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Scattering formalisms that take antisymmetrization into account may result in nonsymmetric nonlocal
potentials for the effective interaction. Furthermore, when the incident particle state is antisymmetrized with

respect to single-particle states of the target, these states appear as redundant states in the scattering
spectrum. This requires the Fredholm determinant associated with the kernel of the integral equation for the
physical wave function to be zero for all wave numbers of the incident particle. Under these circumstances, a
scattering solution may not exist. The conditions for existence are examined, and a consistency condition is

established. Evidence is presented that the nonlocal potential in the full Hartree-Fock equation including
target excitations is not symmetric, and thus that the equation will not exhibit a scattering solution unless
certain consistency requirements are met in its construction. Since the scattering solution must be orthogonal
to each of the single-particle states of the target, the standard procedure in Hartree-Fock scattering
formalisms is to drop all terms in the potential which project onto these states. This results in the reduced
Hartree-Fock equation usually considered. It is demonstrated that constructing the reduced equation without

reference to the full equation may result in a failure of the solution of the reduced equation to meet the
consistency condition required for it to be a solution of the full equation.

NUCLEAR HEAC&IONS Antisymmetrization, scattering by a nonlocal potential,
Lnonsinnmetric noniocal potentials, Hartree-Fuck scattering, redundant states.

I. INTRODUCTION

This paper examines procedures discussed in
the literature for obtaining single-particle wave
functions which describe the scattering of a parti-
cle from an A. -particle target. In particular, we
consider the consequences of antisymmetrization
of the incident particle with respect to particles
identical to it in the scattering center, and the
effects of antisymmetrization on the single-particle
scattering wave function.

As has been demonstrated by Feshbach, "the
effective single-particle potential which acts on
a nucleon incident upon an A, -particle nucleus is
nonlocal due to exchange effects and to the possi-
bility of excitation of the target nucleus. Excita-
tion of the target as incorporated into the effective
single-particle potential is usually spoken of in
the literature as target polarization. In the for-
malism of Feshbach it is more natural to discuss
excitation of the target nucleus in terms of the
prompt and time-delayed physical process which
take place. ' Exclusion of the effects of excitation
of the target nucleus is often referred to as the
no-polarization approximation. This approxima-
tion is discussed in detail in Refs. 3-5.

Based upon Feshbach's results, we have pre-
viously examined some of the consequences of
antisymmetrization as they relate to the scattering
process. ' The derivation presented in Ref. 6 is
restricted to energies below the inelastic threshold,

but formally takes into account all target excitation
and antisymmetrization effects. It is important
to note that, below the inelastic threshold, the
effective potential is real. '

An important example of a nonlocal potential in-
corporating antisymmetrization, which has been
widely used in the literature in scattering investi-
gations, is the Hartree-Fock potential. In addition
to introducing antisymmetrization in terms of an
(A+ 1}-particle Slater determinant of the incident
particle and ground state target wave function,
the Hartree-Fock potential usually neglects target
excitation. However, the results obtained here
point out the importance of considering excitation
of the target nucleus as an essential feature of the
effective potential. The designation Hartree-Fock
will be used in this paper to refer to the more
generalized potential obtained when neglecting dy-
namicai correlations (as opposed to Pauli correla-
tions) but including the effects of target excitation.
Indeed, much of the discussion will center on the
necessity of this more complete potential.

One of the basic tenets of all Hartree-Fock scat-
tering formalisms is that once the Hartree-Fock
equation has been established there exists a scatter-
ing solution to this equation. Furthermore, since the
desired scattering solution must be orthogonal to
each of the single-particle states of the target
nucleus, the standard procedure is to drop all
terms in the potential which project onto these
states and thus give zero when operating on the
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scattering solution. One can then easily demon-
strate that the scattering solution of the Schrod-
inger equation with this "reduced" potential exists,
satisfies the full Hartree-Fock equation, and is
automatically orthogonal to the wave functions of
the occupied states. '

The purpose of this paper is to present evidence
that the full Hartree-Fock equation will not, in
general, exhibit a scattering solution unless cer-
tain specific requirements are met in its construc-
tion. These can be expressed in terms of a - on-
sistency condition which mill be satisfied only if
effects of target excitation have been properly
incorporated. Once this constraint has been met,
the assertions in the preceding paragraph follow.
That is, a scattering solution to the full Hartree-
Fock equation exists which is orthogonal to the
wave functions of the occupied states, and this
scattering solution is the unique solution of the
reduced equation.

An immediate consequence of expressing anti-
symmetrization of the incident particle state mith

respect to A single-particle states ~$,) of the tar-
get is the existence of the states ~$,) as redundant
states"" in the spectrum of solutions of the single-
particle scattering equation. It is this feature of
the Hartree-Fock formulation of the scattering
problem which leads to the necessity of a consis-
tency requirement in constructing the Hartree-
Fock equations. When the Hartree-Fock integro-
differential scattering equation is expressed as an
integral ecluation for the physical solution ~4"), the
redundant states ((,) are the solutions of the as-
sociated homogeneous integral equation. Once the
presence of redundant solutions has been formu-
lated in this way, the conditions which must be met
in order that the inhomogeneous integral equation
possess a scattering solution (4'') are specified by
the Fredholm theory of integral equations with
compact kernels. " The full Hartree-Fock equa-
tion must satisfy these conditions in order that a
scattering solution to this equation exist.

For any symmetric nonlocal potential the ques-
tion of the existence of a scattering solution has
been settled. It is proved in Ref. 12 that the in-
homogeneous integral equation for scattering with
a symmetric, nonlocal potential always has a
scattering solution ~4', even when the associated
homogeneous integral equation has solutions.
On the other hand, as will be demonstrated
in Sec. III, when the nonlocal potential is
nonsymmetric and the associated homogeneous
integral equation has a solution, the inho-
mogeneous equation can be expected to exhibit
a scattering solution only mhen certain special re-
quirements have been met.

Formalisms that take antisymmetrization into

account in the derivation of an effective interaction
may result in nonsymmetric nonlocal potentials.
This is exemplified by the post-prior paradox
which occurs in the description of Bates, Funda-
minsky, and Massey. " The question has been
further investigated by Sehenter and Thaler, '4

with specific reference to the Hartree-Fock no-
polarization approximation as a special case. It
has been demonstrated in Ref. 6 that this lack of
symmetry exists even when target excitations
are taken into account when constructing the single-
particle equation. Thus, before a solution of the
Hartree-Fock scattering equation is undertaken
it is necessary to investigate specifically the ex-
istence of a scattering solution to that equation.

