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Lovv-energy theorem for Compton scattering and the Drell-Hearn-Gerasimov sum rule:
Exchange currents*
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The low-energy theorem for Compton scattering is derived using a nonsp:cific nuclear model which includes
exchange currents and relativistic corrections. The Drell-Hearn-Gerasimov suin rule is also derived using this
model and the subtraction problem is addressed.

NUCLEAR REACTIONS Compton scattering, exchange currents, relativist, ic-
corrections, sum rules.

I. INTRODUCTION

One of the more remarkable theorems in electro-
magnetic physics is the low-energy theorem for
Compton scattering (LET) of photons. ''-' This
theorem, proven many years ago for arbitrary
systems which possess minimal invariance prop-
erties, states that the charge, mass, and magnet-
ic moment determine the photon scattering ampli-
tude in the limit of long wavelengths. All that is
needed in order to prove the theorem are Lorentz
invariance and gauge invariance of the Compton
amplitude, a nondegenerate (except for magnetic
quantum numbers) ground state, and sufficient
analyticity of matrix elements to allow long-wave-
length expansions to be made. In addition, time
reversal (or parity) invariance is assumed. As
stated by Krajcik and Foldy, ' this theorem has an
"impeccable lineage. "

Concomitant with this theorem are two sum
rules, which require additional assumptions. We
may write the amplitude for the fo~~eard scattering
of photons of energy cu in the form

f((gr) =e ~ e'f, (g) +z(uf, ((u)s ~ e'x e,
E and e' are the initial and final photon po-

larization vectors, 3 is the spin operator of our
system (nucleus), and f, and f, are the spin-inde-
pendent and spin-flip amplitudes, respectively.
Crossing symmetry requires that f, (-&u) =f,(ro)
and f,(-tu) =f,(&o), while the low-energy theorem
specifies that

Zf,(o) =
M

(2b}

We have extracted the factors of nucleon charge„
e, from our amplitude and written f in terms of the
proton number Z, nuclear total mass M~, and the

total nuclear magnetic moment )L(.. The maximum
spin component is S.

If one assumes that the amplitudes f, and f, sat-
isfy dispersion relations, it is possible to derive
sum rules. The sum rule for f, is known to re-
quire a subtraction because of the low=energy the-
orem; we will ignore this amplitude in what foll-
ows. Assuming that f,(ru) approaches a constant
at infinite photon energy, we may write

d~'
(op - o~) —,, (3)

(4)

The existence of the unsubtracted dispersion rela-
tion clearly has important consequences, since it
immediately produces a sum rule. '

Several years ago, it was pointed out' that the
use of ordinary Foldy-Wouthuysen electromagnet-
ic interactions for a composite system of "funda-
mental" particles violates Eq. (4) and that perhaps
a subtraction is necessary. It was shown by Refs.
3, 9-13 that the difficulty with the calculation of
Ref. 4 was the neglect cf relativistic effects on the
wave function of the moving nucleus, "or equiva-
lently, that the matrix elements of the charge and
current operator~ of the composite system do not
have proper Lore. 'ttz transformation proper-
ties" ", the latter properties are necessary for
the proofs of both the LET and the DHG sum rule.
Nevertheless, the subtraction question is separate
from the problem of doing the physics correctly.
There clearly exist models which give the correct

f, (O) =f,(")+
4

where P and A refer to polarized photons with hel-
icities parallel and antiparallel to the nuclear spin
in its maximum spin state, respectively. The pho-
ton absorption cross sections 0 are integrated
from threshold, sr, h. tf' f,(~) =0, the use of the
low-energy theorem produces the Drell-Hearn-
Gerasimov (DHG} sum rule'~:
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LET but require a subtraction; these models prob-
ably are not physical, however.

It is relevant to our discussion to point out that
the nonrelativistic model (plus relativistic correc-
tions) which is conventionally used, and which we
mill use, does not generate a Compton amplitude
that has sufficiently good analytic properties to
allow a conventional dispersion relation to be
written. "" The additional (spurious) singulari-
ties are sufficiently far from threshold that they
probably do not affect the calculation of the DHG
sum rule, however.

