
corrected, and Coulomb-plus-relativistic correc-
tions are -3.21, -2.83, and -2.6V meV, respec-
tively, while the corresponding modified Gaussian
results are -3.10, -2.73, and -2.58 meV. Fermi
distribution form factors calculated using the
analytic expressions of Maximon and Schrack37
and the parameters of Rinker, which produce the
same (r') used above with the Gaussian, generate
results virtually identical to the Gaussian ones.
We conclude on the basis of these results that
models with the same (r') should produce very
comparable results for ~E~~. By varying the size
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W, (q, (o) =5((d —q2/2ru„— (d, h) F(q2}, (27a)

&"(p) = Q)iv) p(ul 0)I'

= &o I p(-q) p(q)l o) -z'F, 'Cq'),

and assume the usual space-symmetric shell
model for the ground state, which produces

(27b)

F(q') =z -z'F, '(qq') +z(z —1)c(q, -q), (28)

with C (q„q, ) =Col e'~) 'ie' 2 "2
I 0), where x', and

x', are the coordinates of nucleons one and two.
For the hyperspherical model, ~ or equivalently
(for 'He) the harmonic oscillator model, " the func-
tion C may be directly related to F, in the form
C(q„q, ) F,(q, '=+q, ' —-', q, q, ) and thus C(q, -q)
=F,(-', q'). Writing F,=exp(-+q'& r')) determines
I in terms of a single parameter. It is important
to observe that the dipole states determine the
low-q behavior of F(q'). WehaveF(~q) -(-, (r')}q'
and t w, (q', (u) (d" d(u-(u, „"I'(q')-~,„"(—,&r')}q*.
particular, we may obtain ae = q

' f (W, /&u) d(dl, 2

=2a(-, (ra}/(d)„. If we choose (r') to fit ae (14
X10 ' fm'/MeV), we have in effect guaranteed that

parameter ( r') in the Gaussian form factor we also
find that nE~ is highly sensitive to & r') only for
small values of that parameter; it is much less
sensitive and therefore less model dependent over
a rather wide range of values bracketing the physi-
cal values associated with F, and falls off as 1/
&r')'~' for large values.

In developing the unretarded dipole approximation
(( r~) =0) we showed that the final result was pro-
portional to g,&,. The dipole approximation in the
opposite limit ( r') -~ is proportional to g, since
only very small values of q' contribute [F"=-0 in
Eq. (15) if q'&(:0]. Ciearlv the physical situation
lies somewhere in between. Binker parametrized
the coefficient of c)'((d) in Eq. (15) and found an
effective value X(((),„/(())". With this form and
Rinker's value of A. we obtain -2.41 meV for b F~,
in good agreement with Rinker's value of -2.38.
Our own results indicate that a fit of the form ~
is somewhat rough and that y is slightly smaller
than 1.7.

The calculation of Bernabeu and Jarlskog (BJ) is
the most complete attempt to calculate ~E~ in the
absence of Coulomb distortion and at the same time
relate the nuclear physics information required for
the calculation directly to experimental data. We
have done the same thing in Eq. (8) on a less
sophisticated and more transparent level. In order
to evaluate the integrals in Eq. (8}, BJ use a quasi-
elastic model for W, (and the corresponding trans-
verse form factor) which they claim adequately
agrees with available experimental data. They
write, for example,

F-&OI p(-q. ) p(q, )I o) -F.(q, ')F.(q.')
=zF.(I q, —q. l') -z'F.(q ')F.(q."}
—(z'-z) c(q„-q,),

and the 3th multipole part of I', denoted F„ is
given in the usual way by

1

F,(q') =-,'(2&+I) F, (x)F(q';x)dx,
-1

(30)

(31}

where we write q, =q, '=q' and q, q, =q'x. Defin-
lQg

h(x) =(e" +e ")/x —(e" —e *)/x',

we fmd

(32)

