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The Nilsson model is combined with the Hill-Wheeler definition of nuclear deformations and with the
stationarity condition of Yariv et al. to calculate a new deformed basis. The wave functions of this basis are
the same for neutrons and for protons, and for all mass numbers. The energy levels depend on Z,4 via an
isospin- 4 -dependent scaling factor. This basis is combined with an improved theory of pairing to calculate a
new deformed-quasiparticle basis. It is shown that without any adjustment of the model parameters from one
nucleus to another, this basis leads to reasonable potential energy surfaces for many even-even nuclei
(Mg,Zr,Sm,Er,0Os,Hg), and reasonable low energy spectra of Mg, '%3Zr, and '$$Er. The Strutinsky method
is used to calculate the potential energy surfaces. A modified Kumar-Baranger method is used to calculate
the moments of inertia and the mass parameters, and to solve the collective Schrodinger equation.

NUCLEAR STRUCTURE 148 150, 152, 154Gy, | 186, 188, 190, 192, 194y~ 184, 186, 188, 190p50r: g1

culated deformation energy curves. *Mg, !2Zr, '8Er; calculated deformation

energy curves and collective spectra. Modified Nilsson method. Modified BCS
method. Combined Strutinsky method with Kumar-Baranger method.

1. INTRODUCTION

In recent years, much progress has been made
in calculating the potential energy surfaces of nu-
clear deformation. It is now generally recognized
that the Strutinsky method® is a reliable simplifi-
cation (computation time is reduced by several
orders of magnitude) of the Hartree- Fock method
of calculating the potential energy surfaces (see
e.g., Refs. 2-4). Even then, the computation time
is substantial.

Furthermore, it has been shown®~7 that the poten-
tial energy is not enough for a complete descrip-
tion of nuclear spectra. It is necessary to cal-
culate the dynamics of nuclear deformations, that
is to solve the collective Schridinger equation. In
order to solve this equation, one needs to calcu-
late not only the potential energy but also the mo-
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ments of inertia and the mass parameters. An
essential part of this method is the calculation of
the potential and inertial functions not only as
functions of B (magnitude of nuclear deformation)
but also as functions of y (the nonaxiality param-
eter).

Previous experience with calculations of this
type has shown that most of the computation time
is spent in the calculation of the single-particle
basis (wave functions and matrix elements of
various single-particle operators). Therefore,
we have spent a number of years searching for a
more efficient (less time consuming) basis which
is at the same time reasonably complete. The
purpose of this paper is to discuss a new single-
particle basis which we have obtained recently.
The main features of this basis are the following:

(1) All oscillator shells with =0 to 8 are in-
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cluded. Mixings of type ANl =2 and AQ =2 (for
nonaxial shapes) are taken into account exactly.

(2) The Nilsson® potential is combined with the
Hill-Wheeler® (instead of Bohr-Mottelson®!°) def-
inition of nuclear deformations.

(3) Strengths of the I% and 1+ § terms are as-
sumed to be shell (N)-dependent rather than Z-

A -dependent (except for an overall scaling factor
for the energy levels). The same values are em-
ployed for protons and neutrons. Values for the
lower shells (N =0-2) are determined by fitting
the spectra of nuclei near closed shells. Those
for the other shells are determined via a modi-
fied form of a stationarity condition due to Yariv,
Ledergerber, and Pauli.'

(4) Our single-particle basis is independent of
Z and A. Because of our exact treatment of AN
=2 mixing and AQ =2 mixing in a large configura-
tion space, we need to compute about six million
matrix elements of various single-particle opera-
tors. However, the same matrix elements are
employed for nuclei ranging from A=24 to A=200.
Details are given in Sec. IL

After having calculated the deformed-single-
particle basis, the next step in the present type
of calculation is the inclusion of pairing, i.e., the
calculation of the deformed-quasiparticle (DQP)
basis. For this purpose we employ a modified
BCS method. Our modification consists of includ-
ing not only the particle-particle but also the
particle-hole contributions of the pairing force.
The major effect is to remove the divergence oc-
curring in the BCS theory when two levels cross
at the Fermi surface and the energy gap vanishes
(quasiparticle energy, which appears in the de-
nominator of many expressions, vanishes). De-
tails are given in Sec. III

How good is this DQP basis? We employ two
types of tests. The first test is based on the ques-
tion: Does the potential energy of nuclear defor-
mation give the correct variations in regions of
shape transitions? Using the Strutinsky method,
we calculate the potential energy for a region of
spherical-deformed transition (148 150+ 152. 124 g ),
a region of prolate-oblate transition
(186- 188, 1%0, 192, 194 Og)  and a region of shape as well
as energy gap transition (1% 8. 188 190 Hg)  De-
tails are given in Sec. IV.

The second test is based on the question: Is our
DQP basis good enough for predicting the low-
energy spectra of even-even nuclei without any
adjustment of parameters from nucleus to nucleus?
Of course, the answer depends not only on the
DQP basis but also on the method of calculating the
spectra. We employ the Strutinsky method of cal-
culating the potential energy, and the modified
Kumar-Baranger method of calculating the dy-

namics, i.e., calculating the moments of intertia
and the mass parameters, and then solving the
collective Schrddinger equation. Details are given
in Sec. V.

The answer to the two questions mentioned above
is a qualified yes. Without any adjustment of
parameters from nucleus to nucleus, we do get
reasonable potential energy surfaces for the nu-
clei mentioned above, and reasonable spectra for
three test nuclei: 2}Mg, '%2Zr, and '$¢Er.

Reason for the qualification is the following. Al-
though the dynamic theory employed here has pre-
viously been shown to be applicable to transitional
nuclei like those of the osmium region’ and those
of the samarium region,'? the present version of
the model is valid only for the spectra of well-
deformed nuclei. It is argued in Sec. VI that this
is not the fault of either the DQP basis or that of
the method of calculation of the potential and in-
ertial functions. It is suggested that the fault lies
in the neglect of the Villars-Cooper!® correction
which would give rotation-particle-coupling type
of terms even for even-even nuclei (see the text-
book by de-Shalit and Feshbach!* for a beautiful
discussion of this point).

Recently, this type of dynamic calculation in a
large configuration space has also been performed
by Dobaczewski, Rohozinski, and Srebrny.'> They
are able to get reasonable fits to transitional nu-
clei—but at the cost of introducing some ad hoc
adjustments to the microscopically calculated po-
tential and intertial functions. More comparison
with their work is given in Sec. VI, which also
gives our main conclusions.

1. DEFORMED-SINGLE-PARTICLE BASIS

The motion of a single nucleon in the field of the
remaining (A -1) nucleons is described in the Nil-
sson model via the Hamiltonian® % ¢

Hy =02/ (2M) +3 M(w 2 x,% +w,2 ;% + ;2 x,2)
+Hwo[ v, (T2 = A2y +v,, T+ 8] (1a)
(T2, =3 +3) . (1b)

This model is a generalization of the spherical
shell model for which w,=w, =w,=w, (8=0). In
the original formulation of the model by Nilsson,
and even in many subsequent applications, it is
assumed that the nucleus is axially symmetric
(w,=w,=w#w,; B#0, y=0°). We have emphasized
for many years the importance of nonaxial shapes
(w,# W, #w,; B£0, y#0) in a dynamic theory of nu-
clear spectra.®!'” Instead of assuming a priori
whether a nucleus is spherical or deformed, axial
or nonaxial, we let the collective Schridinger e-
quation govern the shape of the nucleus. The most



16 DEFORMED-QUASIPARTICLE BASIS FOR CALCULATING... 1237

probable shape of a nucleus is not fixed in general
but varies from one nuclear state to another.!®

We also differ from the Nilsson model in (i) the
method of relating the frequencies w, to nuclear
shape variables (B, v), and in (ii) the method of de-
termining the model parameters.

Because of the short range of nuclear forces,
the equipotential surfaces are expected to have the
same shape as the nucleus. Hence, the vibrational
frequency w, is assumed® to be inversely propor-
tional to the semiaxis length R,

(k=1,2,3). ()

In the Nilsson model, the semiaxis lengths R, of
the nuclear ellipsoid are deduced from the Bohr-
Mottelson definition® '°

Wy =woRo/Ry

R(6, $)=R, [1+‘; Pu Y 6, ¢)] : 3)

As is well known, Eq. (3) obeys the volume con-
servation condition (R,R,R,=R,*) only to first or-
der in 8. In order to satisfy the condition exactly,
Nilsson chose R;,, w, in such a way that they also
become functions of deformation.