In Sec. II, we discuss the matrix elements of the
charge, current, and Compton seagull operators,
meson exchange contributions to these operators,
and Lorentz invariance. In Sec. III, we derive the
LET in two different ways, and in Sec. IV we dis-
cuss the DHG sum rule in such a way that the sub-
traction problem is emphasized. Throughout this
work we will stress the meson-exchange current
aspect of the problem; although the results of this
work are not new, we hope to gain insight into ex-
change currents and their consequences. In addi-
tion, me will directly relate the charge-current
density commutator algebra to the two problems,
since this is how gauge and Lorentz invariance
enters the calculation. Relativistic and exchange
corrections to the dipole operator also play an im-
portant role.

II. CHARGES, CURRENTS, AND SEAGULLS

In order to minimize calculational complexity,
it is conventional to adopt an ordering scheme
when calculating relativistic corrections. The
most obvious criterion is to keep terms through
some agreed powers of (v/e), where v is a repre-
sentative velocity in the system we are treating.
Alternatively, since v=p/m where p and m are
representative momentum and mass, respectively,
we may count powers of (1/m). We choose the
latter procedure because keeping factors of is
tedious and messy, and much of the past work we
will refer to used this convention. In addition, be-
cause nuclei are weakly bound, the potential and

kinetic energy are roughly equal in magnitude (and
opposite in sign}, and the nonrelativistic potential
will be treated as order (1/m); meson exchange
contributions to charge and current operators will
be treated on the same footing as the conventional
(kinetic) contributions to these operators. In par-
ticular the charge density p(x) has theusual leading
term p„of order (1/m)', in addition to relativistic
corrections" "of orders (I/m') and higher arising
from both kinetic and (in general} exchange terms.
The current consists of convection, magnetization,
and exchange parts of order (1/m), while correc-
tions are of order (1/m') and higher. The potential
V consists of terms of order (1/m), V„ the non-
relativistic, static terms, and nonstatic terms of
order (1/m'), and higher, AV. The nonstatic parts
of Vproduce corrections of order (1/m') to the
wave function of our system. '4

%e begin by examining the S matrix for the one
(Ref. 25) and two (Ref. 26) photon processes. For
absorption of a photon with momentum k and energy
cv we have

, ~2 (2v) 6 (Py —Pq —k)(fp~l~„(0)e" lip(),
(5)

where e is the (positive) fundamental charge (o.-=e'/4v, the fine structure constant), Pz and P&

are the final and initial total (nuclear} moments,
and e" is the photon polarization vector. %e use
the conventions and metric of Ref. 27. The im-
portant physics is contained in the matrix element
of the four-current operator evaluated at x = t =0,
Z„(0), which we have written in a arbitrary frame
of reference. %e will empha, size two properties of
this matrix element: (1) gauge invariance or cur-
rent conservation, and (2) (approximate) Lorentz
111varlane e.

The two-photon Compton amplitude can be con-
structed easily"'" and the scattering of a photon
of initial momentum k" =(&u, k) and polarization
e"(k) and final momentum and polarization k' and
~' is determined by

S = — 64(k'+P~- ;P- )ke' e( )kate(k' T}"",
Y 1 (4~~ /)1/2

(6a)

&i IZ'(-k', 2Py+k')In)& n I J'"(k, 2' +k) li)
QP~» + (cP+Z 6

~ &ilz"(k, 2Py-k) In) &nli'(-k', 2P;-k') Ii)+~ I-(d„» QP + SE

(6b)

which is crossing symmetric (p —v, k —-k').
%e have denoted by»d„» the energy difference of
intermediate and initial states and the prime indi-
cates different intermediate momenta in the two

"dispersive" terms. The "seagull" amplitude B"'
arises from direct two-photon interactions with
nucleons. In addition, we have anticipated" that
matrix elements of the current may be written in
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the form

&fpgl~"(0) lfP;& -=&flJ"(q, s) lf&,

q=Pf-Pt,
S Pf + Pt

(Va)

("Ib)