It is important to note that Hartree- Fock calcula-
tions reported in the literature do not use the full
Hartree-Fock equation, but rather the reduced
equation referred to earlier. Since the reduced
Hartree-Fock equation will not exhibit redundant
solutions, this equation mill always have a scatter-
ing solution. However, unless the consistency con-
dition for a scattering solution of the full equation
has been met, the reduced equation may not be
appropriate for the original physical problem.
This can lead to errors in the calculation and in-
terpretation of results, as mill be demonstrated
in Sec. VI in terms of examples. Furthermore,
it will be shomn that information about the effects
of target excitation arises directly from applica-
tion of the necessary consistency condition.

The conclusions of this paper depend upon the
expressions for the effective potential derived in
Ref. 6. These expressions mill be summarized in
Sec. IV. Sections II and III are devoted to a dis-
cussion of the connection between antisymmetriza-
tion and redundant states and a derivation of the
conditions under which a nonsymmetric nonlocal
potential has a scattering solution simultaneously
mith a redundant state solution. In presenting this
proof, the nonlocal potential is assumed to be real.
As mentioned earlier, this is consistent mith the
restriction imposed in Ref. 6 that energies be below
the inelastic threshold.

II. ANTISYMMETRIZATION AND REDUNDANT STATES

The condition that the single-particle Schrod-
inger equation

(e —T,}Q) =e(u)

have redundant solutions ~$,) can be expressed by
the statement that, if at any energy the state (s)
is a solution of Eq. (1}, the equation will have re-
dundant solutions ~$,) if and only if at that energy
the state ~u'), defined by
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A

I

')= Is& ass(14&

is also a solution of Eq. (1) for any values of the
constants a&. The integral equation for the physi-
cal solution ~q'& of Eq. (1}is

when the homogeneous integral equation has a
single solution. In the case of multiple solutions
of the homogeneous equation each solution must
meet the conditions given for a single solution.

The radial integral equations associated with
the Schrodinger equation with a nonlocal potential
are of the form

where ~4& is the incident state and g' is the
Green's function which yields outgoing, spherical
waves at infinity. The homogeneous integral equa-
tion associated with Eq. (3) is

(4)

The redundant states ~f, ,& will be solutions only of
Eq. (4}, the homogeneous integral equation, and
not of Eq. (3), the inhomogeneous integral equa-
tion. However, the condition expressed in terms
of Eq. (2} for the presence of redundant states re-
mains correct for the inhomogeneous integral
equation.

It is clear from the above discussion that the ex-
istence of redundancies in the single-particle
scattering solution makes this solution nonunique.
This unusual feature results from incorporating
antisymmetrization of the incident particle with
respect to particles in the target nucleus via an
(A. + 1)-particle Slater determinant. However,
the Pauli principle requires a single-particle
scattering wave function from which all components
of states in the target filled by particles identical
to the projectile are excluded. It is this wave func-
tion which is the wave function of physical signifi-
cance. One of the major considerations of this
paper is to examine the procedures involved in ob-
taining such a wave function which correctly takes
the Pauli principle into account.

The theory of integral equations" states that a
homogeneous integral equation such as Eq. (4) has
a nontrivial solution if and only if the Fredholm
determinant associated with the kernel g"lt is zero.
We shall refer to this Fredholm determinant as
D'(k). Thus the condition that Eq. (1), and there-
fore Eq. (8), exhibit redundant solutions requires
that D'(k) be zero for all wave numbers k of the
incident particle.

111. EXISTENCE OF SCATTERING SOLUTIONS

FOR NONSYMMETRIC POTENTIALS

The question of whether or not an inhomogeneous
integral equation has a solution when the Fredholm
determinant associated with its kernel is zero
requires a careful examination of the existence
conditions. " We discuss first the general form
of these conditions and then apply them to the inte-
gral equations which describe the scattering
problem. For convenience, we consider the case

s( &=r(r) f K(r()x( )s . (5)
0

The homogeneous equation associated with Eq. (5),

X.(r&= f Z( ls)X,(s)ds,
0

(6)

.(s,.) ~ s;(s, r)- f .(r, .).(s, .).
0

(8)

The physical solution g'(k, r) of Eq. (8) satisfies
the integral equation

('(S, r)=sisSr+ f G'(S, r, r')ss(r', )
0

where

xg'(k, s)dsdr',

G'(k, r, r') = -k 'e'""'sinkr
& . (10)

The homogeneous equation associated with Eq. (9}
ls

(,' (s, ) = f f G '(s, , ')ss( ', s)
0 0

x g„'(k, Qdsdr'

The transposed equation associated with Eq. (8)
can be written in the form

has a nontrivial solution if and only if the Fred-
holm determinant associated with the kernel
K(r~s) is zero. The inhomogeneous equation (5)
then has a solution if and only if the inhomogeneous
term F(r) is orthogonal to the solution y„(r) of the
transposed homogeneous equation

x,( ) f((( =lr)s, ( )s
0

Thus the existence condition for X(r) when the
Fredholm determinant is zero is the orthogonality
of the inhomogeneous term E(r) and the solution
y„(r) of the transposed homogeneous equation as-
sociated with Eq. (5). This result is known as
Fredholm's third theorem.

The radial equation associated with Eq. (1) will
be considered only in the $= 0 partial wave. The
extension to higher partial waves is straightfor-
ward, but cumbersome. The l = 0 radial equation
can be written as
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Comparison of Eqs. (15) and (21) shows that

where

u(r, r') = V(r', r)

x p'(k, s)dsdr',

(13)

(22}

Thus the necessary and sufficient condition stated
in Eq. (17) for the existence of a solution of Eq. (9)
can be written in the alternate form

and use has been made of the fact that

G'(k, s, r') = G'(k, r', s) . (14)
sinkrQ(r, s)(t»'(k, s)dsdr =-0.

The transposed homogeneous equation is

(I)'„(k, r) = 'U(r, r')G'(k, r', s) t ((»k, s)dsdr' .

