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Spin-orbit coupling in a relativistic Hartree model for Smte nuclei
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Single-particle motion and spin-orbit splitting in finite nuclei are described in a relativistic Dirac-Hartree
model for nucleons interacting through exchange of scalar and vector bosons. Parameters are adjusted to
reproduce properties of nuclear matter as described by Walecka. The model, applied to ' 0, successfully
explains the sign and size of the spin-orbit interaction. The ~sitivity of this result to variations in the
parameters of the effective scalar boson is discussed.

NUCLEAR STHUCTUBE '80; calculated single-particle energies. Relativistic
Hartree method, spin-orbit coupling.

Spin-orbit coupling in nuclei is well known to be
a relativistic effect usually ascribed to relativis-
tic corrections in one-boson exchange models of
the nucleon-nucleon force, in particular to the
exchange of vector and scalar mesons. " Under-
standing of the spin-orbit splitting therefore re-
quires a treatment of relativistic degrees of free-
dom in nuclei.

One way of proceeding is to solve a relativistic
Hartree-Pock problem with fuQy relativistic one-
boson exchange interactions as input. Such a pro-
cedure has been carried out by Mil, ler, ' who solved
the nuclear Hartree problem using the Dirac equa-
tion. Miller has been able to reproduce the known

single-particle energies and the spin-orbit split-
ting in a number of nuclei. In his investigation,
the coupling constants and partly also the masses
of the exchanged mesons where handled as free
parameters. Now, a refined analysis of the Dirac-
Hartree problem by Brockmann' shows that the
single-particle energies and the spin-orbit split-
ting become extremely sensitive to the mass and
coupling constant of the scalar boson, so that add-
itional information is required to fix these input
parameters.

In this note we would like to draw connections to
the work of %alecka, ' who has used a relativistic
theory of nucleons interacting via exchange of
(isoscalar) effective scalar and vector bosons in

the mean field approximation to obtain a descrip-
tion of nuclear matter both at normal and high
densities. The restriction to scalar and vector
fields is motivated by the fact that, in a spin-
saturated system with equal number of protons
and neutrons, scalar and vector exchange with
T=0 dominates the Hartree energy in lowest order
since spin- and isospin-dependent boson exchange
interactions average out.

The interaction Lagrangian in%'alecka's model
is then

&,.~
=g.f(~)@(~)4(~) g.4(~)y-. ~"(~)0(~), (1)

c,=g, M/m, and c„=g„M/m„, (2)

where m, and m„are the scalar and vector boson
masses, respectively. These parameters are ad-
justed to give a binding energy Ee/A = 15.75 Me&,
and an equilibrium Fermi momentum of kz= 1.42
fm '. The result of Ref. 6 is

c' = 266.9 e 2= 195.7. (3)

Although there is no particular reason to identify
the vector boson with the (d meson and the scalar
boson with the o meson as it appears in one-boson
exchange (OBE) interactions, it is interesting to
note that if we choose m„= 783 MeV and m, = 550
MeV, as is frequently done in such potentials, Eq.
(2) gives

g,'/4v=7. 3 and g,'/4v=10. 8. (4)

These coupling constants happen to be quite close
to those usually used in OBE potentials. "

It is now interesting to investigate whether the
parameters of Eq. (3) reproduce the single parti-
cle energies and spin-orbit splitting in a finite
nucleus, like "0, in the same (i.e. , relativistic
Hartree) approximation. For that purpose, we
solve the Hartree problem for A = 16 as in Ref. 5
using the Dirac equation

[-iy ~ 0 —y, E +~ (r)+M]g (r) =0.