('l c)

which vanishes for P =0 and 8 is the usual nonrela-
tivistic definition of the center-of-mass coordinate
(see Hefs. 1'l, 18). This wave function is an eigen-
function of the momentum operator with eigenvalue
P and of the Hamiltonian H with eigenvalue Ei(P)
given to order (1/m)' by

q" Z„(q, s) =0,

0 T =O'"T =0pv pv

(8a}

(8b}

where we have removed the initial and final states
from (8a) for convenience. Because of crossing
symmetry only one of the two identities (8b) is use-
ful. Combining (8a) and (8b) we find the "current
algebra" which holds for both the real and virtual
Compton amplitudes

J"(-k', 2P~+k'}p(k, 2Pi +k)

-p(k, 2P1-k)Z"(-k', 2P; -k') +k„B""=0 (8c)

which relates the commutators of J' and p to the
seagull amplitude &"'. This relation alone is a
powerful constraint on sum rules and low-energy
theorems. "' "

The requirements of special relativity enter in
in a natural way through the transformational
properties of the charge-current matrix elements.
What results from analyzing these properties"" "
are equations involving commutators of S and p
with the "boost" operator and the Hamiltonian.
Our requirements here are far less detailed and
we will not need the complete machinery of spe-
cial re1ativity. Our basic requirement is a know-
ledge of the structure of the s dependence of p(q, s ).
This necessitates a digression. The s depen-
dence in the absence of exchange effects was ex-
amined in Ref. 16 and arose from two primary
causes: (1) the momentum dependence of the spin-
orbit charge density (to be examined below), which
is a component of the Foldy-Wouthuysen charge
operator, and (2) the effect of relativity on the
wave function of a moving system introduced into
the density operator throught the transformation
Eq. (la). In particular, the wave function of a
slowly moving composite system has the form""'"'"

I f P &
= [I- f x(P) l I

f &e"', (9a)

where y. is an operator of order (I/m')[I. e.(v/c)']

where the nuclear states lf& and lf& are in their
center-of-mass system (P =-0) and P is a function
of internal coordinates only. Clearly any depen-
dence of J" on the time components of q" and s"
may be eliminated by using energy conservation
and this will be discussed shortly.

The two most important relationships we will
use follow from the assumed gauge invariance of
the one- and two-photon amplitudes. We require
that

(9b)
where M~ = M, + c; is the sum of the masses of
the nuclear constituents (M, = Q m;) and the (nega-
tive) binding energy ei. Equation (9b) will be im-
portant later.

Using Eq. (9a) we also have

J„(q, s ) = &„(q, s ) + i(X(P,)&„(q, s ) —&„(q, s )X(Pi)),

(1o)
where J„arises from the Foldy-Wouthuysen charge
and current densities. This equation is the equiva-
lent of J„=e'"JF"e "in the language of Ref. 3. In
the absence of exchange currents one finds"

a(q, s) =((- -'M", s 5,) p.(rT) ~e(rj)
t

s V, ] s $(q)

0

sxq (&', p.(q)),
t

where h„ is the internal nonrelativistic nuclear
Hamiltonian (h, lf&~ ei l I&), Xo is the usual nonrela-
tivistic internal current operator, J' is the inter-
nal angular momentum operator, and 6p is the s-
independent relativistic correction to p, . The
operators Ii, and S, are order (1/m), while p, and
a p are of order (1/m)0 and (I/m)', respectively.
If one introduces pion-exchange currents (and
presumably other types, as well} one can show ex-
plicitly' that the orQy effect is to modify 6p and
to introduce the meson-exchange potential in h,
and the nonrelativistic meson-exchange current in

J,. The proof is algebraically complex, but the
result is hardly surprising. Equation (11) is an im-
portant part of the rest of this paper.