(15)

The necessary and sufficient condition for the
existence of a solution of Eq. (11}is that

D'(k) = 0. (16}

Condition (16) is also sufficient to insure the ex-
istence of a solution of Eq. (15}." As discussed
earlier, when lj'(k) = 0 a solution of Eq. (9) will
exist if and only if the ortho gonality condition

The result given in Eq. (23) goes over onto that
for a symmetric nonlocal potential [Ref. 12, Eq.
(61)] under the condition 8 = 'U, in which case it
follows that (t)» = (t)». Although Eq. (23) provides a
specific test for the existence of a solution of Eq.
(9), the essential difference between the existence
of a solution of Eq. (9) for a symmetric and for a
nonsymmetric nonlocal potential requires further
conside ration.

For this purpose it is convenient to consider the
Jost solution of Eq. (8) defined by

OO PA

f+(k, r) = e'" — G(k, r, r')'U(r', s)f '(k, s)dsdr',
0

sinkr(j)»'(k, r)dr = 0 (17)
where

(24)

is satisfied.
Equation (17) can be cast in a more useful form

by considering the adjoint of Eq. (8), given by"

G(k, r, r') = k 'sink(r -r') (25)

The homogeneous equation associated with Eq. (24)
1S

u(k, r)" + k'u(k, r) = i) (r, s)u (k, s)d s, (18)
G{k,r, r'}v( ' rs}f„'(k, s)dsdr' .

where u(r, s) is defined by Eq. (13). The adjoint
physical solution P'(I, r) is defined by the integral
equ at ion

(26)

The adjoint equation associated with Eq. (24) can
be written in the form

y'(k, r) = sinkr+ G'(k, r,r')'U(r', s)(t)'(k, s)ds dr '

(19)
with G'(k, r, r') given by Eq. (10). The homoge-
neous equation associated with Eq. (19) is

(t)„'(k, r) = G'(k, r, r')S(r', s)(j)»'(k, s}dsdr' .

(20)

As pointed out in Ref. 16, the solution (j)»(k, r) of
Eq. (20) is not the same as the solution 7()»(k, r) of
Eq. (15). The relationship between these solutions
can be obtained by multiplying Eq. (20) by 'U and
integrating over r. This yields

l +r, ')(.'(')&r= f f "(r, ),G'(), * "')
0 0 0

QG

'U(r', s')(t(k, s)'»)ds'dr'ds .

(21)

f (k, r)=e""— G(k, r, r')'U(r', s)f '(k, s)dsdr' . '

Using the Green' s function identity

G{k,r, r')h(r')dr' =
r

G'(k, r, r')k(r')dr'

+ I 'e'"" sinkr'A(r' dr '
0

(29)
valid for arbitrary k(r), Eq. (28) can be rewritten

(27)

The homogeneous equation associated with Eq (27).
1S
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in the form

f„'(S,r)= f f G( Sr, r') \Ir', )f'(S, )dsdr'
0 0

+k 'e'"" sinkr''U r', s „' k, s dsdr'.
0 0

(30)

An expression dependent upon the integral in Eq.
(23) and which provides a basis for discussing the
existence of a scattering solution for a nonlocal
potential with a redundant solution can be obtained

by comparing expressions derived using Eqs. (20)
and (30). Multiplying Eq. (20) by '0 and integrating
gives

J Is(r, s)d,'(S, s)ds= f f f II(r, s')G (Ss'', r, ')II(r', s)j „(Ss)ds'dr, 'ds',
0 0 0 0

which can be rewritten using Eq. (13) and the symmetry of G' as

r II(., s) j'(S, s)dr = f f f d'(S, s)II(s, ')G ( rS, ) s( IIsr )ddsr d. .
0 0 0 0

Multiplying Eq. (32) with f„'(k, r) and integrating over r yields

f g»' k, s 'U s, r» k, r drds= g»' k, s 'U s, r' 6' k, r', s' 'U s', r) „' k, r drds'dr'ds.
0 0 0 0 0 0

Multiplying Eq. (30) by J (I)~(k, s)'U(s, r)ds and integrating over r gives

l g» k, s'U s, r „'k, rdrds
0 0

f f f d,'(S, )'It( r's) ( Gr'S, s')II(s', r)f;td, rldrds dr'd'
0 0 0 0

+ k ' e'""'U r, s) p»' k, s dsdr sinkr' U r', s' „' k, s' ds'dr'.
0 0 0 0

Subtracting Eq. (32) from Eq. (34) yields

r g» k, s 'U s, r -'U s, r „' k, r drds
0 0

(31)

(32)

(33)

(34)

sinkr'U r' s' „' k, s'ds'dy'
0 0 0 0

Equation (35) is the desired relationship. If the
potential U is symmetric, then the left hand side
of Eq. (35) becomes identically zero for all values
of k. From this, it follows [Ref. 12, p. 2138] that
f&+(k, r) = (()~(k, r), that condition (23) holds for
every energy of the incident particle, and that a
scattering solution exists at every energy. Thus,
for a real symmetric nonlocal potential which pro-
duces redundant states the existence of a scatter-
ing solution is automatic. For a nonsymmetric
nonlocal potential the left hand side of Eq. (35)
would not in general be zero. Existence of a scat-
tering solution for a nonsymmetric nonlocal po-
tential with a redundant state relies, rather, upon
the condition that the potential depend upon the
wave number k in such a way as to satisfy condi-
tion (23) explicitly at every energy.

In the next section we discuss the Hartree-Fock
potential which results from incorporating excita-
tions of the target nucleus, including as an ex-

ample an explicit calculation of the potential for a
two-particle Slater determinant target. The non-

symmetry of the potential is apparent in this dis-
cussion. A study of the full and reduced equations
associated with potentials such as the Hartree-
Fock potential which exhibit redundant states is
presented in Sec. V. Examples of solutions of the
full and reduced equations for potentials which pro-
duce redundant states are given in Sec. VI, with

emphasis upon the compatibility conditions for
the existence of a scattering solution of the full
equation.