Here g is the spinor of a single nucleon,

(5)

where g are the nucleon fields, Q and V" the sca-
lar and vector fields, respectively. In the Hartree
approximation, the ground state energy of nuclear
matter in this picture is determined by only two
parameters
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t(, (r) -=(I„„(r)

iG„(/(r}
y A

&um( )~)./2 T

+nf j
(6)

equation, i.e. , elimination of the small component
F„reveals that the strongly attractive potential

U = 8"—$V"
a a a

appears in conjunction with the spin-orbit inter-
action, which takes the form

and U is the Hartree potential,

v (F)= .g f d'r g, (v )[v,(r„)~ v(~„)] ()( ), (7)
B&e

r„=/r r [,
where

(8a)

e-~ry2
V„(r,2) =

7T
(8b)

are the scalar and vector boson exchange inter-
actions generated from Z&„of Eq. (1). The coupled
radial equation for the large and small spinor
components C and E, respectively, reduce to

(d/dr) U,' '(r) 1 ~ o
2M[M+ E,+ U,' '(r)] t (12)

Note that scalar and vector exchange contribute
with equal sign to the spin-orbit interaction, where-
as they enter with opposite sign into the central,
Hartree potential. The resulting U, „ is sizeable
even though the nucleon mass enters twice in the
denominator. Note also that the spin-orbit force
is confined to the nuclear surface, as it should be,
and that in the limit E,-M, U,' '«M, Eq. (12}
reduces to the usual interaction of the Thomas
type.

We now give results for the (self-consistently
determined) single-particle energies e, = E, M, —
using m, = 550 MeV, m„= 783 MeV for the meson
masses, together with the-coupling constants of
Eq. (4}. Results are (for "0):

dE, (r) = [M —E.+ W,'(r) + W,"(r)]G,(r)

+ —F,(r),
dG.(r) = [M +E,+ W,'(r) —W,"(r)]E,(r}

(9a)

a(1s, /, ) =-42.6 MeV,

&(1P,/, ) = -21.3 MeV,

e(1P,/, ) = -13.6 MeV.

(13)

——G, (r), (9b)

where a =nlj denotes the set of radial quantum
numbers. Here the reduced interactions S;""
follow from Eqs. (f), and (8} after performing an-
gular integrations. For a closed-shell nucleus, one
obtains

2W'" (r)=+ m
4m
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The different signs in Eqs. (10) refer to scalar or
vector exchange, in that order. [Here j, and h,")
are the usual spherical Bessel and Hankel func-
tions and r& (r&) is the smaller (larger) value of
either r or r'. ] Furthermore,

z=+(j+&) for j=lv-,'.
Subsequent reduction of Eqs. (9) to a second order

FIG. 1. Single-particle energies gower section) and
root-mean-square radius upper section) of ~60 calcu-
lated in a self-consistent Hartree-Dirac model as de-
scribed in the text, as a function of the mass m, of the
effective scalar boson. Scalar and vector boson ex-
change parameters have been fixed according to Walecka
(Ref. 6) as in Eqs. (2 and 3). For the vector boson mass,
m„=783 MeV has been used.
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These numbers compare reasonably with mea-
sured separation energies. ' In particular, the
magnitude of the spin-orbit splitting is almost
quantitatively correct. The binding is only slightly
overestimated, so that as a consequence the rms
radius comes out somewhat too small, (r') '~'
=2.4 fm.

We have noted already that there is no justifi-
cation to identify, in particular, the scalar boson
of Walecka's model with the cr meson appearing
in one-boson exchange potentials. The scalar mass
m, is anyway not well localized, so that it might
be interesting to study the sensitivity of our results
to changes in m, , keeping c, of Eq. (2) at the
constant value of Eq. (3). The results are sum-
marized in Fig. j. and show a relatively strong
dependence of the single particle energies on the
scalar mass. However, the qualitative conclusions

about the nature of the spin-orbit interaction re-
main basically unchanged.

The reason for the larger binding with increasing
scalar mass at fixed@, '/m, ' is that the attractive
part of the two-body force becomes stronger at
shorter internucleon distance, so that at the same
time the rms radius decreases. Finally, we would
like to mention that increasing the vector boson
mass from 800 MeV to 1 GeV, while keeping a
constant ratio gJm„, raises the single-particle en-
ergies by only about 10%, with almost no change of
the spin-orbit splitting.

The results obtained here are similar to those
of Miller, ' except that the freedom of choice in the
scalar and vector boson parameters has now been
reduced considerably by the fact that the ratios
gjm are determined by properties of infinite nu-
clear matter.
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