Following Hill and Wheeler,® we define the semi-
axes of the nuclear ellipsoid as

R,=R,exp[6cos(y - 3nk)]. (4)
On combining Egs. (2) and (4), we get
wg = w, expl - 6 cos(y - §mk)]. (5)

Both Egs. (4) and (5) conserve nuclear volume to
all orders of deformation with constant R, w,.
Also, Eq. (4) reduces to the Bohr-Mottelson defi-
nition if we keep terms only to first order in de-
formation and if we have

5=B[5/(4m)]"/2 . (6)

Although both definitions allow for exact volume
conservation, the B-y dependence of R, and w, is
not the same. At small deformations, there is no
difference. But at large deformations, the two
potentials can be quite different for the same
(B) 7)»

On substituting Eq. (5) into Eq. (1), writing x, 2
in terms of the spherical harmonics, and rear-
ranging the terms, we get

Hyw=H,+Ug , 7)
where
Hy==[7%/(2M)] V2 + s Mwr?

+hwy vy, 12 =(12)y) +0,,1- 8], (8)
Up=MwX(Boo?® = B Qa0 = B Quzv) 5 )

Boo = +| exp(~25,) +2 exp(5,) coshd, - 3], (10)

pP=3% (16#/5)‘/2[exp(6,)cosh6,- exp(-25,)], (11)

B% =% (481/5)'"2 exp(5,) sinhd,, (12)
6,=6cosy, 6,=v3 &siny, (13)
and

Qu=7Y50 Qo =(1/V2)¥r¥(Y,,+Y, ;). (14)

In the limit of small deformations, the potential
U of Eq. (9) reduces to the average potential due
to quadrupole force® because as -0 we get

Boo=0, BS ~By =Bsiny. (15)

The “monopole” term contribution to the deform-
ing potential of Eq. (9) is proportional to B,
and to (#2) ~ (M +3). Hence, this term shifts the
upper shells above the major shell and the lower
shells below it, i.e., the effects of the usual quad-
rupole force are reduced. This term plays an im-
portant role in removing the divergence at large
deformations caused by the usual quadrupole force
when it is allowed to act in a large configuration
space.'®

The B-y dependence of the potential deformations
Boos Be, and B are given in Figs. 1 and 2. Figure
1 gives the B dependence for y=0° in which case
BE=0. Figure 2 gives the y dependence for 8=0.6.

The second difference between the present model
and the Nilsson model, as mentioned above, is in
the method of determining the model parameters. In
the Nilsson model, the parameters v, and v;; (Note
that v, =2xyy U1y == Xy K py) are determined by fit-
ting the properties of odd-A nuclei. Althoughthe same

35’30 =p cosy,
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FIG. 1. Bdependence of the monopole and quadrupole
deformations of the modified Nilsson potential. The
quantity B, equals B for the present case (y=0°), and
B# = By=0. The vertical bars on the curves correspond
to |B]=0.3.
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FIG. 2. vy dependence of the monopole and quadrupole
deformations of the modified Nilsson potential. Defini-
tions are given in the text.

values are used for all oscillator shells, the val-

ues depend on Z and A. Hence, it is necessary to
generate the deformed-single-particle (DSP) basis
for each nucleus.

We attempt to remove this complication by mak-
ing the parameters v;; and v, shell () dependent,
instead of Z and A dependent. Furthermore, we
assume that these parameters have the same val-
ues for neutrons and protons. These two uncon-
ventional assumptions are based on the following
arguments,

(i) The odd-A spectra determine only a few levels
near the Fermi surface (FS), i.e., only a few lev-
els of the last major shell occupied by the nu-
cleons. Hence, the empirical finding by Nilsson
et al. that different v,;, v,, values are needed
for different mass regions is taken into account in
the present approach too.

(ii) Nilssone! al.employ different v,;, v;, values for
neutrons and protons of the same nucleus. There is no
strong experimental evidence for this. Spectra
for odd-» and odd-p nuclei are quite similar in
the case of light nuclei. True, such spectra are
quite different in heavy nuclei. But this is taken
into account in the present model partially by
having different v;,, v,, values in different shells,
and partially by employing an isospin-dependent
oscillator energy constant [where the upper (low-
er) sign is for 7=p(n) for protons (neutrons)]

Fwe =(41 MeV) 15 3(N -2)/A] /A3, (16)

Note that the oscillator length constant also be-
comes isospin dependent since

b,2=h/(Mw,) . (17)

The constant 41 MeV comes from the requirement

that the nuclear radius is given approximately by'°
Ry=(1.2 fm)A'/3 (18)

The constant 3 multiplying (N - Z)/A in Eq. (16)
comes from the requirement that neutrons and
protons have approximately the same radii. With-
out this term neutrons in nuclei with substantial
neutron excess would tend to have larger radii
since (72) ~(N +3)2 and N is larger for neu-
trons.?°

(iii) By employing 9N-dependent v;;, v;5, We can
make all the DSP basis wave functions and matrix
elements independent of Z and A. In order to ex-
plain this point, let us recall a few steps used to
solve the Hamiltonian defined by Eqgs. (7)-(14).
For simplicity, we drop the subscript 7. Define

p=r/b, py=x/b. (19)

Then, Eqgs. (8) and (9) can be rewritten as

Hy=hwo[~3V,2 +30 +vy, (12 = (T2),)+ 0, T+ 8],

(20)
Ug =Tw,(Boop? ‘ﬁ:Qéo' B;Qéz’) ’ (21)
where
v2=[30%/804% Qo= Qu/b”
and .
Qhy =Quy/b% . (22)

Thus, the only Z-A dependence of our single-
particle Hamiltonian is contained in the overall
scaling factor Zw,. The calculated wave functions
|p) of the particle Schrédinger equation,

(Ho+Ug) D) =m,|0), (23)

are independent of Zw,. The eigenvalues 7, are
simply proportional to fw,.

We solve the particle Schrddinger equation in a
spherical basis, |NIjQm,), where Q is the pro-
jection of J on the intrinsic Z axis, and m, =3
(-%) for neutrons (protons). The AN =2, Aj=1
and 2, and AQ =2 mixings caused by the deformed
potential, Ug, are taken into account exactly in a
large configuration space (X =0-8). In our de-
formed single-particle basis, only parity =(-1)%
and m, remain as good quantum numbers. The de-
generacy of time-reversal-conjugate orbits is
maintained as usual. But because of AQ =2 mix-
ing, it is not sufficient to consider only positive
values of 2. Instead, we choose
for eachj. (24)

Q:%’ —%’ %) "';l',-'

As regards the 1-dependent parameters v;; and

v;4, their values are determined for low N values

(9 <2) in the usual way, i.e., by fitting the spec-
tra of closed shell + one nucleon nuclei. In the
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case of higher M values, we employ the stationarity
conditions proposed recently by Yariv ef al.'';

3(6U) -0= a(6U)
80” Bv,,

) (25)

where 8U is the Strutinsky shell correction for a
doubly magic nucleus. Actually, we employ a
modified form of these conditions. Yariv ef al.
employed the same v;;, v;, values for all shells
and obtained different sets of parameters for dif-
ferent nuclear regions.

We determine N -dependent (N >2) values of v,,,
v;s by solving the stationarity conditions (25)
simultaneously for all magic numbers (N or Z=2,
8, 20, 50, 82, 126, 184). Our parameters are
given in Table I. Comparison with the calcula-
tions of Yariv ef al. (when possible) shows that our
parameters for the major shells just below the
magic numbers are identical. But away from the
FS our parameters are different.

Our spherical single-particle levels (valid for
neutrons and protons in all nuclei, in the present
model) are given in Table II. Note that our magic
numbers are identical for neutrons and protons.
The next proton magic number, Z=126, is in
agreement with the early experiments?! of Gentry
et al. However, more recent experiments?! by
Sparks et al. cast serious doubt on earlier experi-
ments. Hence, the question of next magic Z re-
mains open.

The present single-particle basis is not large
enough for well-deformed nuclei with A>208. But
it can be used for heavier, spherical nuclei like
those around the next magic number (Z=~ 126).

Although hexadecapole (B,) deformations are not
introduced explicitly, the present basis contains
some effects of such deformations (see Appendix I).

TABLE I. Parameters of the single-particle model.

N —v* —vy? Source

0 0.0 0.0 No effect on levels

1 0204 0.0 Spectra ® of ’He, °Li, '°N, '°0
2 0.126 0.0 Spectra® of 170, ''F, ¥k, ¥ca
3 0.100 0.011

4 0.184  0.037 Stationarity of Strutinsky

5 0.120 = 0:026 Shell correction at magic

6 0.116 0.018

7 0.086 0.014 numbers

8 0.084 0.015

2We follow the definitions of Bohr and Mottelson (see
Ref. 10, Vol. 2), but differ from Nilsson (see Refs. 8
and 16) since v jg==2x, v;;==XH-

bSee Ref. 10, Vol. 1.