The operator 6p(q) is also interesting in tiiat it
defines the relativistic corrections to the dipole
operator. Defining in the usual way

D =-i v,'[p,(q)+n p(q)], =„ (12a)

we find"

(2p; —e, ) . Z (f(i) x w,

2Mt m;

+
2M [xii 1Ti /2 1 —m2i~ xiZ Vii +ED

t t

(12b)
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where Ve is the two-body nonrelativistic (momen-
tum-independent) potential and n D is the meson
exchange contribution to D in the "standard" rep-
resentation. " We have also defined the usual rela-
tive coordinates and momenta xj =xj —A and m; =pj
—m;P/M& for the ith particle in terms of canonical
coordinates and momenta xj and p;. This quantity
(D) is useful in the derivation of low-energy theor-
ems, because it determines the long-mavelength
limit of the current operator. Using Eq. (Ba) with
s=-0, me find

X(q) = [h, p(q )] (13)

() ((p - A) E]
(15)

and a single derivative with respect to q, and sub-
sequently setting q to zero yields

X(0) =i[h, 5]. (14)

If we assume that D is simply given by the first
term in Eq. (12b), we have Siegert's theorem. " In

these expressions h is the complete internal nu-
clear Hamiltonian and includes relativistic correc-
tions to both the potential and kinetic energies.

The nuclear charge and current operators are
usually"'" derived using a procedure which con-
sists of the following (or its equivalent): (1) per-
form a nonrelativistic reduction of the equations
of motion of individual nucleons interacting with
mesons (e.g. , a Foldy-Wouthuysen reduction)";
(2) use the meson equations of motion to connect
meson vertices; this produces exchange operators;
(3) the same procedure produces the meson-ex-
change potentials by means of a "renormalization"
scheme. The nonexchange or kinetic parts of p
and 3 are mell known, "and, in general, rather
complicated. We will shorn in Sec. III that only
terms in the current operator of orders I/m, 1/
m', (x)/m, and &o/re are required, and in the charge
operator of orders (1/m)' and I/nP. Such terms
are generated by the following contributions to the
nuclear Hamiltonian:

g (p; —«A)' (p( —«Ai)' „8,

mhich is obviously gauge invariant. The quantities

Qj, Aj, Bj and Ej are the external electromagnetic
scalar and vector potentials, magnetic and electric
fields at the position of the ith nucleon with charge
ej, mass m;, magnetic moment p, j, Pauli spin op-
erator o'(i), and momentum pix Since the Hamil-
tonian is gauge invariant, it will generate ampli-
tudes in perturbation theory which are gauge in-
variant. To H„ in Eq. (15) must be added the po-
tential terms and exchange charges and currents.
The derivation of such quantities must be perform-
ed for each specific type of exchange; the reader
is referred to Refs. 18-20 for examples. The
strong interaction Hamiltonian may then be written
in the nuclear c.m. frame

h =Q (%,-'/2m; —m, '/Bm, ') + & + a&(P =0), (16)

where ())& is of the same order (I/m') as the second
term. With the kinetic energy parts, we may im-
mediately verify those parts of Eq. (14) indepen-
dent of potential. The isoscalar potential-depen-
dent parts of this equation may be verified, for
example, using the scalar and vector meson ex-
change potentials, charges, and currents derived
in Ref. 20 (hD"=0, in this case).

The last term in Eq. (15) presents a slight prob-
lem; since E = —V{II —A, the current is proportional
to g'. As me noted earlier, it is possible to re-
place a term of the form g'8 by a commutator,
namely [H„H], where H, is the nonrelativistic
Hamiltonian. This is useful in discussing the Lor-
entz transformational properties, "and is the stan-
dard representation used in describing exchange
urrents. In the problem under discussion it will

also be necessary to transform the two-photon am-
plitude, as well. This is easily accomplished by
writing the spin-orbit current schematically as
J„=q'H = [H„H]+[q'H —[H„H]] for the appropriate
qo in the two-photon amplitude. The extra (brack-
eted) term cancels the denominator in Eq. 6(b),
and to order (1/nP) simply modifies the seagull
terms &"'. Only the seagull operators then depend
on (d and u'. In this representation the Hamilton-
ian in Eq. (15) generates charges, currents, and
seagulls in the form" "

p(e)=pe, e''i- e Q "' -()x( „e" e'), (17a)

y( -) «( &(( x('] g ~& [ x p (q x(e]]
PPlj j mf

+i+ ' o'(i) x qe'q'"&+ p(q) +[Ho, H(q)]+order (s, q/m'), (1'lb)
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1( k -g') ~ xi i (( 2 i(k -i(') ~ x, joe mn {(ei)( x'. )nj ( n e-i "
i jj)

mg

+i((d+u)')Q ', ' e;o (i)e, „e'( ' "i+[J(-k'j, H (k}]+[I„(k),B„(-k'}],
S2j

(17c)

