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Dynamics of nuclear fluid.

Ill. General considerations on the kinetic theory of quantum fluids

Cheuk-Yin %'ong and John A. MeDonald~
Oak Ridge National I.aboratory, ~ Oak Ridge, Tenner 37830

(Received 24 January 1977)

From the quantum kinetic equation of Bogoliubov, Gurov, Born, and Green, the equations of motion for
macroscopic variables are examined in many different ways. First, in the configuration space a hierarchy of
generalized fluid-dynamical equations can be obtained by taking the appropriate limits of the quantum kinetic
equation. The resultant equations of continuity, of momentum, and of energy are similar in form to those
one encounters in classical fluid dynamics with the exception of additional terms proportional to h'.
Secondly, the quantum kinetic equation is examined in phase space. The same set of equations of continuity,
of momentum, and of energy can be derived by taking the first three moments of the quantum kinetic
equation. The exact results we obtained are utilized to form the starting point for many simplifying
approximations for the investigation of the dynamics of quantum many-body systems such as the elastic
response limit, the hydrodynamical limit, Landau s Fermi-liquid theory, and finally the time-dependent
Hartree-Fock and the multideterminant timedependent Hartree-Pock approximations. The fact that all these
different dynamical descriptions can be traced to a common origin provides a unifying viewpoint to the
present approach with the quantum kinetic equation.

I

NUCLEAR STRUCTURE Dynamics of nuclear fluid, quantum kinetic equation,
and generalized fluid-dynamical equation. Elastic response, hydrodynamic al
limit, Landau's Fermi-liquid theory, time-dependent Hartree- Fock approxi-

mation, and multideterminant time-dependent Hartree-Pock approximation.

I. INTRODUCTION

This is the third of a series of articles dealing
with the dynamics of nuclear fluid. Other studies
concern themselves with the equations governing
the dynamics starting with time-dependent Har-
tree-Fock approximations (TDHF), ' the generali-
zation of the time-dependent Hartree-Fock ap-
proximation to include spin and isospin degrees
of freedom. ' We intend to review here the kinetic
theory of quantum fluid on a rigorous microscopic
basis, the startmg point of which need not be the
time-dependent Hartree-rock approximation of a
single Slater determinant. This quantum kinetic
theory is based on the work of Bogoliubov and
Gurov, "Born and Green, ' and others who de-
veloped it in the 1940's with applications in super-
fluidity, superconductivity, and the nuclear liquid
drop model in mind. However, their work seems
to have been forgotten in the intervening years,
at least as far as nuclear applications are con-
cerned.

The main result of Bogoliubov, Gurov, Born,
and Green was that, starting from a microscopical-
ly exact many-body Schrodinger equation, one can
derive, in a clear and well-defined manner, the
equations of motion for the macroscopic variables
which turn out to be similar in form to those in

classical fluid dynamics. To be more precise, one
derives equations of the same form as the classical
equations, which, in the limit S-o, are exactly
the classicalequations. This is hardly a surprising
result. It is worthwhile noting that, qualitatively
speaking, a many-body system that is made up of
quantum mechanical particles is more "fluidlike"
than a many-body system of classical particles.
Since classical particles have, in theory, dis-
crete and precisely determined position and mo-
mentum coordinates, it makes sense to talk about
such concepts as local fluid density and local fluid
velocity only when there are very many particles
in the system. However, for even a single quantum
particle, there is a well-defined local fluid density
and local fluid velocity and the problem of granu-
larity can be bypassed. Classically, one must in-
troduce a probability distribution in order to de-
fine local macroscopic quantities. In quantum
mechanics, one begins with a probability distribu-
tion, . A quantum fluid is in essence a fluid of
probability and it possesses a continuous quality
which classical fluids inherently lack.