TABLE II. Spherical-single-particle levels. Energies
are given in units of kw, which is slightly different for
neutrons and protons if Z# N (see text). Levels for the
last shell are not complete since shells higher than
N =8 are not included.

g Energy NLj Energy
0sy/9 1.500 126
2 683/2 7.394
1p3/s 2.398 6i1y/2 7.636
1p 2.704 6ds/, 7.762
v . Tky5 /2 7.905
8 6g1/2 7.916
2ds/, 3.374 gzn/z ;.ggg
25179 3.500 3/2 .
2dy/, 3.689 184
20 Thyy o 8.355
3f1r2 4.317 TRy3 /9 8.550
Tf1/2 8.693
3p3/2 4.527
8li7/9 8.744
3fs/2 4.667
Thy/a 8.828
3pi/2 4.677
4g 4.910 Tp3/2 8.919
e ' fs/2 8.994
50 172 9.048
4ds/y 5.612 958
4g1/2 5.738 8i1s/2 9.278
Shii/a 5.890 8,5 /2 9.458
4s1/2 6.018 8g3/2 9.692
4dy/y 6.072 841, /2 9.824
82 8ds/, 9.986
8g1/2 10.070
5f1/2 6.498 851/2 10.160
5h3/2 6.660 8d3/2 10.196
6i13/2 6.882
5p3/2 6.898
5f5/2 6.988
5p1/2 7.108

III. DEFORMED-QUASIPARTICLE BASIS

The monopole pairing Hamiltonian is written as
(we follow the notation of Kumar??)

Hs(a = an + UP (26a)
=§; nCIC, -G 208,8,CLclCc,C;,  (26b)
pa

where H,, is the “average” one-body Hamiltonian
described in Sec. II, 7, is an eigenvalue of H,,,
G is the pairing force strength, S, is a phase fac-

tor such that
S,2=+1, 5,85 =-1,
S, =5 (—1)’# -l,+52, (27)

and |P) denotes a time-reversed state of |p).
Since the DQP basis does not conserve the num-
ber of particles, one introduces a Lagrange mul-
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tiplier A and considers the solutions of the modi-
fied Hamiltonian

HJ, =H,, - \N , (28a)

where N is the particle number operator,
F=Yclc,. (28b)
»

Value of the Lagrange multiplier A is determined
by accepting only those solutions of H§, which
satisfy the condition

(N)y=N, (29)

where N is the number of nucleons (neutrons or
protons).

The major effects of the two-body pairing force
of Eqs. (26) and (27) are usually taken into account
via a transformation from the particle, hole op-
erators (CI, C,) to quasiparticle operators

Aj=U,C} -V,5,C5 , (30a)
A,=U,C,-—V,S,C,I. (30b)

The mixing amplitudes, or the U-V factors, are
determined via the Bogolyubov conditions??

{(pq|H%, |0) =0 for all p,q (31)
and

(P|Hgy | @) =Epdy, - (32)
The quasiparticle states |0), |p),... are defined
via the equations

A,|0)=0 for all p, (33a)

|p=A710), (33b)

|pa)=AJA]|0). (33¢)

These conditions lead to the BCS pairing equa-
tions,

2V, =1=(1,~ N)/E,, (34)
UZ=1-V;2, (35)
E2=(n, = AP +a%, (36)
267'=Y" E,1, (37)
4
and
’
N=)_ 2v;2, (38)

»

where A is the energy gap parameter [values of
A and X are determined by solving Egs. (37) and
(38)], and )}’ denotes summation over direct
states only [see Eq. (24) for our definition of such
states].

The BCS equations allow us to include the major
effects of two-body pairing correlations in a re-

defined single-particle basis, called quasiparticle
(spherical only) or deformed-quasiparticle (de-
formed as well as spherical) basis. But it has
been known for a long time that many higher order
terms are neglected. There exists a large body

of literature dealing with one or more of these
terms—for instance, improvement of the treat-
ment of particle number conservation. Most of the
proposed treatments make the treatment of pairing so
complicated that many other important effects (for
instance, thedynamics of nuclear deformations) have
to be neglected. We discuss below asimple modifica-
tionwhichallows us to include some higher order
terms.

Using the general relations®? for the matrix ele-
ments of one-body and two-body operators in a
DQP basis, we find that the Bogolyubov conditions
(31) and (32) lead to

20, V,(n,=A=GV,2) - G2 -V,2) Y. U, v, =0,
¢
(39)
(U2 = V)= A =GV,2) +2GU, V, D U, V, <E,. (40)
c

In the BCS theory, the GV,? terms of Egs. (39)-
(40) are neglected. These terms come from the
particle-hole type of matrix elements of the pair-
ing force, (pT|Up|qC), while the terms propor-
tional to G2, U, V, come from the particle-particle
(or hole-hole) matrix elements, {pg|Up|Cc) [see
Egs. (69)-(72) of Ref. 22]. The GV,? term produces
a kind of Blocking effect since the occupied levels
are pushed down. On solving Egs. (39) and (40) in
the usual way, we find that Egs. (35), (37), and
(38) remain valid but Egs. (34) and (36) become
(for A+ 0)

2Vy? =1-(n, =1 - 2G)/(E, - 2G) (34)
Ep=3G +(Ep/8)(E, = 3GF = (n, = X = 3GP]'> .
(36')

In the case of A =0 [when G is too small to satisfy
Eq. (37) for A #0], we examine the equations care-
fully and find the following solutions,

U,=0, V,=1, E,=3G+ (A+3G-n,)

if 7, <(\+3G), (41a)
E,=3G

if n,=(A+3G), (41b)
Uy,=1, V,=0, E,=3G+(n,—x-3G)

Upy=1N2, V,=1NZ,

if ,>(A+3G) .  (41c)
Note that while in the BCS theory, the quasi-
particle energy E, vanishes if A =0 and 7,=X[see
Eq. (36)], this energy never vanishes in the pres-
ent theory. Its minimum value is given by 1G—a
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positive, nonzero number. This helps us to re-
move a long standing problem which occurred
when two levels crossed near the Fermi energy

(A in the BCS theory) and A was vanishingly small.
Then the energy denominator entering the expres-
sions for the moments of inertia (see Sec. V) would
be vanishingly small (E,, +E, —~0). In the present
theory, this energy denominator (energy of a two-
quasiparticle state above the zero-quasiparticle
state) is given by

Em=<Pq|Hnalpq>‘<Oleu |0> (42a)
Ep=E,+E,~GA*/(2E,E,), q+P, (42b)
Egz =2E,-G. (42c)

Of course, g=p is forbidden by the Pauli principle.
For g+ p, this energy denominator goes in the lim-
it of A~0, 7,~X+3G, n,~A+3G to the value of G.
It does not vanish. The problem does not arise in
the case of g=7 (see Sec. V). Thus, the divergence
coming from this type of situation in the BCStheory is
removed in our improved theory.

As regards an increase in the complexity of com-
putations, this increase is very slight. The main
difference from the earlier equations is in our Eq.
(36’) for the quasiparticle energy. This is an iter-
ative equation. But a good initial guess to the in-
itial value of E, is provided by the BCS Eq. (36).
When this value is substituted in Eq. (36’), one
iteration leads to a good convergence in the case
of most single-particle levels. The levels nearest
the Fermi surface require the largest number of
iterations. In the many cases, where we studied
this question, the maximum number of needed
iterations was 3-5.

As regards the pairing force constant, we employ
the parametrization

Gy, n=G,o[12G,(N=-2)/A] . (43)

The constants G,, G, (or G,, G,) are often deter-
mined by fitting the odd-even mass differences.
But we prefer to employ different methods for G,
and G,.

The observed nuclear property most sensitive to
the value of G, is the gyromagnetic ratio (or half
the magnetic moment of the first 2 + state of a
well-deformed nucleus). This ratio is remarkably
constant for well-deformed nuclei with A=150-186
and is ~0.3 within a few percent.?* We employ
this fact to fix the parameter

G,=0.3. (44)

Following Bohr and Mottelson,'° we determine
the value of G, (the average of proton and neutron
values) by fitting the extra binding energy of nu-
clei with two nucleons outside (or holes inside) a
closed shell. This problem is solved exactly by

20 T T T
1.0 -
0.5 -
~~
% 02k ¢ Neutrons
L3
~ x Protons
° 0.1
A —>
0.05 1 1 L
10 20 50 100 250
0.18
~ 0.14F -
>
®
5 0.10
° .
0.06 1 1 1 1 1 1

0 20 40 60 80 100 120 140

No. OF PAIR STATES

FIG. 3. Pairing force strength deduced from the pair
binding energies. The lower part of the figure depicts
the convergence with the number of pair states included
in the calculation. The upper part of the figure (a log-
log plot) is employed to determine the A dependence as
well as the strength of the pairing force.

considering two nucleons interacting via the pair-
ing force of Eqs. (26a) and (26b). The dispersion
equation to be solved is

G-1=Z’:' (2|17p‘770|‘E)-1; (45)

where 7, is the energy of the single-particle level
occupied by the last two nucleons. The dispersion
Eq. (45) may be solved, for a given G value, to
determine the various eigenvalues E. But we are
interested in determining the G value for a specific
E value (the lowering of the ground state due to
pairing correlations) which is deduced from the ex-
perimental masses (separation energies) via the
relations for neutron pairing,

E(Z, N-2)=-[2S,(Z, N)-S,,(2Z,N)], (46a)
E(Z,N+2)=-1S,,(Z, N+2)=-2S,(Z,N+1)], (46b)

where Z and N are bofh magic numbers. Similar
relations hold for protons.