IV. HARTREE-FOCK POTENTIAL

The potential 'u referred to in Eq. (1) is the
full nonlocal potential in the Schrodinger equation
for the single-particle scattering state ~N). In Ref.
6 we showed that, by introducing only the restric-
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iion that the target nucleus be represented by a
Slater determinant of A single-particle states,
the potential u in Eq. (1) for the scattering of an
incident nucleon from the nucleus ean be put into
the form

(36)

where the potential 'll., is given in configuration
space by

~ I &p, (r,r, ~ ~ r„)(r,r, r, r„lV, +61
l r,'r', r,'. r„')J'

x&p, (r,'r,' .r~)dr, dr, dr„dr,'dr,' ~ ~ ~ ar'i u(r,',d r,'

r
~ E ~ q), (r,r, r„)(r,r, r, ~ ~ r„l 1 „+6tl r,'r,' r,' ~ r„')

x &p, (r,'r,' ~ ~ ~ r„')dr,dr, ~ ~ dr„dr,' dr,' ~ ~ ~ dr„' u(r', )dr,', (37)

qp is the ground state wave function of the target
nuc'eus,

(36)

is the local or nonlocal nueieon-nucleon potential
acting between the incident and target nucleons,
and the nonlocal operator (R takes into account ex-
citation of the target nucleus.

It was demonstrated in Ref. 6 that the potential
. satisfies the condition

That is, we found that the effective potential'lt
divides naturally into terms containing projection
operators onto the subspace spanned by the states
l$,) and the subspace orthogonal to these states
The first term on the right hand side of Eq. (36)
contains =xplicitly the projection operator

(40}

onto the subspace spanned by the states lg, &. That
the associated projection operator

(41'

is implicit in the term 'u, follows from Eq. (39).
That ls,

(42)

Equation (1) with the potential of Eq. (36) can be
written in the form

the redundant states which arise from the potential
I'his follows immediately from substituting for

lu) in Eq. (43a) or (43b) the state lg, &. Because of
Eq. (39), for l«) = l$, & each side of Eq. (43a) is
sePa~ately zero. Said another way, the term
'U, l],.& drops out, leaving only the identity (e —T,) lg, )
—(e —T,}lf,.&= 0. This verifies that lg& is, indeed,
a redundant solution to Eq. (1) with the potential
giverr bv Eq. (36).

That the structure of the full Hartree-Fock po-
tential is somewhat complicated becomes clear
when the potential is written out in terms of a
special ease. Consider, for example, A =2, in
which case the Slater determinant for the ground
state target wave function is

&p.(r„~,) = (2) "'[(,(r,}(,(r,} —t;(r,)k,(r, )]

(44)

We introduce the simplifying assumption that the
matrix elements of Vp+(8 be local, namely,

( r, r, r, I
V + 61l r 1 r,') = 5(r, —r,') 5(r, —r', }

x 5(r, —r,,') y (r„r„r.,) .

(46}

In terms of the loca interaction 1' the expression
for 'u, given in Eq. (37) becomes

'lL, rpy rl 8 rl dr, =%, r, u r,

+ u', (r„r,)u(r, )dr, ,

(e —T,) —(& —T,) lt';&(gg l lu) =u; l«r) (43a} where
(46)

or

The term (e —T,}Q";,l (,&(E, l
is responsible for
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rr, ( „,) = -d J r,'(r„r,)r(r„r„r,)»,(r„r,)dr, .

(48)

Substituting Eqs. (44) and (49) into Eq. (47) yields

rr, (r„)= f (%',)(,;„-)(,(,.)d,

We further a sume that W can be expressed as a
sum of two-body interactions, and write it in the form

+ (, r, j~ r„r, E, r, dr, . (50}

7 (r„r„r,) = ~(r„r,) + ~(r„r,) . (49) Similarly, we find that

~,(ro, r, ) = —$,*(r,)g, (r,) T(r„, r, ) —,",*(r,)$,(ro)r (r„, r, )

—(;(r&}$,(ro} $2d(r, )7(ro, r, )g,(r,)dr, —$f(r))g, (r,) $&d'(r, )r(r„r.,)g((ra)dr,

~ +r,&(,(r, ) f(;Cr, lrCr„ r,&(,(,&d ,~ (;(,&C,( „&f ;((r,) r(r„ r,)(,(r,)dr, . (51)

Equation (46) for the term u, in the Hartree-Fock potential in the case A = 2 and under the assumptions
stated thus assumes the form

rr, (r„r,)r(r)dr, =r(r, )J (, (r, , r(r„r,)(,(r, )dr, (,)J &(r) (r,„, r,)(,cr, )dr,

—„(r,) F„*(r&)v(r„r,)(d(r&)dr& —$,(r,) $, (r&)r(r„r,)u(r, )dr,

—],(r,) J (,*(r()u(r, )(fr, t',*(r,)T(r„r,)t,(r, )(fr,

—$,(r.) $,*(r,)u(r, )dfr, (,*(r,)r(r„r,) $,(r,)dr,

'( (r.) f (l(r, ) (r, )dr, (&(,) ( „,)(,(,)dr,

+ $,(r&&) (,*(r()u(r&)dr, $2d (r,)T(r„r.) $,(r,}dr, . (52)

It follows by straightforward substitution into Eq. (52) that ~, ~g,}=&„~g,}=0. AII of the terms in Eq (52)
are necessary in effecting this orthogonality. But, as pointed out earlier in this section, elimination of the
term ((; —T,)Q;, ,~$;)($; ~

from 'u eliminates redundant states from the solution of Eq. (1). Thus the po-
tential'lL, can be considered the effective potential in the reduced equation. On the other hand, we have al-
ready stated and will prove in the next section that solutions to this reduced equation are orthogonal to the
states ~$,} and ~t',). Thus once it is known that the full equation has a. scattering solution ~qd" }and the term
(e -T,)Q. . .~$;)($, ( has been removed, there is no loss in generality in removing from%, in Eq. (52) all
portions which project onto the states ~f,}and &($,,). WI&en this is done the potential 'V in the reduced Har-
tree-Fock equation assumes the further reduced form

r|(r„r,)r(r, )dr, = (r, ) f (, (,) ( „,)(,(,)d, (,) (,(,) ( „,)(,(r,)d,

—(,(r,) (, (r&)r(r„r,)u(r()dr& —$,(r,) $, (r,)7(r„r,)u(r, )dr, . (53)

It is interesting to note that the potential g is
symmetric, whereas the potential V, is not. How-
ever, once the term (~ —T,)g(-„2)$(}($(~ and thus
the redundant solutions, has been removed from
the Hartree-Fock equation, it is known that a scat-
tering solution to the equation will exist whether
or not the potential is symmetric.