B"= i-p ' ' e {o(i)xk') e'(
2

(171)

B' =i+ ', ' e, (o(i) xk)ie'i '"i, (17e)

B"= order ((e'/m')

H(k) = ig-', ' (o(i) x )i;, e' "i j. (17f)

The three terms are F1, F2, and M1, while Q „
is the quadrupole tensor which mill play no role in

our final results, and p. is the magnetic moment

(including spin, orbital, and exchange parts).
Clearly the E1 and E2 parts vanish and using ~
-(()'= (k-k')'/2Ms obtained from (9b) and energy
conservation we find

To„" = ~Q(j~[(k'x )i)„ji'&(i')(kx )i) (i&

In this equation and elsewhere we will ignore the
fact that e& and p,; are actually form factors. 'The

leading contributions to B"are generated by terms
like E '/m' which arise in the FW expansion. 'o In
nonrelativistic order &" terms do not occur in

meson-exchange contributions. " Note that the last
term in Eq. (17a) produces the second term in Eq.
(12bj. To all the operators, p, S, and B in Eq.
(17) must be added exchange parts.

I

+ (if ~(kx p)~~i) k„-(m —n, 0 —k'}

(20)

which depends only on magnetic moments.
The magnetic quantum numbers have been explic-

itly introduced in Eq. (20) and using the Wigner-
Eckart theorem" allows us to simplify things. We
work in the spin space of our system which allows
us to replace

III. LOW-ENERGY THEOREM
p, - VS, (((= p, /S, (21)

We proceed with the development of the low-en-

ergy theorem in the lab frame in two ways. The
first method is due to Low' and was the original
method used to prove the theorem. We wish to
keep all terms in the long-wavelength limit of the
Compton amplitude of orders ((o/m') and (1/m').
We choose to work in transverse gauge which
means that e, = ~,' = 0 and that k ~ e =k' ~ e' = 0; thus
we will calculate e (k)T„e("k")„'= T'. We follow
previous work in separating the contributions to
T " into ground and excited intermediate states.
The ground state part has the form

k„
TGR ( i l~.(-k') + "

p (-k')
I i&

"( ~1„(l )I') (1 ~ c ossed ce co, (18)
B

where the current has been separated into internal
and convection parts and the denominator has been
expanded using &o;i —- sr'/2Ms —&o'/8M( ' from Eq.
(9b). To the order we wish to work, only nonrela-
tivistic currents of order (1,/m) will be needed in

Eq. (18). To first order in photon momentum, the
following multipole expansion is an identity" which

encompasses all parts of the current: magnetiza-
tion, convection, and exchange:

J (q) = i[A„D„]—,'o„[k„Q „]—i(qx )(() .
(19)

T mnyg

(i ) p (-k', 2k —k ')
I n) ( n ] p (k, k ) I i &

n (d

+crossed term +I3'" . (23}

As we noted earlier, Bon vanished to order ((o/m')
and the introduction of exchange currents should

not alter this. Such terms should appear in order
((e'/m'). Dropping B"we see that the excited
state part of Eq. (23) contributes only through or-
der ((()') and may be dropped [since B o arises
from the excited state spectrum (pair plus meson
terms), it also has this form]. The ground state
part may be evaluated using Eqs. (11), (19), and

the multipole expansion

where S is the total spin operator of the nucleus
and p is the total magnetic moment. Using the
commutation relation of the spin operators then
allows us to simplify Eq. (20) and we obtain without

explicit reference to the currents

TGR = 6m
Z'

GR E'ft

Z
=i (e)), '8 ~ (e' x k') x (& x k) i-t

x [(P .k)8 ~ e x 5 e ~ k'(8 ~ e' x 5') ) . (22)