Using Eqgs. (45)—(46) for 12 nuclei around magic
numbers (8, 8), (20, 20), and (82, 126), we obtain
12 pairing force constants whose average value is
(see Fig. 3)

Go=17 MeV/A. (47)

Figure 3 also depicts the convergence of G with
the number of single-particle levels included in
the summation in Eq. (45). An equal number of
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levels below and above the Fermi energy are in-
cluded in each case. In the final calculations, all
levels below (N/2 or Z/2) and an equal number
above are included.

The two pairing constants of Eqgs. (44) and (47)
are used in all the calculations reported in the rest
of this paper.

IV. POTENTIAL ENERGY OF DEFORMATION

A general Hamiltonian for the unified treatment
of intrinsic motion (motion of individual nucleons
with respect to intrinsic axes attached to the nu-
cleus) and collective motion (rotation and vibration
of the nucleus as a whole) may be written as

H=Hm(§, oy, %) +Hayn (ia 5‘;—“ , 5%) , (48)
where X represents the intrinsic coordinates and
a, the collective variables. In general, the two
types of motion cannot be separated from each
other. But, the many successes of the rotational
model* suggest that the coupling term is negligible
for the low energy states of even-even nuclei.
Then, we can employ the Born-Oppenheimer ap-
proximation.?® In this approximation, the problem
is divided into two steps (see Ref. 14 for a beau-
tiful discussion.)

First, we keep the collective variables o, fixed
(e.g., the distance between the two atoms of a dia-
tomic molecule) and solve the eigenvalue problem

Hy, (i, a,, 5%>X(i, a,)=Via XX, a,) (49)

for each set a,. The eigenvalues of this “intrinsic”
equation, which are functions of @,, form the po-
tential energies of the second step where we solve
the equation

H¥ X, a,)=E¥ X, o) (50a)
in the basis
¥(E, 0,)=XE&, o, () . (50b)

On multiplying both sides of Eq. (50a) by X* (%,
ap) and integrating over X, we get a purely collect-
ive Schrddinger equation (CSE)

[ 7n (e, ) Vi) |4, =Evia,).  61)

We approximate Hg, of Eqs. (48) and (49) by the
pairing Hamiltonian of Eqs. (26a) and (26b) which
included deformations via the average part H,,.
Then, solutions of the eigenvalue equation (49) are
given by

XX, a,)=|n), (52)

where =0, 2, 4,... for even-even nuclei; 1, 3,
5,... for odd-A nuclei; 2,4,6,... for odd-odd nu-

clei. States with n=0,1,2 are defined by Eq. (33).
Those with larger number of quasiparticles can be
constructed in a similar manner. We can have col-
lective states built on top of each of these states
(or, a linear combination of them).

In this paper, we consider two types of tests of
this basis of states. Both of them refer to the low-
energy states of even-even nuclei. For this pur-
pose, we consider only the »=0 state. Then, the
eigenvalue of Eq. (49) is given by

Vo=(0|Hy, |0)=(0|H}, +AN|0), (53)

where we have used Eq. (28a). Using the general
relations® for the matrix elements of one-body
and two-body operators, we obtain

VO=Z (2;' V.2, - A%/G -G Zq: v;“)T ., (54)

where 7 =p, n for protons, neutrons (as usual, the
pairing calculation is done separately for protons
and neutrons).

It is now generally'~ recognized that the poten-
tial energy of Eq. (54) needs to be corrected via
the Strutinsky shell correction method. The argu-
ment may be stated as follows. The experimental
spectra of odd-A nuclei determine at best only a
few single-particle levels near the Fermi surface.
Hence, we cannot expect the energy of Eq. (54) to
give correctly the long range behavior—the contri-
butions of levels far from the FS. In the Strutinsky
method, it is assumed that the long range behavior
is given correctly by the liquid drop model whose
parameters are determined by fitting all known
nuclear masses. The short range behavior is at-
tributed to the bunching of the single-particle lev-
els (instead of being uniformly distributed). Thus,
the corrected potential energy is written as

V=Vpu +6U+06Vp, (55)
where V. is the deformation energy of the LDM

nucleus, 8U is the shell correction given by
’ x
°U=Z[2Z m-zf nﬁ(n)dn] , (56)
T n<x - T

0V p is the pairing correction given by

6Vp=Vy- Vo(a=0) (57a)

=VO-Z (2§Im—§GN>T , (57b)

p (n) is the level density (obtained after spreading
each level over a width of I'), and X is the Fermi
energy obtained by solving the particle number
equation
X
N=2 J__ plnMdn. (58)

We calculate the shell correction up to sixth or-
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der? in (n-17,)/T. The value of the width param-
eter I is determined for each nucleus via the sta-
tionarity condition

ga-l:, (8Ug)=0 (spherical case), (59a)

a—a? (8Us - 6U,) =0 (deformed case).  (59b)

-

V.. -BWN-2F ( 1 _ 1
LoM A 1+3.28B, A3

1+3.284"173

This condition depends somewhat on the deforma-
tion of the nucleus. We choose that deformation
which minimizes the total potential energy V. Two
examples are given in Fig. 4.

In order to calculate Vipy we chose the recent
parametrization of Seeger and Howard.?® The de-
formation-dependent part of their expression for
the LDM energy is given by

) +y A8, - 1)- 9AV3(B, - 1)

+22(Z -1)(e?/R)1 +18.0295(a/R)* - 85.2330(a/R)*} (B; - 1),

B=33.166 MeV, v=17.073 MeV,

The functions By, B, and B, are the surface,
Coulomb, and curvature shape dependences of the
liquid drop, normalized to unity for spherical
shapes. These functions are usually computed for
axially symmetric shapes, see for example the
tables given by Seeger and Howard.”® But in our
dynamic theory of deformations, we need to con-
sider nonaxial shapes (y# 0°). Also, we employ

a somewhat unusual definition of deformations, the
Hill-Wheeler definition of Eq. (4). Therefore, we
give our method of calculating these functions in
Appendix II.

STRUTINSKY WIDTH [/Hw,

FIG. 4. Variation of Strutinsky shell correction with
the Strutinsky width parameter. The quantities 6Ug,6Up
represent shell corrections for spherical, deformed
(potential minimum) shapes.

¢ =-0.76 MeV, a=0.513 fm, R =1.2254A'%fm. (60)

r

Our calculated potential energy functions of de-
formation are given for three sets of transitional
nuclei in Figs. 5-7. The full y dependence is em-
ployed for the dynamic calculations. Also, the
equilibrium shape of a transitional nucleus is quite
sensitive to the B-y dependence of the inertial
functions. Still, the axial (y =0°) plot of the poten-
tial function V(B, y) provides a first clue to some
basic properties of a nucleus— whether spherical
or deformed, prolate or oblate, rigid or soft
against vibrations.

One of the traditional tests of such calculations
is based on the spherical-deformed shape transi-

T T }e T T T
MeV)
(MV)] V(8,00 of
B 8 T | Sm Isotopes 7
L 6 {. _
86
L 4+ 4
L 24 -
88
90
92
" 24 .
92
I ol
1 1 1 1 1 1

-08 -06 -04 -02 00 02 04 06 08

FIG. 5. V(B,0) of Sm isotopes. The potential energy is
normalized to zero for the spherical shape. The “mini-
ma”’ on the oblate side (8<0) are not true minima but
saddle points (maxima in y direction). The prolate
“minima” for N =86, 88 are unstable against zero-point
motion.
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tion in Sm isotopes as the neutron number changes
from N=88 to N=90. Our DQP basis passes this
test, see Fig. 5 for plots of V(B, 0) for

148,150,152, 1599m. True, we get nonspherical poten-
tial minima for '*® *°Sm. But such shallow minima
are easily washed out by the zero-point energy.

In our previous, dynamic'? calculation for '*°Sm,
the potential minimum was 1.2 MeV below the
spherical energy. Still, the zero-point energy of
0.9 MeV led to a spherical maximum in the ground
state wave function.