In kinetic theory of classical fluid, one obtains
from Liouville's equation a system of coupled
equations of motion for the reduced distribution
functions. This system of equations, known as the
BBGKY ' ' (Bogoliubov- Born- Green- Kirkwood-
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Yvon) equation, is used, among other things, for
the derivation of Boltzmann's equation, and the
equations of hydrodynamics. Likewise, in quantum
many-body theory there is a corresponding system
of coupled equations, the quantum kinetic equation
of Bogoliubov and Gurov' and Born and Green. '
It is defined either in the configuration space or in
the phase space. In the configuration space, the
kinetic equation is a hierarchy of equations mhich
couple the reduced density matrices. In the phase
space, it is written as a set of coupled equations
for the reduced Wigner functions. " Interpreting
the reduced Wigner function as analogous to the re-
duced distribution function in classical statistical
mechanics, the quantum kinetic equation is iden-
tical in form to the BBGKY equation, mith the ex-
ception of the presence of additional terms in-
volving S. Because of such close analogy, the
procedure used in deriving the generalized fluid-
dynamical equation from the BBGKY equation for the
classical Quid can be well adopted in our investi-
gation.

Using the quantum kinetic equation, which we
introduce in Sec. II, me examine the quantum fluid-
dynamical equation in many complimentary ways.
In Sec. III, we first consider the quantum kinetic
equation in the configuration space. After intro-
ducing the polar form of the many-body wave func-
tion, we obtain the generalized Quid-dynamical
equation by taking the proper limits of different
kinds of operations on the quantum kinetic equa-
tion. The resultant equations of continuity, of
momentum, and of energy are similar in form to
those one encounters in classical Quid dynamics
with the exception of additional terms proportional
to O'. It becomes appropriate to introduce the
quantum stress tensor to represent the force terms
of quantum origin. Our equations differ from those
of Born and Green' in that terms of quantum origin
are now explicitly exhibited. Next, in Sec. IV, we
go to the phase space to write down the quantum
kinetic equation, in terms of the Wigner function
and the reduced Wigner functions, first given by
Irving and Zmanzig. '~ The same hierarchy of fluid-
dynamical equations can be derived by taking
various moments of the quantum kinetic equation. .

Even though the generalized hydrodynamieal
equations are analogous to the classical hydro-
dynamical equation, the pattern of behavior of a
quantum fluid is governed in an important may by
the extra terms of quantum origin. We outline in
Sec. V how in some special cases of the random
phase approximation when the collective strength is
concentrated in one state, the quantum stress ten-
sor is proportional to the first spatial derivatives
of the displacement vector and the dynamical equa-
tion describes the propagation of elastic waves.

In another local entropy approximation, for the
quantum and thermal stress tensors, made pos-
sible by an assumption of local equilibrium, the
dynamical equations are those of classical hydro-
dynamics. Following Born and Green' and others,
we show in Sec. VI how the Navier-Stokes equa-
tion can be obtained by expanding the reduced den-
sity distribution function and the reduced Wigner
function about their equilibrium values. In Sec.
VII, we exhibit the connection between the quantum
kinetic equation and Landau's transport equation
for Fermi liquids at low temperature. Finally, we
examine in Sec. VIII the time-dependent Hartree-
Fock (TDHF) approximation and the statistical
multideterminant time- dependent Hartree- Fock
(MDTDHF) approximation as the simplest trunca-
tions of the quantum kinetic equation. The com-
parison of the macroscopic equations of motion
obtained from TDHF and MDTDHF indicates that
a transition of the original state into states rep-
resented by other single-particle determinants
gives rise to extra terms in the force density which
have the effect of a viscous force when one is in-
terested in phenomena of short enough duration.
Section IX concludes the present discussion.

It is worth stressing that the quantum kinetic
equation and the corresponding fluid-dynamical
equation are general and exact results. For its
future application to the nuclear fluid, appropriate
approximations and assumptions need to be made to
truncate the hierarchy of coupled equations. Be-
sides those approximations discussed here, there
may also be other kinds of truncation which allow
for the effect of viscosity and correlation between
particles. In recent investigations of quantum
fluid, Fr5hlich" rediscovered the quantum kinetic
equation and applied it to superconductivity and

super fluidity. Investigations along similar lines
for the nuclear fluid mill be of interest.

II. QUANTUM KINETIC EQUATION

We shall first introduce the quantum kinetic
equation in the configuration space; the discussions
on the quantum kinetic equation in the phase space
will be given in Sec. IV. For a system of N iden-
tical particles, we represent a state of the system
by a wave function

4'(r ~ ~ ~ r ~ ~ ~ r ~ ~ ~ r t }

—4'(r, ~ ~ r& ~ ~ r, ~ ~ r„, t} for fermions,

+ 4(r, ~ ~ ~ r& ~ ~ r, ~ ~ ~ r„, t} for bosons .

