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Microscopic ion-ion spin-orbit potentials
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A microscopic, ion-ion spin-orbit potent&al is derived in a double-folding model approach starting from a

nucleon-nucleon interaction. Its geometry is determined by the structure of the target and projectile. An
estimate of its strength is presented.

NUCLEAR REACTIONS Ion-ion spin-orbit potential, douhle-folding model,
heavy ions.

I. INTRODUCTION

'The standard Thomas form for the nucleon-
nueleus spin-orbit potential can be derived, for
example, in an impluse approximation' or a Qlau-
ber model approach. ' The shape of the spin-orbit
potential is given by (1/~)(d/dr)p(r), where p(r)
i.s the target density, and at high energies the
strength of the potential is proportional to the for-
ward spin-flip nucleon-nucleon scattering ampli-
tude.

Attempts have also been made to derive an ion-
ion spin-orbit potential. Rawitscher' derived an
o, -nucleus spin-orbit potential from a phenomeno-
logical o. -nucleon spin-orbit potential. Love"
a,iso used this approach, but he included nucleon-
nucleon exchange effects also. He found that the
exchange effects provided the dominant contribu-
tion to the spin-orbit potential. Neither was able
to obtain agreement with phenomenological a-
nucleus spin-orbit potentials that were derived
in fitting elastic o.-nucleus scattering from non-
zero spin targets. ' '

More recently, 'Thompson' investigated the role
of a spin-orbit potential in heavy-ion scattering.
In his approach, a phenornenological nucleon-nu-
cleus spin-orbit potential is folded over the val-
ence (non-spin-saturated) nucieon's wave function.
For example, for "C+"Mg a spin-orbit potential
representing the nucleon-'- Mg interaction is con-
voluted with the 1py(2 neutron wave function in "C.

Finally, vector polarized 'Li-nucleus elastic
scattering and asymmetry measurements" have
been analyzed" by considering the 'Li as an n-deu-
teron bound state and then folding the deuteron
wave function with a phenomenological deuteron-
nucleus spin-orbit potential. 'This analysis was
also carried out for "N projectiles.

In this paper, a formalism is presented for
deriving an ion-ion spin-orbit potential from only
the structure of the target and projectile nuclei

and from the nucleon-nucleon interaction. 'This
will be done in the context of a. double-folding
model that has proved quite successful in describ-
ing both elastic"-"' and inelastic"'" heavy-ion
scattering. In the folding-model approach of Refs.
12 and 14 it was found that the geometry of the
ion-ion potential is well determined when accurate
nuclear densities are used. Also, a smoothly
energy-dependent complex strength emerges from
the analysis of many different sets of e'astie hea-
vy-ion data. "" This strength can, in principle,
be related to a spin. -isospin averaged, effective
nucleon-nucleon forward laboratory scattering
amplitude.

'-' In a similar way, the geometry of
the ion-ion spin-orbit potential can be ixed in the
double-folding model approach and the strength
ean be determined from a comparison to phenom-
enological potential. s I'unfortunately, there are
very few) that have been derived.

inthe energy range we will be considering (-5 MeV/
nucieon) the effective nucleon-nucleon amplitude
derived from fitting the databears little resemblance
to the free amplitude. " The real part of the free lab-
oratory amplitude goes through zero at about a lab en-
ergy of 6 MeV and stays negative below that energy.
The effective amplitude is fairly constant in that
energy region at a value of about 1.8 fm. " At
5 MeV, the imaginary part of the free amplitude
is large (-6 fm) and growing with decreasing ener-
ry, whereas for the effective amplitude it is sma. l
and decreasing. '-" Hence, it will not be surprising
to fiod that the spin-flip amplitude needed to fit
phenomenological spin-orbit' potentials differs
substantially from the free amplitude.

Qf course, the folding modei is a static approach.
Dynamical changes in both the target and pro-
jectile densi'. ies are not taken into account. %hen
these changes arise from the virtual excitation
of ncn-zero-spin states, then, presumably, the
folded spin-orbit potential will be mvdified. For
deuteron-nucleus scattering, some of these dy-
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P2 (z —R X(z d z. (6)

X yg ydy.

In an impulse approximation'" one could relate
the radial factor g(r) to the Fourier transform of
the nucleon-nucleon isospin-averaged spin-flip
laboratory amplitude C(q).""