Another important test of such calculations is
provided by the prolate-oblate shape transition in
the Os isotopes at N ~116. This transition is more
gradual compared with the N=88-90 transition,
since the change in y,,, is accompanied by a re-
duction in 8,,, as N approaches the magic number
126. But, the plots of V(B, 0) of
188, 188, 190, 192, 1% g giyen in Fig. 6 show the expect-
ed trends and agree with our previous calcula-
tions” (which were the first calculations to pro-
vide detailed explanations for the properties of
these nuclei, see the discussion of these results
in Refs. 14 and 44).

During recent years, there has been much in-
terest in the Hg isotopes. Bonn et al.?” have de-
duced from their optical pumping experiments
that the nuclear radius shows an unusually large
increase between A=185—187. Foucher ef al.?®
have studied the systematics of a large number of
properties in this region and proposed that Hg nu-
clei of unstable oblate shape become critical nu-

T T 10 T I T
MeV) | |V (B,0) of
- g4 Os Isotopes

T

T

1 1 1 1 1 1

-08 -06 -04 -02 00 02 04 06 08
B
FIG. 6. V(B,0) of Os isotopes. Note that the prolate
oblate difference, Vj, =V (~|Bminl> 0) =V (| Brial, 0), de-

creases from 0.8 MeV for }‘ngs to —0.1 MeV for }%Os.

(MeV)

V(B,0) of
Hg Isotopes

L 1 N-=104 4
3 1o

- 2 - -
- I+ -
108
106
104
108
B T 106 T
N= 104 1o
108
- 1o 4 ]
i06

L Il 1 1 1 L
-0.8 -06 -04 -02 00 02 04 06 08
B
FIG. 7. V(pB,0) of Hg isotopes. Note that the nucleus
does not get more and more deformed as we go away
from the closed shell at N=126. Instead, the lowest
minimum occurs for {Sgﬂg.

clei (unstable against B vibrations, y vibrations,
pairing fluctuations, and octupole vibrations) at

A =186, Hamilton et al.?® have discovered the co-
existence of near spherical and deformed bands in
186, 1884 More recently, Cole ef al.*° have found
an excited deformed band in '%*Hg with its 0’ *
state only 8 keV above the first 2* state. All these
studies show that something unusual happens
around '®*Hg.

Our potential plots for 18448 188 1% 4o see Fig.
7, agree qualitatively with some of the above ex-
pectations. Normally, we expect the nuclei to get
more deformed as we go away from closed shells.
Instead, we find that as we go from '*°Hg to '**Hg
(N =110-104), the potential minimum gets shallower
(110-108), deeper (108—106), and shallower again
(106-104). Amongthese four isotopes, the deepest
minimumoccurs for ®*Hg. This peculiarbehavioris
related tothe fact that protons of these nuclei are
only two nucleons away from the closed shell at
Z =82. Hence, the calculated proton energy gap
vanishes at equilibrium shapes (lowest potential
minima). This fact is also responsible for the
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appearance of a second minimum at large, prolate
deformations (8~ 0.6). Note that the “minimum”
at B=0.1 is not a true minimum but a saddle point
(minimum along g but maximum along y).

For a detailed explanation of the properties of
Hg and other nuclei, we need to consider the dy-
namics and calculate the spectra. This is the
subject of the next section, where it is pointed out
(also, in the introduction) that the present version
of the dynamic theory is not valid for soft, transi-
tional nuclei.

V. DYNAMICS OF DEFORMATION

A microscopic method of solving the dynamics
of nuclear deformations has been proposed and
applied by Kumar and Baranger.® ™2 This me-
thod has been quite successful for the transitional
nuclei of the osmium region,” and of the samarium
region.'’? Recently, it has been extended to well-
deformed nuclei in the gadolinium region.*® But
this method has also come under some criticism.

The Kumar-Baranger method was based on the
pairing-plus-quadrupole model of nuclear inter-
actions. This model seemed to be closer to first
principles since the nuclear deformations arise
as a consequence of a two-body, quadrupole force
rather than assumed to exist in the average field
as in the Nilsson model. But a severe problem
with the quadrupole force, as pointed out previous-
ly,'® is that this force is reasonable only in a
truncated configuration space.

Hence, the configuration space employed in these
calculations had to be limited to two oscillator
shells near the FS. Thus, in addition to the
strength of the quadrupole force, it was necessary
to use two more parameters—an additive’ or mul-
tiplicative'?: *® parameter for the inertial functions
(moments of inertia and mass parameters), and
an effective charge for E2 moments. Also, dif-
ferent sets of spherical, single-particle levels
had to be employed for the A~190 (Ref. 7) and A
~150 (Refs. 12 and 48) regions. This has been a
major hindrance in extending the model to differ-
ent nuclear regions.

During the past eight years, we have investigated
several methods of improving the radial depend-
ence of the quadrupole force—with the idea of ex-
tending the configuration space and reducing the
number of parameters. One of these methods was
based on a radial dependence®! derived from a
Woods-Saxon potential. Others®? were based on
modifications of the radial matrix elements of the
quadrupole force so that they do not increase with
the oscillator shell number () and/or they do not
cause too much mixing of type AN =2. All these
methods were found to be unsatisfactory.

Better mathematical treatments of the pairing-
plus-quadrupole model have recently been made by
Kishimoto and Tamura,*® who employ boson ex-
pansion methods, and by Faessler et al.,*° who em-
ploy projection methods. However, both groups
employ configuration spaces which are much
smaller than ours (Sec. II).

Another recent development in this respect has
been in the Hartree-Fock treatment of realistic
and semirealistic forces. Impressive gains have
been made by several groups, see the review pa-
pers by Vautherin®® and Gogny.** However, in
these methods, just the calculation of the axial
part of the potential energy surface is so time-
consuming that the calculation of the full dynamics
(inclusion of the y degree of freedom and the cal-
culation of the inertial functions) appears to be
prohibitive at least at the present time.

Hence, we come back to the point of view based
on the Nilsson model which predates both the quad-
rupole force model as well as the Hartree- Fock
theory of deformations. One can argue that a de-
formed-single-particle model is just as funda-
mental or empirical as the spherical-single-
particle model. If we drop the assumption that the
oscillator frequencies are equal in all directions
(w,=w, =w,), then we get a more general model
which includes the spherical model as a special
case., Also, most nuclei are closer to a polyatom-
ic molecule (a system with several centers of
force, hence the average field is nonspherical)
rather than an atom (a system with a single center
of force generating a spherically symmetric field).

As regards the method of determining the col-
lective kinetic energy, two methods exist. In the
cranking model method,3*~3" one adds a time-de-
pendent field (Hy,,=i%d,8/8a,) to the static field
represented by Hy,. In the time-dependent Har-
tree-Bogolyubov method, 3% *° no additional term
is added to the microscopic Hamiltonian. But
time-dependent terms are added to the wave func-
tion, the argument being that the static Hartree-
Fock gives only the instantaneous (fixed o ,) wave
function. Both methods use perturbation theory
up to second order in @ and lead to the same ex-
pression for the collective kinetic energy

1 .

Tcoll 2_2_%:3#”&“&; ’ (61)

Bmg, Ep™® (Cule €050 (62a)
Q

(CM)M =(U, Vo +V, U¢)<p|8H.v/3au l@)

+0,0 [(U,2 = V,2)oA/3a, +2U, V, 00/3a, ],

(62b)
where E,, is the energy of a two-quasiparticle
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state |pg) measured from the zero-quasiparticle
state [0). Note that in the BCS theory, the energy
E,, equals E, +E,, while in our improved pairing
theory it is given by Eq. (42). The relations (61)
and (62) are valid for any collective variables a .
But in the following discussions, we restrict our-
selves to the quadrupole variables

a, =By =By (=0, £1, £2), (63a)
[B,12=p7, (63b)

where B is the deformation variable defined by Egs.
(4) and (6).

In the quadrupole force model,*® the operator
8H,, /8B, is given by

aHav/aﬁu = “ﬁonéﬁ . (64)

It is simply proportional to the quadrupole opera-
tor. However, it takes a more complicated form
for the modified Nilsson model discussed in Sec.
II. In order to give the equivalent form for Eq.
(64), we would first need to transform the Hamil-
tonian of Egs. (7), (20), and (21) to the lab system.
However, the actual calculations are done in the
intrinsic representation. So, for the sake of
brevity, we will not write down the equivalent
form of Eq. (64).