V. SOLUTIONS OF FULL AND REDUCED EQUATIONS

By making use of the explicit structure given in
Eq. (36) for the Ha, rtree-Fock potential, it is pos-
sible to discuss the relationship between solutions
of the full and reduced Hartree-Fock equations.
This relationship is examined in this section for
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the case of a single redundant state I)). The ex-
tension to more than one redundant state is
straightforward.

As stated in Sec. III, Fredholm's third theo-
rem implies that for a nonsymmetric potential
which produces redundant states a scattering
solution is not possible unless the orthogon-
ality condition of Eq. (17) or Eq. (23) holds. This,
in effect, imposes a consistency condition upon
the potential ~,. For a single redundant state this
condition can be expressed most easily in terms
of a variable strength parameter ~ associated with

For more than one redundant state, additional
parameters associated with %,, must be considered.

For a single redundant state I)) the scattering
solution Q') of Eq. (1) with the potential of Eq.
(36) with a variable strength parameter & is

(~ —T.}IU& = u. I U&, (60)

it is possible to demonstrate that

&~ IU) = 0. (61)

lu&=ul&&+ IU& (62)

where the constant a is arbitrary.
The proof that Eqs. (61) and (62) follow from

Eq. (60) hinges upon the fact that there exists a
solution Iy& to Eq. (60) such that &(lx) =0. Such a
solution ean be constructed from any solution lu)

of Eq. (1) with the potential of Eq. (36) as follows:

That is, Eq. (60) does not have redundant solutions
and IU) is orthogonal to the state I$&. It then fol-
lows from Eqs. (60} and (61) that the most general
solution lu) to Eq. (1) is

I4"&= 14'&+

l()&(I'D"&+

(~ —T.} '»2I+'&. Ix&= lu& —&Clu&14&. (63)

The transposed homogeneous equation associated
with Eq. (54) is

Solving Eq. (63) for Iu) and substituting into Eq. (1)
gives as the equation for Iy&

l~;&= it&&]l~d», (e-T.} 'l4;&. (55) (~ —T.) Ix) =u2lx) . (64)

The three-dimensional equivalent of orthogonality
condition (17) assumes the form

&c'I+i&= 0.
Imposing this condition upon Eq. (55) yields

(56)

&c II&&( I4';& = -&4 I».(~ —T.) 'I 4„'& . (57)

Although I4~'& itself is dependent upon the poten-
tial strength ~, the consistency condition expres-
sed in Eq. (57) indicates that if a scattering solu-
tion IC '& is to exist for a, given functional form
for m, (r, r'), it will do so only for a unique poten-
tial strength. That is, if one fixes the strength
of 'h, by the condition

&@Iu (& -T.) '%g' (58)

then the scattering state I4") satisfying Eq. (54)
exists. That the correct choice of a potential
depth is in fact both necessary and sufficient to
insure a scattering solution for a nonsymmetric
nonlocal potential with redundant solutions will be
demonstrated by explicit examples in Sec. VI.

Consider now the class of potentials given by
Eq. (36) producing one redundant state and with

M, specified not by Eq. (37) but only by the condi-
tion

(5S)

We assume that the consistency condition expres-
sed in Eq. (58) is fulfilled, assuring that Eq. (1)
has a solution. If one then considers the state
IU) which satisfies the Schrodinger equation with

the potential M „namely,

Thus Iy& as defined in Eq. (63) satisfies both Eq.
(60) for IU) and the condition &)ly&= 0. Because of
condition (59), it is not possible to form a solution
IU) = I}()+b

I $& which satisfies Eq. (60) unless b -=0.

That is, substituting IU) = IX)+b Ig& into Eq. (60)
gives, after using Eq. (64), (e —T,)bl)&=0. Thus
the most general solution IU) of Eq. (60) cannot
differ from Iy& by any amount of the state I(&, and
must satisfy Eq. (61). That Eq. (62) is the most
general solution of Eq. (1) then follows from sub-
stituting Eq. (62) into Eq. (1), which gives

(e —To} IU& = &~ —To) I (&&( IU&+u2IU&. (65}

The fact that the most general solution of Eq.
(1) is given by Eq. (62) demonstrates that the only
result of replacing the potential 'll by the potential
&, in Eq. (1) is to remove redundant states from
the spectrum of solutions of Eq. (1). It follows
that for all other features of the interaction the
potential ~, can be considered as the effective po-
tential. However, both the condition that Eq. (62)
give the general solution to Eq. (1) and the condi-
tion that IU) be orthogonal to the state If) depend
upon the existence of a solution to Eq. (1).

This establishes that if a solution of Eq. (1) exists
then the solution orthogonal to the redundant state
can be obtained from a reduced equation. The im-
plication is, however, that this reduced equation
can be found only after the full equation has been
obtained and the consistency requirements applied
to that equation which guarantee the existence of
a scattering solution. On the other hand, the
simplicity of the reduced potential makes it a more
natural starting point in generating a scattering
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wave function, and the question arises as to
whether one can actually start with the reduced
equation and apply the consistency condition di-
rectly to it. We therefore discuss the possibility
of starting wi J) a reduced equation, that is, an
equation of the form of Eq. (60), and obtaining a
solution which will satisfy Eq. (1) and the orthog-
anality condition (61). The integral equation for
the scattering state IU') associated with Eq. (60)
j.s

IU ) = IC&+ (e —T,) 'x"u IU ) . {66)

(68)

Assuming that Eq. (68} holds, we now show that this
value of &.

' is the value X given by Eq. (58) and
that this value insures the existence of a solution
of Eq. (54). From Eq. (67) it follows that Eq. (66)
can be rewritten as

IU'&= 14&+ l(&&(IU &+(e -T.) 'x'sI, IU'& (69)

Equation (69) is known to have the redundant solu-
tion I(& for any value of X', and by comparison with

Eq. (54} it follows that Eq. (69) will have a scatter-
ing solution IU') only if X=X'. That is, Eqs. (69}
and (54} differ only in the symbol used for the solu-
tion, and the conditions imposed on IC") following
Eq. (54) must also be imposed on Eq. (69) to in-
sure that it have a solution.