F (q') =3e " " "'[It(-'q'&r'))+I)(- —,q'&r'))l,

(33)

the long-range part of the polarization potential
is correct. 'Ihis value of ( r') is (1.08 fm)', which
is much smaller than the physical value of (1.65
fm). ' Using the former value for the only param-
eter in the model we obtain ~E~ = -3.28 meV from
Eqs. (8) and (2'I) (all results for the BJ model will
be denoted with a prime). Because of the 6 func-
tion in energy only a single q integral remains in

Eq. (8), and 90% of this integral comes from q'
&1 fm'. ~m Ref. 8 the parameter q r-,' was modified
for q beyond -1 fm, which produced a better cor-
respondence with experimental electron scattering
data. We have not done this; it appears that this
modification would not have a large effect on the
result. Indeed, we can neglect completely any
deviation from the threshold behavior of F(q') and
simply use F(q') = (-,'ac&a,„)q'. This is the un-
retarded dipole approximation and it produces
-3.61 meV for ~~ from the analytic result

= -~2„(a/v) I q, (O)l'(o .~&h), (29)

where the term in parentheses is 0,&2
for the mod-

el of BJ, and I/p(' = I/p+I/&", )„, where m„ is the
nucleon mass. We need to examine the reason why
the unretarded result above differs so greatly
from the analogous result obtained before, -4.76
meV. This difference is almost completely due to
a peculiarity of BJ's model; if (T, is fixed, g, /,
is poorly determined. We note that for the model
of BJ, (g,&,/c, )'=(,&,„=20.1 MeV while for the
Rinker parametrization. (c,&,/o, )' = 30.85 MeV.
Rinker's results and our own suggest that one
should fix g, , for the best results for the domi-
nant dipole contribution. If one fits g,&, (Hinker
parametrization) one obtains n, E~ = -4.03 meV and

b,F~ = -3.71 meV if g, , is fit. The latter result
is a 13% increase over the AF.; fit to g,.

The dipole part of the function I may be pro-
jected out by writing
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This function E, has the same threshold behavior
as F. Inserting F, into Eq. (8) in place of F, we
obtain ~F~~ = -2.98 meV if g, is fitted while -3.64
meV is obtained if g,&, is fitted.

These various results may be understood by ex-
amining the separate forms for I: we have used.
All three forms are positive definite and have the
same threshold behavior -q'. The unretarded ap-
proximation simply continues this behavior for all
q', while the complete form in Eq. (28) smoothly
and asymptotically approaches Z as g' increases.
The dipole form I, rises and then smoothly falls
as 9/(q'( r')). Thus each succeeding form has a
smaller area under it and generates a correspond-
ingly smaller ~E~. Studies indicate that AF~ is
even less sensitive than ~/~ was to writing F

, (r')q—'F'(q') and varying the size parameter
in simple pole or dipole forms for I' required for
the correct asymptotic form. One apparent differ-
ence between the calculations of 8J and Binker is
the relatively larger contribution of higher multi-
poles in the latter calculation (-O. I meV) than in the
former (0.3-0.4 meV), if our own model calculation
corresponds to what was actually done by BJ. On

the other hand, if one uses our previous estimates
of approximately a 20/~ reduction in ~F~ due to
Coulomb and relativistic kinematic effects, there
is not an appreciable difference between (-3.1@i.2
=-3. I meV) and the result one obtains from the

BJ model while fitting g, ,
In summarizing this section, we have estimated

an effective upper limit of -3.8 meV for the dipole
part of the polarization correction, while our best
estimate is -2.6 meV, which is about 7/0 higher
than Binker's estimate. This discrepancy is not
particularly disturbing since our estimates are not
precise and the nuclear model we have used is
slightly different from Binker's model. The results
of BJ should probably be increased by about l3$0,
which corresponds to using a physical value for
g $ 7 in their calcul ation, rather than g,. At the

same time Coulomb distortion should lower their
result about 12%, leaving their result essentially
unchanged overall. In view of uncertainties in the

higher (than El) multipoles and in effective form
factors, the value" of -3.1 meV+20% is probably
a reasonable estimate of the nuclear polarization
and its uncertainty.
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