By By Byr)= 2[2 E) 2 (UpV, +V9U)2 p \

curi (o |222] ) +2) i

The derivatives a1/88,, 8A/8B, are determined
analytically by using Eqs. (125a)-(126d) of Ref. 38,
where the operator @, is replaced by 0H,, /aBp.
Using Eqgs. (6)-(14), (20), and (21) for the defini-
tion of H,,, we get

aHav/aBa:ﬁwO(Dapz+EaQéo+FaQéz'), (693)
where
5 5\1/2
D“=Z-1; f, E0=2BOO+1—B§<—47T> ) (69b)

5 1/2 5\1/2
E21=F0=B;<E> R F2,=23m+1+ﬁg_<z7—r> .

(69¢)

Note that the C,,C,, term of the mass parameters
of Eq. (67) is a purely pairing term. It represents
the effects of pairing fluctuations. This term van-
ishes in the limit A -~ 0. Hence, the calculation is
not affected by the possible vanishing of E; [see
Egs. (42c) and (41b)] in this limit. The other
energy denominators appearing in our expressions

OHay

o) (e] 56

As mentioned above, the actual computations are
performed in the intrinsic representation (two
shape variables 8 and y; three Euler’s angles ¢,
6, and §) where the collective kinetic energy is

written as®8 3°
Teont = Tror + Tviv ) (653.)
1 3
mtﬁiz k(Bo, 132 wk Iy (65b)
k=1
Ton= o BasBor BB B (65¢)

where a or b =0, 2’; w, are the rotational frequen-
cies [certain linear combinations of ¢, 8, and §
which allow us to write Ty, in the form of Eq.
(65b)]; B, B,’ are defined by Eq. (15). The mo-
ment of inertia functions are given by the “crank-
ing model” type of expression

9, (Bos B2'>=zp>:’E.;‘<U,vq- A TP ES
<q

(66)

where J, is the kth component of the nucleon angu-
lar momentum operator. The mass parameter
functions are given by

p> +ZI E#F-scapcbp] ) (67)
7

(68)

r

for the mass parameters (67) and the moments of
inertia (66) depend on E,, (¢#p or p), which never
vanishes in our version of the pairing theory (see
Sec. III).

After calculating the inertial functions and the
potential function of deformation, the next step
consists of solving the collective Schrddinger
equation (51). This is done in the numerical solu-
tion method of Kumar and Baranger,® later mod-
ified by Kumar.'?** Some preliminary results for
168gyr, 102Zr, and >*Mg are given in Tables III-V
and Figs. 8-12.

In the present method of calculation, we do not
assume the nucleus to be vibrational or rotational.
Instead, we solve numerically a Hamiltonian for
each value of nuclear angular momentum (/=0,2,
3,4,5,6; parity =positive for all states). However,
for the sake of discussion of the results, we group
the calculated states into rotational bands built on
different intrinsic or vibrational states. For this
purpose, we look at the calculated wave functions
of each state—especially at the largest K compon-
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TABLE III. Energy levels and wave functions for '%Zrg,.

Calc. wave functions

Most Excitation energy = Wave function
prob. (MeV) max. at % K Component

K 1 Ex.? Th. B v (deg) K=0 K=2 K=4 K=6
0 0 0.0 0.0 0.409 12 100.0

2 0.152 0.132 0.409 12 99.8 0.2

4 0.479 0.469 0.409 12 99.5 0.4 0.1

6 0.965 1.008 0.409 12 98.5 1.2 0.2 0.0
2 2 0.823 0.391 34 7.9 92.1

3 1.281 0.397 19 0.0 100.0

4 1.319 0.391 34 20.3 75.5 4.2

5 1.858 0.397 19 0.0 97.7 2.3

6 1.960 0.397 19 22.6 69.2 7.3 1.0
0 0 0.840 0.350 38 100.0

2 1.207 0.391 34 90.3 9.7

4 1.773 0.391 34 44.1 33.3 22.6

6 2.750 0.391 26 56.3 4.7 22.1 16.9
2 2 1.795 0.397 19 11.8 88.2

3 2.357 0.391 34 0.0 100.0

4 2.373 0.397 41 15.8 62.1 22.0

5 3.042

6 2.517 0.397 19 17.5 52.6 19.9 9.9
4 4 1.843 0.391 34 33.5 2.8 63.7

5 2.543 0.391 34 0.0 11.5 88.5
0 0 1.916 0.409 48 100.0

2 2.446 0.391 34 50.3 49.7
0 0 2.190 0.180 46 100.0
6 6 3.057 0.397 41 2.4 6.1 42.4 49.1

2Sakai, Ref. 41.

ent and at the shape at which the wave function
maximum occurs.

Tables III-V give the calculated energies, (8,7)
values for the wave function maxima, and the % K
components for the allowed K values. Experimen-
tal energies from the tables of Sakai,* and Endt
and van der Leun® are also given. Contour plots
of the calculated potential energy surfaces and
two mass parameter functions are given in Figs.
8~12. Note that no theoretical parameter has
been adjusted to fit the experimental spectra.

Although all the three nuclei considered here
are well-deformed (8=0.3-0.4, E,/E,=3.0-3.3),
there are some interesting differences. Of the
three, the nucleus Zr is closest to an ideal ro-
tor, at least in the ground state band. The wave
function maximum occurs for the same shape (B
=0.409, v=12°) for all four members of the ground
state band. The K mixing is less than 2% for all
four states (see Table II).

The above statement about the K mixing is valid
also for *®Er (see Table IV). However, the wave

102
407762

FIG. 8. Contour plot of the potential energy of !®#2Zr.

The symbols A, B, ..., Orefer to 0.0-0.7, 1.4-2.1,...,
19.6-20.3 MeV. Deformation B varies radially from 0.0
to 0.8 and y from 0° to 60° from the left corner of the
triangle.
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TABLE IV. Energy levels and wave functions of '§§Er, .

Calc. wave functions

Most Excitation energy Wave function
prob. (MeV) max. at % K component
K 1 Ex.? Th. B v(eg) K=0 K=2 K=4 K=6
0 0 0.0 0.0 0.312 16 100.0
(2) 2 0.080 0.073 0.312 16 99.9 0.1
4 0.264 0.279  0.278 9 99.5 0.5 0.0
6 0.549  0.705 0.278 9 97.9 1.9 0.1 0.0
2 2 0.821  0.747 0.304 25 2.1 97.9
) 3 0.896  0.999 0.304 25 0.0 100.0
4 0.995 1.037 0.304 25 11.3 88.1 0.6
5 1.118 1.342  0.304 25 0.0 98.5 1.5
6 1.264 1.447  0.304 25 20.3 76.3 3.3 0.1
0 0 1.217  0.870  0.304 35 100.0
(8) 2 1.277 1.024 0.304 35 97.5 2.5
4 1.411  1.399  0.391 34 87.8 11.3 0.9
6 1.617 1.951  0.260 30 73.2 24.9 1.7 0.3
4 4 1.545 0.304 25 1.3 1.5 97.2
5 1.886  0.260 30 0.0 4.4  95.6
6 2.056  0.304 25 6.7 6.0 84.5 2.8
2 2 1.639  0.312 44 7.7 92.3
3 2.101  0.350 38 0.0 100.0
4 1.990 0.350 38 9.9 79.3  10.8
0 0 1.802 0.391 34 100.0
2 2.062  0.433 30 93.3 6.7
6 6 2.401  0.391 34 5.5 18.0 11.6 64.8
0 0 1.950 0.278 51 100.0
2Sakai, Ref. 41.
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FIG. 10. Contour plot for the mass parameter function
FIG. 9. Contour plot for the potential energy of ' Er. By of 8Er. The symbols A4, B, ... ,0 refer to 0.35-0.94,
The symbols A, B, ...,Orefer to 0.0-0.6, 1.2-1.8, ..., 1.53-2.12,..., 16.86-17.45 MeV~'. See Fig. 8 caption
16.8-17.4 MeV. See Fig. 8 caption for B,y values. for B,y values.
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TABLE V. Energy levels and wave functions of }Mg,.