The excited state and seagull parts may be obtained
using both forms of Eq. (8b). We have
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p.(q)+& p(q) =&+tq * D-q tt" Q..+ (24)

Since it follows by inspection that 4 TGR 0„' -=0,
Eqs. (23), (25), and (26) yield

(2'f)

and thus

Z2~ ~)

B

+2i p, - 8 f x f' (28)
(dZ — Z

S

and combining this with Eq. (22) we have the com-
plete low-energy theorem:

The quadrupole contribution is found to vanish
to order (&u/m'). We invoke parity or time rever-
sal invariance to eliminate the electric dipole
terms. Only the last two terms in Eq. (11) contri-
bute to f, and we find

Z ~) . Z(d — ZT~= (1+k ~ k')+2i g ~ kx k'.
Mg M, 2M,

(25)

In order to complete this proof, an invariance ar-
gument is needed. The excited state spectrum
generates no singular terms if ~& ~„;. Although
time reversal alone suffices to complete proof, '"
we will follow Low and also assume parity conser-
vation as well. The most general crossing symme-
tric form for (T,'„'+B;,) is then given by

(T S +Bs) =45;, +B~S,f„;+C(S&, S,) +order(~'}.

(uBoo( u)) —k'B'0((u) = 0,
&uB"((u) —k~B~'(~) = 0

(31a)

(31b)

and indicating by a prime a derivative with respect
to ~ we find after differentiating with respect to k,
and setting ~, k, and k' to zero

nored. Only dipole states enter the intermediate
sum and the expansion (14) may be used. We find

T„= i(-[ J (0), D "]}—&u([ D, IF]). (30)

To this must be added ~ B "e„' to form the complete
T. If we ignore exchange effects and use the expli-
cit current, seagull, and dipole operators given in

Eqs. (12b) and (17) and evaluate the commutators
in Eq. (30), we reproduce those parts of Eq. (29)
which do not involve binding (i.e. , in Ms) and ex-
change magnetic moments. For the spin-depen-
dent parts this was the basic procedure used in
Hefs. 3, 9-12, except that those calculations were
organized differently from the present one since
the frequency-dependent form of the spin-orbit
current was used. In addition the frequency depen-
dence of the denominator of T was ignored; a
compensating term in J(q, s } in Eq. (10) was also
ignored. Since the two deleted terms can be shown
to cancel, no error was made.

Both commutators in Eq. (30) may be evaluated
using the gauge invariance relation (8c). We wish
to emphasize that this relation holds for both real
and virtual photons and consequently ~ and ]k] may
be regarded as independent variables. Since we
have gone to some trouble to eliminate ~ from the
currents, it is clear that the ~ dependence in
k„B""must vanish identically. Thus we may write
for those terms in B which depend on w (=to')

T = + I (alP, 8 ' ( f X k ) X (f' X k)
M~ M

x [(f' ' k)5 ' f x k —f ~ k'(8 ~ f' x k')]

&eB"(0)=B"(o),

Vt B '(0) = B ' (0) .
(32a)

(32b)

2l (APZ — Z
e (29)

which generates Eqs. (1)and(2)when k'- k. Wemay
also replace M& by M& to this order. %'e summar-
ize our derivation by noting that it used gauge in-
variance, Eq. (8), multipole expansions and invar-
iance arguments, first-order relativistic correc-
tions to the Compton energy denominators, Eq.
(9b), and relativistic and exchange corrections to
the charge operator.

Although the argument above yields the correct
result via Low's clever trick, it is instructive to
examine how Eq. (28) results from a straightfor-
ward expansion of Eq. (6). We expand the energy
denominators for e« ~„;; recoil factors in the
energy play no role to order (&u) and will be ig-

Since B"(0)=0 we have B' (0) =0, which obviously
holds for Eq. (17d), just as Eq. (32b) holds for
Eqs. (1'7c) and (1Ve}. Furthermore, B" contributes
to T to order (~/m ) through the term f (B "(0)
+ &uB

" (0)) f„' only; the latter term may be deter-
mined from Eq. (32b). Equation (8c) with v=0
yields after dropping B"
p(-k', 2k —k') p(k, k)

-p(k, k-2k')p(-k', -k')-k'B' =0. (33)

If we take derivatives with respect to k and k', set
k, k', and &u to zero, and use Eqs. (11), (19), and
(24) we obtain after some algebra

Crossing symmetry and Eq. (32b) were use to
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manipulate the seagull term.
Similar manipulations may be performed on Eq.