In summary. the full equation (54) possesses
a scattering solution only for certain values of ~.
This scattering solution is not unique, but is
arbitrary with respect to the addition of any amount
of the redundant state I)&. Because of this arbi-
trariness, it is possible to choose a solution IU')

The insertion of X' into Eq. (66) emphasizes that
Eq. (66) is meant to be the reduced equation as-
sociated with the full equation (54) only for the
specific choice X' =- X. Eauation (66) will not have
redundant states, and the scattering solution IU')
wi! I exist for any choice of ~'.

Even if one sta.rts with an equation like Eq. (60)
which does not produce redundant states, it should

be possible to obtain a solution to the original
problem To demonstrate this, we treat Eq. (66)
as if it were written down without reference to the
full equation, Eq. (54), and question the conditions
under which a solution of Eq. (66) nevertheless
will be a solution of Eq. (54). The consistency con-
dition as derived earlier will not apply, but we
will show that a condition sufficient to insure that
the solution to Eq. (66) be a solution to the full
equation. Eq. (54}, is

(67)

Imposing condition (67) on Eq. {66) gives

of Eq. (54) which is orthogonal to I]&. The state
IU'& will be the solution of the reduced equation,
Eq. (60). The reduced equation has a scattering
solution for essentially all ~'. However, only for
the strength ~'= ~ will the solution to the reduced
equation be orthogonal to the redundant solutions
and satisfy the full equation. One way to insure
that the reduced equation will produce the desired
orthogonal solution is to use a reduced equation
which has been obtained from the correct full equa-
tion. Another way to impose the consistency con-
dition is to solve the reduced equation for arbitrary
~' and fix ~' by making the scattering solution
orthogonal to the redundant state.

This latter procedure remains valid even if
terms containing the proiection operator onto I])
are eliminated from the potential. That is, since
the potential 'll, satisfies condition (59), it follows
that it can be written in the form

where

Although the solution of the equation

Ix'&= I4&+(e —T.) 'x'&Ix
&

(70)

(71)

may differ from the solution of Eq. (66), imposing
on lx') the condition

&& Ix'&= o

clearly leads to x' = X and thus to
I
x') = IU') .

(73)

Vl. EXAMPLES

In order to clarify this discussion, we consider
two examples. The first is chosen for its simplic-
ity, the second for its direct connection with the
Hartree- Fock potential.

&(r}= 2a'"r e

We also choose the potential 'u, to be given by

(74)

(rlst, l s) = xe "e ' (r 'IA
I
s)dr', (75)

"A;2

0

where

(r'IAI s)-- 6(r' —s) —4a'r'e 'se "'. (76)

These choices make possible an analytic solution
to the radial wave equation. This equation, which
follows from Eqs. (1), (36), (74), and (75), is

Example 1

In this example we assume that the I, = 0 radial
wave equation has a single redundant solution given
by
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2+k' u r

where

= 2a"'(( ~u) [-2n e '+ (n'+ k')r e "]
+ ~ e '[& —2n"'(( Iu)/(n+ 0)'], (77)

2nP(P'+ k')(a+ P)'
P(n'+ k')- n( n' P-') '

in which case

(84)

We substitute u(r) into ($ ~
u) in Eqs. (82) and (83)

and find that the two equations hold for any choice
of a, and are mutually consistent only if

k'= 2m'/li' (78) (n2+ k2)2 1

b = 2ak, —(n' —k'}
—(a+I)' (85)

e '"~ r dr.
0

(79)

As discussed in Sec. V, at a given energy Eq. {VV)

has no solution except the redundant solution ((r)
unless ~ assumes a particular value at that energy.
This consistency condition specifies ~ as a function
of k.

Equation (77) can be treated as an inhomogeneous
differential equation, for which the solution will
be of the form

u(r} = sinkr+ ar e '+ b(coskr —e 8"), (80)

where the normalization of the free-particle solu-
tion has been chosen as unity. Substituting this
solution into Eq. (77) yields

-2an e '+ a(n'+ k')r e " —b(P'+ k')e

= 2n~'(E ~u)[-2ne ""+(n'+ k')r e "]
+ ~e '[& —2n"'(& lu)/(n+ 0)']. (81)

Comparing the coefficients of e " and re " gives,
in each case, the condition

This demonstrates that the existence of a scatter-
ing solution is not automatic. Rather, it depends
upon an overall consistency between the term
(e —T,) ~$)(E ~

responsible for the redundant state
and the term , . Straightforward calculation of
the term ($ ju) shows that the expression for b given
by Eq. (85) is precisely the condition required for
the scattering solution of Eq. (77) to be orthogonal
to the redundant solution $(r). That is, from Eqs.
(84) and (85) it follows that a solution u(r) of Eq.
(77) exists and has $(r) as a redundant state. The
solution U(r) orthogonal to the redundant state is
easily constructed by choosing g = 0, in which case

U(r) = sinkr+b(coskr —e e') .

As discussed in Sec. V, the solution U(r) may be
obtained from the reduced radial equation

(
d2

+ k2 ~ ~ pie-8» P 2~3/2

(87}

where A is defined in Eq. (VQ) [with u(r) replaced
by y(r)], by imposing the orthogonality condition

a = 2n'I'((iu) . (82)
(X I I) = 0. (88)

Comparing the coefficients of e 6" yields the con-
dition

The solution of Eq. (87) is

(~ (u)
(P'+ k') L (n+ P)' (88)

)((r) = sinkr+ c(coskr —e ")

with c given by

(89)

C=

8n'k(P'+ k')
(a'+ k'}2(n+ P)'

2p p'+ k (n+ P) (a'+ k )'(n+ P}

(90)

c=b, (92)

It follows that the reduced equation has a solu-
tion for any value of V [except, perhaps, for that
value of k for which the denominator of Eq. (90)
goes to zero]. The solution is not, in general,
orthogonal to the redundant state. Imposing con-
dition (88) yields

(91)

where X and b are given by Eqs. (84) and (85),
respectively. Thus if and only if the orthogonality
condition is imposed will )((r) be a solution of the
full equation, Eq. (77), as well as of the reduced
equation, Eq. (87).