-2mh-—
C(q)(r n= e "'g(r)o ~ r x Sd'r,

m
(8)

where )n is the nucleon mass and n = (k, & k,')/Ik,
x k,'I, where k„and k,', are the initia, l and final
nucleon-nucleon c.m momenta. Using Eq. (8),
one can show that the integral in Eq. (7) becomes

4m , . 27th2

3 "
H1

y'g(y)dy = -i kC(0}, (9)

where C(q) =—C(q)/(&P sin8, ), % is the ion-ion c.m.
momentum, and 8, is the nucleon-nucleon scatter-
ing angle. Note that

C(0)=- lim C(q)
8(-) ~o

is finite.
Finally, using L = R x k, where L is the ion-ion

c.m. angular momentum, Eq. (7) yields
')

V,.(R)=io 1. C(O)—
yn

Now, using the fact that f dQ, y,y&=(«/3) y &;,, Eq.
(6) becomes

V„(H) = i»' & x—
~ (f &&((~% —R(~ )&(', ( )d ) &

have derived will also be complex. However, at
5 MeV lab energy, the real part of the factor C(0}
-=iC(q)/sin8„I, , is about 4 times larger than the
imaginary part. 'This would, at least partially,
justify the use of real phenomenological spin-orbit
potentials in this energy region.

III. DISCUSSION

It has been stated in the literature that the spin-
orbit potential has a 1/A, dependence (A, being the
mass number of the nonzero spin nucleus) and

hence is unimportant for heavy ions. For a fixed
lab energy per nucleon the factor C(q)/0, sin8, Ie

is a constant, and there are only two possible
sources of an A, dependence in Eq. (11). Firstly,
there is the factor of k in the denominator [con-
tained in C(0)]:

8'c1& = [2)ne'[A)A, /(A„+A, )][A2/(A, +A, )]E„»j'

Writing E„» as A, (E„»/A, ) = constant x A„ the A,
dependence of k becomes k -A,A.,/(A, +A, ), which
for A, »A, goes like A„and for A, »A, goes
like A, (independent of A, ). However, this A,
dependence of the strength of the spin-orbit
potential arising from the factor of k in the
denominator is canceled by the factor of k
in the angular momentum, I., which appears in the
numerator. Thus, although the strength of the
spin-orbit potential may be smaller for heavier
ions, this is partly compensated for by the larger
values of I that are important for larger A, .

Secondly, the nucleon-nucleus spin. -orbit poten-
tial is usually written in terms of the derivative
of the central potential. For a zero-range nu-
cleon-nucleon potential, the central ion-ion poten-
tial is proportional to the convolution":

x p, r -R X', r)d'r. (10)
p, (r —R)p, (r)d'r . (12)

Actually, the ion-ion spin-orbit potential should

be written in terms of the total spin I of the nu-
cleus. Using the %'igner-Eckhart Theorem, one
can show that'.

where we define I'=- l ~ -2'. Hence, the ion-ion spin-
orbit potential becomes

V„(R}=+i C(0) I L
+2

x p, r —R Xl (r)d 'r .

Since the nucleon-nucleon spin-flip amplitude is
in general complex, the spin-orbit potential we

Hence, if one were to use the derivative of the
central potential to describe the spin. -orbit term,
the strength would have to be reduced by what

might naively appear to be a factor of Ay This is
because p, (r) is normalized to A„whereas X',

is normalized to 1. However, one must remember
that heavy-ion reactions are sensitive to relatively
large separations of the ions. " [Satchler" found

that the radius R, = 1.5(A, '~'+A, ' ~') defined the
important region for elastic scattering. ] For these
large B's the density is dominated by the least-
bound wave function which is just the valence wave
function X. Thus, for large enough R, the ratio
of [(1/R)(d/dR)] of the integral appearing in Eq.
(12}and that appearing in Eq. (11) should approach
1. A plot of that ratio for "C+4"Ca is presented
in Fig. 2. (At 14 fm the ratio is down to 1.5.}
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for C+ Ca. The radius R, =1.5(AI 3+A~' ) is indi-
cated by an arrow.

In proton-nucleus scattering, where one is sen-
sitive to smaller separations of the target and

projectile, our results would give that the spin-
orbit potential arising from any target spin ~ould
be approximately 1/A, of the spin-orbit term due
to the proton's spin. This is in agreement with a
remark made by Feshbach" and with experiment,
where there has been no need to introduce a spin-
orbit potential due to the target's spin in proton-
nucleus scattering.