(8c) with v = m which produce the analogous result

i-[ J (0), D"] + 8 "(0) = Zv ~(, J"(0, 2k)
~
-„,

=(Z'/M )5 ", (35)

with

e*, =(-1} e„.eg, e,
A, A,

*„,x e&

—g '5 gg&/Le ~ (37b)
where the last relation follows from an additional
piece of information. The only contribution to the
right-hand side comes from the nuclear convection
current term including relativistic corrections, '4

Z(q, s) =(s/2Ms)p(q), which is an obvious modifi-
cation of the usual nonrelativistic current term.
Adding T"to 8 and using Eqs. (34), (35), and (21)
reproduces Eq. (28) and the low-energy theorem
results again.

Although we have skirted the direct use of model
charges, currents, and seagulls, me wish to em-
phasize that all are affected by meson exchanges
in a very complicated model-dependent way. The
remarkable thing about the low-energy theorem is
that the model dependence cancels to the order we
have calculated. Nevertheless, using results for
exchange effects which have been previously de-
rived, we have shown in tmo separate mays hom

the theorem obtains.

fV. DHG SUM RULE

Concomitant with the f. low-energy theorem is
the DHG sum rule, as me discussed in the Intro-
duction. The technique used to derive the sum rule
follows closely the procedure used in developing
the LET. The total cross section for photoabsorp-
tion may be written in the form

4v'cr
o(~) = ' - g )&njZ-S(k, k) ti&']'5(~ ~„,).-

n~p

(36)
Because we are interested in the difference of in-
tegrated cross sections for photon helicities paral-
lel and antiparallel to the nuclear spin, the polari-
zation vectors are complex. We quantize the nu-

clear spin along the z axis, i, and define our
right- and left-circularly polarized photons (posi-
tive and negative helicity with respect to ~, re-
spectively) by

e„=- * "-, e, =(e, -i e )~/M2; e, =z(e, + i a',)
v2

(3'la)

Correspondingly, we replace e' by e~. in the
Compton amplitude and 7 by e~. From Eqs. (7b)
and Eqs. (36) we can relate o), and o~, correspond-
ing to photon polarizations +1 and -1, to the elastic
forward scattering amplitude f, :

rm[f, (~)]=,
„& [o,((v) -c„(~)]

8riaj, S ~ A,

(38)

and with the usual zero-energy dispersion relation
we have

= K~-Kg. (39)

We begin our examination of Eq. (39) by perform-
ing the integral over the & function implicit in v in

Eq. (36). Since (L)„; depends on (d through recoil,
the integral produces a recoil factor which may be
shown to contribute only in higher order than we
are calculating. We then find that

J(k„,0) =—$(0)+(d„)J(,)(k)+(v„; Z(, )(k}+ ~ ~ ~ . (41)

The first and third terms are even under A --k
and the second odd. Parity conservation eliminates
cross terms between the first and second terms
when Eq. (41) is used in Eq. (40). This produces

(i I e*„~J (-k„, -k„) I n~ & n
~
e ~ ~ J (k„,k„) ( i )

A

n s()p en( gS k)

(40)

where k„= (v„;k. We expand X as a function of k„,
which is presumably small and order (1/m). In
order to evaluate K to order (1/m') we need keep
only the first three terms in the expansion. The
nucleus convection current is orthogonal to e and

may be dropped. The remaining s dependence in
J is of order (1/m') and since s is k„-(I/m) it
may be dropped also. We thus expand

e g x & (
i')

&
i'