Calc. wave functions

Most Excitation energy Wave function
prob. (MeV) max. at % K components
K 1 Ex.2:P Th. B v(deg) K=0 K=2 K=4 K=6
0 0 0.0 0.0 0.409 48 100.0
2 1.369 1.200 0.391 26 59.4 40.6
4 4.123 3.596 0.391 26 55.8 28.2 15.9
6 8.120 8.293 0.391 26 42.3 15.1 17.8 24.8
0 0 1.504 0.218 37 100.0
2 1.954 0.391 26 51.1 48.9
4 4.485 0.391 26 51.7 16.9 31.5
6 7.098 0.391 26 61.8 27.0 7.0 4.1
2 2 4.239 3.451 0.218 37 29.9 70.1
3 5.236 3.846 0.391 26 0.0 100.0
4 6.010 5.658 0.391 26 3.3 71.0 25.8
5 7.811 7.246 0.391 26 0.0 85.1 14.9
6 9.520 9.405 0.391 26 7.4 68.7 4.4 19.5
0 0 3.969 0.391 26 100.0
2 6.252 0.218 37 56.8 43.2
4 9.237 0.218 37 7.7 17.0 5.3
0 0 4.941 0.606 52 100.0
2 5.081 0.409 48 60.9 39.1
4 7.036 0.409 48 36.1 35.4 28.5
2 2 5.645 0.218 37 51.6 48.4
3 6.840 0.218 37 0.0 100.0
0 0 6.432 6.883 0.776 3 100.0
2 7.348 8.060 0.776 3 93.6 6.4
4 8.436 10.257 0.776 3 58.2 23.6 18.3
2 2 8.654 7.489 0.218 37 25.3 74.7
3 9.456 9.363 0.218 37 0.0 100.0
0 0 8.85 8.237 0.687 49 100.0
2 10.36 9.847 0.661 41 75.2 24.8
4 11.064 0.776 3 54.1 39.8 6.2
4 4 9.300 8.349 0.606 52 20.7 30.9 484
5 8.740 0.409 48 0.0 26.3 73.7
4 4 9.515 9.610 0.391 26 17.5 4.9 177.6
[ 6 11.059 0.409 48 15.3 31.2 8.7 44.8

2 Endt and van der Leun, Ref. 42.

bSakai, Ref. 41.
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function maximum shifts from (0.312, 16°) for
I=0,2 to (0.278, 9°) for I=4,6.

Deviations from the ideal rotor are strongest in
the case of 2*Mg. First we note that although the
potential minimum occurs for an asymmetric shape
on the prolate side (3=0.44, ¥y =17°), the dynamics
shifts the ground state wave function maximum to
an asymmetric shape on the oblate side (0.409,
48°). The nonaxiality is responsible for a 41%
mixing of K =2 into the first excited 2* state. It
is also interesting to note that while the calculated
energy gap A(A=4A,=4, for this nucleus with Z =N)

is zero for shapes close to the potential minimum,
it is as large as 1.9 MeV for some shapes. Hence,
we believe that the pairing effects should not be
neglected even for nuclei as light as 2*Mg.

On the other hand, the quasiparticle theory of
pairing is probably not adequate for 2*Mg because
errors due to particle number nonconservation are
expected to be more serious for lighter nuclei.

A consequence of this seems to be that we get a
sharp peak in the calculated mass parameter
function B (B,7) for ?*Mg at 8=0.218, vy =37° (see
Fig. 12). (Note that there is no such peak in the
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FIG. 11. Contour plot for the potential energy of 2‘Mg.
The symbols A, B, ...,0 refer to 0.0-0.43, 0.86-1.29,

., 12.04-12.47 MeV. See Fig. 8 caption for the B,y
values.

case of '®Er, see Fig. 10.) This creates an extra
K =0 band starting at only 1.504 MeV (see Table
V). Note that there is no indication of a second
minimum in the potential energy in the neighbor-
hood of B=0.218, y=37° (Fig. 11). This peculiar
behavior of the calculated mass parameter may
also be responsible for the other low-lying bands
in Table V which have not been observed experi-
mentally.

Figure 13 gives a comparison of the calculated
moments of inertia with experiment for the three

c
o A
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FIG. 12. Contour plot for the mass parameter function
By of *Mg. The symbols 4, B, . .., Orefer to 0.001—
0.048, 0.096-0.143,..., 1.327-1.374 MeV~!. See Fig. 8
caption for the B,y values.

well-deformed nuclei discussed above, as well as
for three transitional nuclei: '8%!9%192Qg, The fig-
ure gives two types of moments of inertia. The
static moment of inertia refers to the potential
minimum (B,,7,). Since this minimum is in gen-
eral nonaxially symmetric, we define

gsta=[2 (gx-l + gy-l).l ]B=st r=rg’ (70)
The dynamic moment of inertia is defined as
94 =3/E,., (71)

where E,, is the excitation energy of the first 2*
state. For an ideal, axially symmetric rotor,
we would have 4., =9,,. The experimental mo-
ment of inertia is deduced from the experimental
E,, via Eq. (T1). The calculated 4, gives the
correct A dependence of g over a wide range of
A without any parameter adjustment. The magni-
tudes also agree with experiment within 16% in
the case of the three well-deformed nuclei. But
in the case of the three transitional nuclei, the
calculated 4, is too small (or, E,, is too large)
by a factor of 1.2-1.9.

Since the factor of 1.2 in the case of **20Os is com-
parable to the kind of agreement (or disagreement)
obtained for the moments of inertia of the well-
deformed nuclei, we give in Table VI a more de-
tailed comparison with the experimental spectrum
of '®0s. The present calculation gives a reason-
able energy for the first two 2* states. Also, the
second 2* state is below the first 4* state in agree-

® EXPT.
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60 X THEO. (DYNAMIC)
- 168
] Er
% 68
z °
< 40 R
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-
z
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w ©
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A
FIG. 13. Theoretical and experimental moments of
inertia for selected nuclei. Both the experimental and the
dynamical values correspond to 3/E,s. The static values
correspond to the calculated potential minimum.
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TABLE VI. Energy levels and wave functions of

1§’,%Os.

Calc. wave functions

Excitation energy

Wave function

(MeV) max. at % K component
Band 1 Ex.? Th. B v (deg) K=0 K=2 K=4 K=6
g 0 0.0 0.0 0.218 37 100.0
2 0.206 0.252 0.218 37 67.2 32.8
4 0.580 0.744 0.218 37 56.9 35.2 7.9
6 1.089 1.410 0.218 37 47.8 36.9 12.5 2.8
1% 2 0.489 0.569 0.218 37 36.3 63.7
3 0.690 1.180 0.218 37 0.0 100.0
4 0.909 1.257° 0.218 23 44.3 16.9 38.8
5 1.143 1.875 0.218 37 0.0 67.9 32.1
6 1.362 2.032° 0.218 23 57.9 11.6 18.7 11.7
2y 4 (1.069) 1.584 0.218 37 9.6 42.0 48.4
5 2.389 0.218 37 0.0 35.6 64.4
6 (1.465) 2.703

2M. R. Schmorak, Nucl. Data Sheets 9, 195 (1973).

®Although the largest K component of the calculated wave function is for K =0, this level
has been placed here since there is no lower K =0 band where it may be placed. The first
excited 0 state (calculated) occurs at 1.741 MeV.

ment with experiment. However, the higher mem-
bers of the ground and the y-vibrational bands are
too high by 0.2-0.7 MeV.

A possible reason for such large discrepancies
is the neglect of the Villars-Cooper terms!3!4
which arise from replacing the quantization condi-
tions w,=#l,/g, by w,=%R,/8,, where T is total
angular momentum while R is rotation of intrinsic
axes with respect to the lab axes. The later condi-
tion would give additional terms, called rotation-
particle-coupling and recoil terms,'**3¢4 jp the
collective Hamiltonian. These terms are expected
to be small in the case of even-even nuclei if the
deformation is large (which gives large 4,) and if
T is not very large. However, they become impor-
tant at high spins and at small deformations.*

We do not give a comparison with other theoret-
ical calculations for these nuclei because we are
not claiming to present here the “best” theory of
these nuclei. As pointed out in the Introduction,
we have performed these calculations to answer
the question: Is our DQP basis good enough for
predicting the low-energy spectra of even-even
nuclei without any adjustment of parameters from
nucleus to nucleus? Our conclusions are given
in the next section.

VI. CONCLUSIONS AND SUGGESTIONS FOR FUTURE
IMPROVEMENTS

Our main conclusion is that the DQP basis dis-
cussed in this paper is good enough for studying the

low-energy spectra of even-even nuclei. By this
we do not mean that we have found a perfectly sat-
isfactory model or theory. In order to clarify
these seemingly contradictory statements, we first
summarize the main virtues and limitations of the
theory discussed above.

We have parametrized the Nilsson model Ham-
iltonian in such a way that the model parameters
are independent of Z and A, except for an overall
scaling factor for the Hamiltonian and the energy
levels. The calculated single-particle wave func-
tions are independent of Z and A, and are the same
for protons and neutrons.

This single-particle basis is combined with an
improved theory of pairing where the particle-hole
matrix elements of the pairing force are treated
as well as the particle-particle matrix elements.
In this improved theory, a long standing problem
of an occasional divergence in the calculation of
rotational moments of inertia and vibrational mass
parameters is removed.