The potential in Eq. (87) contains a term which
projects onto the state ~$). Eliminating this term
leads to the further reduced equation

„,+k' X(r)=~'&e ". (92)
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The solution of Eq. (93) will not in general be a
solution of Eq. (87), nor will the solution of Eq.
(87) in general be a solution of Eq. (93). However,
for l(.'= X the solutions of Eqs. (87) and (93) are
each equal to U(r), the solution of Eq. (77} which

is orthogonal to ((r). Thus the solution U(r) can
be obtained either from the full equation or from
Eq. (87) or (93) with the particular value &' = l(..

This example started with the full equation, Eq.
(77), with the redundant solution $(r). Because
this equation has no scattering solution unless ~

assumes the particular value given in Eq. (84),
the redundancy-free solution U(r) of Eq. (77) is
unambiguous. In going to the fully' reduced equa-
tion, Eq. (93}, information has been lost. This
information can be retrieved by solving Eq. (93)
in conjunction with the orthogonality condition of

Eq. (88). The orthogonality condition is not auto-
matic. It holds only if ~' is properly chosen.
Equivalently, this consistency condition could be
satisfied if one had prior knowledge of the value ~

which l&' must assume in order for Eq. (93) to
yield the solution U(r}.

Example 2

We now consider an example more closely re-
lated to the Hartree-Fock potential. As in example

1, we assume that the l= 0 radial wave equation
has a single redundant solution given by Eq. (V4).
We construct the potential%, , using Eq. (52}. For
a single redundant solution, Eq. (52) leads to a
direct term and to an exchange term. Assuming
for r(r, r') the form

-, (r, r') =l& e "e
2m

yields the l = 0 radial equation

d)" u(r)= ~, )'*) ((r&&((s&

(94}

+ l& e e"u(r) $(r')e " $(r')dr'

—xe '((r) J ((r')e "«(v')dr' .

(95)

The effective potential acting on u(r) in Eq. (95)
contains the term (d'/dr'+ k') $(r)($ )u) necessary
for generating the redundant state ((r}. As re-
quired, the remainder of the potential is orthogonal
to ((r). Algebraic solution of Eq. (95) is difficult
because of the presence of the direct term, the
second term on the right hand side. Therefore,
instead of considering Eq. (95), we solve a modi-
fied equation.

Equation (95) can be rewritten in the form

, +k'+lie e" s(r) =,+k'+Be '
$(r)(E~s)dr' dr'

+ & e (8(r) ((r')e ' ((r')dr'(((u) —xe ' ((r) f ((r')e ' (r')dr',
0

where

(97)8=-~ E r' e ""
$ r'dr'.

0

In Eq. (96) the last two terms on the right hand side form a potential which acts upon u(r) and which gives

zero for s(r) = $(r). Equation (96) is no more easily solved than is Eq. (95}. We therefore replace it by the

equation obtained by setting 8 = 0, namely,

(
d2

oo

, ~ &* (r)= . ~ )* ((~)&(I & ~ ~8 "((~) &( ')~ "((» )&r &(lu&- ((~')'"'( ')&r']. (»)
dr dr

+E cosur-Se ' '"". (99)

Equation (98) has essentially the same mathema-
tical structure as Eq. (95). It still has f, (r) as a
redundant state, but the potential contains no
local terms. The principal virtue of Eqs. (98} is
that its solution can be obtained in compact analytic
form.

The solution of Eq. (98) is of the form

u(r) = sinkr+ Cr e "+Dr e (

Substituting a(r) into Eq. (98) does not yield a
solution unless

(n+ P )'(2n+ P )'[(a+ P)'+ k']'
8a'(a+ P)'M +X

where

M = (n' —k'}(a+P)(2a+ P)'

—(n'+ k')'[(n+ P)'+ k']

—(a'+ k')'(a+ P}(2a+P)

(100)

(101)
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C = 2u"' (( I u&,

D = ak(2a+ P)'[(n+ P)'+ k']/M,

(103)

(104)

H = n'(2u+ }})'[(a+P)'+ k']'

—2n'(2n+ p)'(n+ P )' (4(a+ P )'[(u+ ii)' —k']

—[(n+ ji}'+k']'} (102)

For this value of &,

given by Eq. (100j.
These examples demonstrate thai it is not pos-

sible to obtain a scattering solution to an equation
with a nonsymmetric nonlocal potential which pro-
duces redundant states unless the consistency con-
dition is fullfilled. On the other hand, an equation
which does not exhi. bit redundant solutions will
always have a scattering solution. Thus a reduced
equation must be accompanied by appropriate con-
straints if it is to yield a solution of the original
equation.

E = -2ak (a+ P)(2a+ P)'/M. (105) VII. SYMMETRIC POTENTIAL WITH REDUNDANT STATES

Thus a scattering solution of Eq. (98) is possible
only for the value of ~ imposed by the consistency
condition. Calculation of the term (t'

I u) verifies
that the expressions for D and E given in Eqs.
(104) and (105) are those required for the scatter-
ing solution of Eq. (98) to be orthogonal to the re-
dundant solution $(r). Equation (103) shows that
C is arbitrary. The solution U(r), orthogonal to
the redundant solution, is given by Eq. (99) with
C=0 and is

U(r) = sinkr+Dre ' "+Ecoskr Ee—
(106)

The most general solution of Eq. (107) is of the
form

X(r) = sinkr+ Hr e """
+I[coskr —e ' ' '" J.

Substituting this expression for X(r) into Eq. (107)
yields

The solution U(r) also may be obtained from the
fully reduced radial equation

d' ~ oo

, + k' X(r) = X'e 'f.(r)-,'(r')e "
X (r')dr'.

0

It is possible to construct a nonlocal potential
which is symmetric and exhibits redundant states.
As discussed earlier, if the potential is symmetric
it is not necessary to impose a consistenc„condi-
tion in order to assure a scattering solution. "
However, the physical interpretation of such a
potential is open to question, since Eqs. (36} and

(37) show nonsymmetry to be an inherent charac-
teristic of a single-particle effective potential
which includes the Pau i principle. Thus, while
a symmetric potential has the advantage that a
consistency condition is not necessary for a solu-
tion to exist, such potential cannot describe com-
pletely the Hartree-Fock scattering formalism.