In contrast, for the strongly absorbed 'He (Ref.
19) and 'He (Refs. 3-8) projectiles, target spin
dependence has been introduced. In the 'He stud-
ies, the strength of the L ~ o term in the optical
potential was compared for pairs of nuclei dif-
fering by one nucleon. It was found" that the
strength of the spin-orbit term increased by about
1 MeV for the nonzero spin member of the pair,
independent of its spin. This is consistent with the
result contained in Eq. (11), since the I dependence
of the potential is essentially canceled by the 1/
(I+ 2) factor. The differences between the spin-
orbit potential for strongly and weakly absorbed
particles and its weak I dependence in 'He scatter-
ing have been discussed in Ref. 19.

fV. RESULTS

The phenomenological spin-orbit potential
derived in the analysis' of a-'Be scattering at
E„b=20 MeV is displayed in Fig. 3. Also shown
is the calculated potential of Eq. (11) normalized
to the peak at R = 3.6 fm. This normalization gives
a value of ReC(0) =0.39 fm as opposed to the free
space value of 0.023 fm." As anticipated, these
numbers differ dramatically.

0
4

R{fm)
IO

FIG. 3. The magnitude of the spin-orbit potential for
He+ Be at EI,b =20 MeV. The solid line is the folding

model result of Eq. (11). The dashed line is the Woods-
Saxon der ivative form of Eq. {13)using the parameters
of Ref. 5.

The n density used is a three parameter Fermi
distribution derived from electron scattering re-
sults. " The 'Be density and wave functions were
obtained by using the Malaguti-Hodgson22 binding
potentials with slight parameter adjustments to
achieve better single-particle binding energies.

There is some doubt about the aecuraey of the
spin-orbit potentials derived for the 'He and 'He
scattering. Firstly, there have been many care-
ful analyses (e.g. , Ref. 33) of 'He-nucleus scatter-
ing with nonzero spin targets which have not need-
ed to introduce a spin-orbit potential. Secondly,
the 'He-nucleus scattering has been successfully
analyzed" without recourse to a target-spin-de-
pendent spin-orbit potential. 'This has been done
by introducing a term in the cross section cor-
responding to the interaction of the projectile with
the quadrupole moment of the nonzero-spin target.

In any case, using the effective spin-flip ampli-
tude found for the e-'Be scattering, an estimate
of the ion-ion spin-orbit potential was calculated
for "C+"Ca. It is shown in Fig. 4 along with a
Woods-Saxon derivative-type potential that was
fixed to agree with the calculated potential in the
important peripheral region. This fit potential has
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FIG. 4. The calculated spin-orbit potential for ' C
+ "'Ca at E~» =68 MeV (solid line) and the Woods-Saxon
derivative potential fit to it |dashed line). Again, 8, is
indicated by an arrow.

menological potential. It would be best to consider
this number as only a very rough estimate for
this reason. Above about 50 MeV/nucleon, there
is hope that the impulse approximation, using
the free nucleon-nucleon spin-flip amplitude,
would give reasonably accurate results. Below
that energy, the effective spin-flip amplitude should
be taken as a free parameter.

The "C density and wave functions were also
derived from modified Malaguti-Hodgson" poten-
tials. The "Ca density was produced from the
results of a Hartree-Fock calculation. "

Although the spin-flip probability measured in
the inelastic excitation by "C of the first 2' state
in "Ni is quite small, " there has been some recent
evidence for the need of a spin-orbit potential in
heavy-ion transfer reactions. Fits to the transfer
reaction 28Si("F, "0}"Phave been greatly im-
proved by the inclusion of a spin-orbit potential. "
The reaction "Ca("C,"N}"K(g.s. ) at 68 MeV can-
not be fitted in the distorted wave Born approxi-
mation using reasonable parameters. " There are
indications that a spin-orbit potential will improve
the fit there also." 'The strength of the spin-orbit
Woods-Saxon derivative potential estimated here
was found to be too small to appreciably change
the transfer cross section. '" Invoking an helicity-
flip mechanism has been shown to provide a fit to
the "Ca transfer data. "

the standard form

where ni, is the pion mass. The value of the pa-
rameters found are as follows: V„=-0.73 MeV,
R = 5.78 fm, and a = 0.79 fm. Note that since the
valence neutron in "C is in a 1p, &, orbital, we
have I= 1 ——,

' and the potential of Eq. (11) has a
sign opposite that of the normal nucleon-nucleus
spin-orbit potential. The changing of sign of the
ion-ion spin-orbit potential may be a helpful sig-
nature in identifying its effects in heavy-ion reac-
tions.

The geometrical parameters given above should
be accurate, since the folding integrals were per-
formed with carefully determined densities. How-
ever, the strength of the potential was determined
by a comparison to only one questionable pheno-

V. CONCLUSIONS

A microscopic, complex, ion-ion spin-orbit
potential has been derived in the framework of a
double-folding model. It is believed that it will
provide a consistent geometry for the spin-orbit
potential that can be used in semiphenomenological
analyses of heavy-ion reactions. Qf course, polar-
ization and/or asymmetry measurements in heavy-
ion scattering mould allow one to determine the
spin-orbit potential in a more straightforward
way.
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