The combined deformed-quasiparticle basis is
employed to calculate the potential energy functions
Of 148,150.152.154sm’ 186,188,190,192,19405, and
184,186,188,19010  and the low-energy spectra of '©?Zr,
168gr, and 2*Mg. Without any adjustment of model
parameters, and using the same single-particle
wave functions for all these nuclei (and many more,
not reported here for the sake of brevity), we get
the expected features: spherical-deformed trans-
ition at N=88-90, prolate-oblate transition in
the Os region, shape as well as gap transitions in
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the Hg nuclei.

Furthermore, good agreement is obtained with
the energies of the rotational bands of deformed
nuclei of three different mass regions (*®*Zr,
18pr, and 2*Mg), again without any adjustment of
parameters.

Now, what are the limitations of the present cal-
culation? First, the present discussion has been
limited to the energy levels alone. However, this
is not a serious limitation. Theory and codes for
the calculation of electromagnetic moments exist
already. Such calculations must be presented in
future reports of the present program.

Secondly, the present basis is not large enough
for the calculation of fission barriers and the spec-
tra of well-deformed nuclei with A >208. Previous
experience suggests that one needs to include up to
N= 10 shells, while we go up to =8 only. Before
going to a larger basis, we decided to first test
the present theory in a smaller basis.

Thirdly, the present calculation for **Mg has
given some bands which are too low compared with
experiment. A possible reason for this has been
discussed in Sec. V. But this question certainly re-
quires further studies.

Fourthly, the present calculation of the spectra
is limited to well-deformed nuclei. Preliminary
calculations for some transitional nuclei gave ex-
citation energies which were too high compared
with experiment. We could have presented reason-
able fits to the spectra of such nuclei also, if we
had allowed ourselves to introduce some arbitrary
parameters to renormalize the potential and iner-
tial functions. In our previous calculations, based
on the pairing-plus-quadrupole force model, we
did use one free parameter for the potential energy
and one for the inertial functions. But we had the
excuse that the configuration space was too small,
which we do not have anymore.

Recently, Rohozinsky et al.'®> have performed
large basis, dynamic calculations for several
transitional nuclei. They also had the problems
discussed above. Hence, they decided to introduce
three arbitrary parameters—two for the potential
energy and one for the inertial functions of each
nucleus.

Further improvements in the present theory can
probably be made by including the rotation-par-
ticle-coupling terms mentioned in Sec. V. Note
that the inclusion of these terms does not require
an additional parameter. These terms will cer-
tainly increase the complications of our computa-
tions. But this is where our DQP basis presents
the best advantages.

The computation of the six million matrix ele-
ments of the deformed basis required 8 hours of
UNIVAC 1110 at Orsay. However, the same ma-

trix elements (stored on tapes) are employed for
different nuclei. Hence, the UNIVAC 1110 time
for computation of the potential function V(3,0),
i.e., the static part of the calculation, is only 5
min/nucleus. Computation time for the dynamic
part of the calculation is 20 min/nucleus (15 min-
utes for the B-y-dependent potential and inertial
functions, and 5 minutes for the calculation of
about 20 nuclear states).

The calculations presented above include the
leading order terms in nucleon-nucleus (particle-
collective) coupling. True, we have not employed
any terms which exhibit explicitly any nucleon-
nucleus coupling. But the two types of motion are
certainly coupled. The nucleon motion is governed
by the nuclear shape. The dynamics of collective
nuclear motion determines the most probable
shape for each nuclear state.
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APPENDIX I. MULTIPOLE EXPANSION OF NUCLEAR
SURFACE

In the Hill-Wheeler parameterization of nuclear
deformations, the semiaxis lengths of an ellipsoid
are defined via Eq. (4), which may be rewritten
as (all lengths are expressed below in units of R,)

a=R,/R,=exp[-0 cos(y +60°)], (A1)
b=R,/R,=exp[-6cos(y - 60°)], (A2)
c¢=R,/R,=exp[d cosy]. (A3)

The radius vector of a point (R, 8, ¢) on the surface
of the nuclear ellipsoid is given by

_/sin®0 cos®¢  sin*6 sin¢p  cos26 \/2
R(0,¢)—< pe + B =z ) .

(A4)
A spherical multipole expansion of the surface
is given by

R(8,9)= Z} a,,Y,, 6,0). (A5)

For the ellipsoid surface defined by Eq. (A4), we
have the symmetry conditions
R(6,9)=R(6,¢+m), (A6)

and
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TABLE VII. Spherical multipole expansion coefficients
for the surface of a Hill-Wheeler Ellipsoid. The defor-
mation parameter 8 equals (47/5)!/25. The parameter y
equals 0° or 60° (starred g values).

B ag az a ay ag ay

0.8 3.368 0.378 0.464 0.079 0.084 0.111
0.7* 3.408 0.336 0.412 0.062 0.065 0.087
0.6* 3.444 0.292 0.358 0.046 0.049 0.065
0.5* 3.474 0.246 0.302 0.032 0.034 0.046
0.4 3.499 0.199 0.243 0.021 0.022 0.030
0.3* 3.519 0.150 0.183 0.012 0.012 0.016
0.2* 3.533 0.100 0.122 0.005 0.005 0.007
0.1* 3.542 0.050 0.061 0.001 0.001 0.001

0 3.544 0 0 0 0 0
0.1 3.542 0.099 0 0.003 0 0
0.2 3.533 0.197 0 0.014 0 0
0.3 3.519 0.292 0 0.031 0 0
0.4 3.500 0.384 0 0.054 0 0
0.5 3.476 0.471 0 0.083 0 0
0.6 3.447 0.555 0 0.116 0 0
0.7 3.414 0.633 0 0.154 0 0
0.8 3.376 0.707 0 0.195 0 0
R(eﬂb):R("—e,‘P)- (AT
The condition (A7) leads to the restriction
a,, =0 for A=odd. (A8)
The condition (A6) leads to the restrictions
a,, =0 for p=odd, (A9)
a,, =a, , for p=even. (A10)

The coefficients a,, for A=0,2,4 are given, up
to second order in 6, by

Ay, = (4T)/3(1 - 82/5), (A11)
a,, = (47/5)' /%6 cosy - (1/14)6? cos2y], (A12)
a,, =(27/5)'/?[6 siny +(1/14)8% sin2v], (A13)
a,,=(41)*/%(3/70)8%(5 cos?y +1), (A14)
a,, =(30m)'/2(3/70)5? sin2y, (A15)
a,, = (70m)*/(3/70)8% sin®y . (A16)

Those for A =0,2 were given previously by Carl-
son.** Exact, numerical values of a,, can be com-
puted with the Gauss-Legendre method. Such val-
ues are given in Table VII for some axially sym-
metric shapes. Table VII shows that the Hill-
Wheeler parameterization induces some non-
negligible hexadecapole (X =4) deformations.

APPENDIX II. COULOMB, SURFACE, AND CURVATURE
FUNCTIONS OF DEFORMATION

Because of the symmetries of the ellipsoid, we
can order the semiaxis lengths such that

azb=c, (A17)

and define the eccentricities

€=(1-c?/a)/2 (A18)
e'=(1-b/@)\/2=¢, (A19)
€"=(1-c?/b?)/2, (A20)

The Coulomb function B, is defined by the ratio
of the Coulomb energy of the ellipsoid to the ener-
gy of the sphere. Assuming that the surfaces of
constant charge density are a family of similar
concentric ellipsoids, the Coulomb energy is given
by46

U(a,b, c)=(R*8,o))U(1,1,1), (A21)
where R(0, ¢) is the radius vector of a point on the
surface of the ellipsoid. With the definition given
above, we have

27 T
B =(R*6, ¢)) =(4m) f f R?(6, ¢) sin6dbd .
(] o
(A22)

As shown by Carlson,*® the integral (A22) can be
rewritten as

Bc=(a€)-1F(wyk): (A23)

where F(y, k) is the incomplete elliptical integral
of the first kind with

siny =€, (A24)
and
k=€¢'/e. (A25)

The surface function B; is defined as the ratio
of the ellipsoid area S to the sphere area. The
quantity S is given by Jordan*’ to be

S=2mab{(1/€ - €)F(y,#’) +€E(, k')
+[(1-€e®)(1-e")]/2}, (A26)

where E(y, k') is the incomplete elliptical integral
of the second kind, ¥ is defined by Eq. (A24), and

k'=€"/c. (A27)
Using Eq. (A26) and the condition abc=1, we get
s _1 , '
Bs_ 4an 20{(1/€ - €)F(lp7k )+€E(¢’k )

+[(1 - €)1 - e™)]/2}. (A28)

The curvature function B, is given for axially
symmetric shapes by Seeger and Howard.?® Their
table shows that at least for such shapes, the func-
tion

B,~B,. (A29)

Since the coefficient of the B, term of the liquid
drop energy [see Eq. (60) of the text] is quite small,
we assume that Eq. (A29) is valid for all deforma-
tions considered in the present calculations.
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