A symmetric potential with redundant states
suggested by Saito" has been employed"" in
describing scattering with antisymmetrization.
Saito's potential follows from considering the equa-
tion

Z(e T, V),ZIu-&=0—,

where A is defined in Eq. (41). Writing out A

explicitly gives

(e —T„) I u) = [V+ (e —T, —V)Q+ Q(e —T, —Vj

-Q(& .- T, —V)Q] I u), (114)

H= -8X'a'k(u+P}'[(a+/)'+ k']/8

I = 16x'u'k(a+ ii)'/J,
where

J = L'I, + (n+ P)'[(a+ P)'+ k']'

(109)

(110)

where 0 projects onto the redundant states and is
defined in Eq. (40). The effective potential in Eq.
(114) produces redundant states and is symmetric.

The procedure given by Saito for removing re-
dundant solutions from the spectrum of Eq. (114)
is discussed in Ref. 6. Dropping from Eq. (114)
all terms which project onto the redundant states
gives the reduced equation

with (e —T.j Ix& =- [v - Q(T. + v)] I x& (115)
I.= n'[(u+ P)'+ k'J'+ 2u'(u+ P)'[(u+ P)'+ k']'

—8a'(a+ P)'[(n+ P)' —k']. (112)

This solution exists for any value of ~' for which
Z is not zero. Direct calculation shows that X(r)
is not orthogonal to $(r} unless x' = X, where X is

The solutions of Eq. (115) are orthogonal to the
redundant states I(,& and satisfy the full equation,
Eq. (114). Because the original nonlocal potential
in Eq. (114) is symmetric, this orthogonality will
hold for any choice of V. The potential in Eq. (115)
is not symmetric. However, since the equation
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does not have redundant solutions, the question of
the existence of a scattering solution does not
arise.

Due to the nonsymmetry of the potential, the
full Hartree-Fock equation appears somewhat
more complicated than the full Saito equation.
On the other hand, the potential in the fully reduced
equation due to Saito is not symmetric, whereas
the potential in the fully reduced Hartree-Fock
equation is. Physically, the nonsymmetry of the
full Hartree-Fock potential can be viewed as im-
posing on that Hartree-Fock equation the restric-
tion that no scattering solution can exist unless it
is compatible with the Pauli principle. The con-
sistency condition is then assured for the resulting
reduced Hartree-Fock equation.

UIII. CONCLUSION

Accurate single-particle scattering wave func-
tions are needed for a variety of calculations. For
example, their importance in direct interaction
calculations is we11. known, "" since the distorted
wave transition amplitude is proportional to the
single-particle wave functions in the entrance and

exit channels, Thus the behavior of the wave func-
tion in the interior region where the projectile
and target are strongly interacting becomes a mat-
ter of critical concern. Austern" has emphasized
that appropriate antisymmetrization procedures to
remove redundant solutions should be incorporated
in obtaining the single-particle wave functions.

In studying procedures for obtaining the scatter-
ing wave functions, our primary focus has been
on the Hartree-Fock technique. In particular, we

have shown the importance of considering the full
Hartree-Fock single-particle equation. Home ex-
amples from the literature are now examined in
this context.

The fully reduced Hartree-Fock equation for
nucleon-nucleus scattering has been considered
by Vautherin and Veneroni, "Coz, MacKellar,
and Arnold, "and MacKellar, Reading, and Ker-
man. ' References 5 and 23 solve this equation
directly for the scattering phase shifts. Reference
24 investigates the local potential equivalent to
this nonlocal Hartree-Fock potential.

The reduced Hartree-Fock potential used in

these calculations is obtained from many-body
theories. "" However, as Coz, MacKellar, and
Arnold" have pointed out, potentials produced by
many-body theories are far from being exact.
Many Hartree-Fock single-particle operators are
found in the literature corresponding either to dif-
ferent methods of calculation or to different two-
body interactions.

From the considerations of the present paper it

follows that unless the full Hartree-Fock equation
is considered, the consistency condition discussed
here may fail to be imposed upon the reduced
Hartree- Fock potential. This consistency condi-
tion can be used in choosing between or modifying
nucleon-nucleon matrix elements [for example,
the matrix element r of Eq. (49)]. In fact, if a
functional form of the matrix element is assumed,
the consistency condition can be used to obtain
values for parameters of that matrix element. In
the absence of the consistency condition, different
reduced Hartree-Fock potentials will result in
scattering wave functions which are orthogonal to
different nuclear target states.

The importance of those terms present in the
full Hartree-Fock equation but not in the fully re-
duced equation has been discussed also by Schenter
and Thaler, "Schenter, "and Schenter and Mac-
Kellar. " These calculations employ a dynamically
correlated wave function for the ground state of
the target. In Ref. 14 the single-particle scattering
equation is examined in the limit in which only the
Pauli correlations survive. In this limit, the po-
tential differs from the potential given by Eqs.
(36) and (37) only in that the term Q, is not present.
Initially, therefore, their result retains the basic
structure associated with the potential of Eq. (36).
Thus in this limit (which is the Hartree-Fock limit
of their calculations) their equation can be put into
the form of the Schr'odinger equation (I) with a
potential 'u which satisfies Eqs. (36) and (39) and
exhibits redundant states. As such, it is a full
Hartree-Fock equation.

Margolis" has pointed out that the (e —T,) term
in the potential cannot contribute to the scattering
amplitude, This is consistent with our identifica-
tion of this term as that responsible for the re-
dundant solutions. Schenter and Thaler assume
that the remaining terms in the full Hartree-Fock
equation which are expected to give zero when
acting on the scattering wavefunction can be eli-
minated also. However, this presupposes that the
consistency condition discussed in the present
paper has been fulfilled. If this is not the case,
the solution of the reduced equation will not satisfy
the full equation and the terms eliminated will not
give zero when acting on this scattering wave
function.

Schenter and MacKellar" compare the relative
effects of the eliminated terms on the damping of
the nucleon-nucleus scattering wave function.
Based on Schenter's calculations showing only a
very small dependence on the form of the correla-
tion function' '" they conclude that in adding two-
body correlations to the ground-state target wave
function these terms have a significant effect on
the damping. The conclusion is correct only if
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the terms eliminated in obtaining the reduced Har-
tree-Fock equation are, in fact, zero. This mill
be the case only if the consistency condition has
been fulfilled. If the consistency condition has not
been incorporated, conclusions regarding the i~'i-
portance of the eliminated terms are open to ques-

tion.
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