) )( ~ e ),
)' n ( i &/&S k&

&il5 ~ egD ~ e„—e*„~J(,)(k)J(»(k) cz+J(0} ~ c*„'(,)(k) ~ eq+X(, )(5) ~ e*„S(0)~ e~~i)/&S k),
where the first term was added and subtracted in order to use closure. Using the identity (21) and
forming K) —Kz we find after some manipulation and using Eq. (371)
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&~-K„=p'+(~([D e~, D ~ 0] +8 (0)e~e„-8 "(0)e„*e„-[J«i~ e», J ~ e]

+[J(0) '*, J&,i
~ 2] +[J„, ~ ., T(0) ~ R]~t& /(S ~&, (42

where 6—= e„. The first three terms are just f,(0), and using Eq. (34) reproduces Eq. (2b), while the last
three commutator s are equal to (s/sk')[J(-k) e*,J(+k) ~ e]

~ k2-o since terms odd in p will vanish by parity
conservation. We thus obtain

tf~-t~~= [t -(Z/M)]'+(i I(S/Sk'}[J(-k) e*,J(k) ~] I k =o (S/S~l)B (0)f*c li&/(S &&. (43)

Since we may write p=Z/M, +v/M, , where tc is the
anomalous magnetic moment, the first term in
Eq. (43) gives the usual DHG sum rule in terms of

What then is the r'ole of the remaining terra?
If we use the ordinary nonrelativistic currents

and the seagull term from Eq. (17}one can show
after considerable algebra that the remaining
term is givenby(-Qta'&'/2m, 'o(i} k&. This is just
the negative of the amplitude f, for a collection of
free nucleons. If one evaluates the forward Comp-
ton amplitude for a Dirac particle (spin —;)one
finds the result (1) and (2} for oil energies. One
naively expects that weak binding may alter"'"'"
f,(~) but will not produce f,(~) =0 necessary for
an unsubtracted dispersion relation. This state-
ment, of course, has nothing to do with questions
of whether the photoproton DHG sum rule requires
a subtraction, but is very relevant to the question
of whether the nuclear DHG sum rule saturated
with Lou -energy photoabsorption data does. In the
former case one believes that the anomalous mag-
netic moment has a dynamical origin and that asso-
ciated with this is an effective "form i~ctor"
which damps the high-energy behavior associated
with the anomalous moment derivative coupling.
We have assumed a model with a "fundamental" an-
omalous moment and must assume the consequenc-
es [f,(~}&0]. Nor does the use of a form factor in

the model with ~ solve the subtraction problem,
since such form factors would almost certainly al-
ter the analytic properties of the Compton ampli-
tude and the dispersion relation becomes question-
able."

In light of the previous discussion we present a
heuristic "proof" that the extra terms in our mod-

el DHG sum rule give simply- f,(~). Ifwe examine
Eq. (6b) for forward scattering and high energies, a,

number of simplif ications result. We assume that the
quasielastic excitation of nucleons dominates (vir-
tual} photoabsorption in this limit if we neglect me-
sonic effects. This occurs at an energy ~'/2m.
For energies high compared to usual nuclear en-
ergi. es but small compared to 2m where the analy-
tic properties become suspect" the denominators
become -+su. Extracting this factor, a commuta-
tor of the currents results. The plane wave factors
have opposite phase and cancel for those terms
(i = j}where the commutator does not vanish and
the result is a low-order polynomial in ~. Analo-
gously the forward seagull amplitude is a polynom-
ial in e. The constant term in the commutator
vanishes; the first nonvanishing terms have the
form A. +&~+», where & is the last term in
Eq. (43), which we can now identify with —f,(~) in our
model calculation. Thus Eq. (43} is equivalent to
Eq. (3), with Eq. (2b) specifying f,(0). A model
such as Eq. (17) must be used to calculate f,(~}
Although gauge-invariance specifies the charge-
charge and charge-current commutator algebra,
the current-current algebra is also needed for
the sum rule.

Introducing exchange currents in the usual way
in the Compton amplitude alters analytic proper-
ties in a way which precludes the usual dispersion
relation, "making the question of subtractions in
this case somewhat moot.

The author would like to thank Dr. R. A. Krajcik
for a useful discussion.
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