That is, 4 is antisymmetric under exchange of
particles for fermions and symmetric for bosons.
For simplicity, we shall limit our attention to only
the spatial coordinates; the spin and isospin co-
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ordinates can be easily included later if one so
desires. The time development of 4 is given by
the Schrodinger equation

X'"'(r ~ ~ ~ r r' ~ ~ r') =4'(r ~ ~ ~ r )0 (r' ~ ~ r') .1 S& 1 N 1 S 1

(2.4a)

ih —+=HC,9
3t (2.2)

A mixed" state is a real linear combination of
pure states; i.e. ,

where H is an N-body Hamiltonian having the form X~~~(r . . .r .rt. ..r )1 E& 1 E

=—g a 4' (r, ~ ~ ~ r„)4'*(r,' ~ ~ r~). (2.4b)

However, the wave function is not the most gen-
eral way of representing the state of an N-body
quantum system. More generally, states are
represented by the N-body density matrix X'"'
(r ~ ~ ~ r; r' ~ ~ r'„). For "pure" states, we have

We will not discuss in detail the properties of the
N-body density matrix. This may be found in many
references. " From Schrodinger's equation and
Eq. (2.4) one can derive an equation of motion for
g(P)

N

+ P [v(r&, r&) —v(r f, r~&)]X'"'(r, ~ ~ ~ r„;r( ~ ~ r„') .
i&j
i~1

(2 6)

We wish to consider the N-body density matrix as the quantum analog of the N-body distribution function
in classical theory. This leads us to introduce the reduced density matrices 'X"'(r, ~ ~ ~ r, ; r,' ~ r,')¹!

S N-sj (2.6)

Either by integrating (2.6) or using (2.2), (2.5), and (2.6), one gets the following equation of motion for X"'.
S S

i)i—X"'(r, ~ ~ ~ r„r,' ~ ~ ~ r') = — g (V„,2 —V„,2)'X"'+ g [v(r„r,) —v(r'„r()]'X"'(r, ~ ~ ~ r, ;r,' ~ ~ ~ r,')
i&f

S

+ g d r„,[v(r„r„,) —v(r', , r„,)]X"'~'(r, ~ ~ ~ r,r„,; r,' ~ ~ ~ r,'r„,).
i-"1

(2.V)

The case of most practical interest is the one-body equation

2

d 'r, [v(r„r,) v(r,', r, )]6P'(r,r, ; r,'r, ) . (2.6)

The set of equations represented by Eq. (2.V) re-
lates the one-body density matrix to the two-body
density matrix which is in turn related to the
three-body density matrix. This hierarchy of
coupled equations derived first by Bogoliubov and
Gurov, ' Born and Green, ' and recently revived by
Frohlich, "Wong, Maruhn, and Welton' can be
named the quantum kinetic equation, according to
the terminology of Bogoliubov and Gurov. It forms
the basis of our investigation.

III. GENERALIZED FLUID-DYNAMICAL EQUATIONS

Starting with the quantum kinetic equation, gen-
eralized fluid-dynamical equations have been de-

rived by Born and Green. ' However, their results
are written in such a form that the quantum effects
are not explicitly exhibited. Their introduction of
the generalized temperature is also subject to
question in that it does not necessarily vanish for
the ground state. We wish to rederive the same
set of generalized fluid-dynamical equations using
a very different method by making extensive use
of the polar form of the wave function. Terms of
nonclassical origin are thus explicitly exhibited.
As quantum effects are of great importance for
low temperature phenomena, the connection be-
tween the dynamics and these extra terms of
quantum origin is therefore of great interest.

We write the many-body wave function
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4S= 5' —. ln
im t4) (3.3)

where 6 stands for the principal value. If 4' is
antisymmetric, let A(r, ~ ~ r„) such that dt = 1 or
-1. For example, let

3N (r«-r ()
3, , i( lrii —fail

(3.4}

where r« is the ith component of r, . Then define

and

(3.5)

(3.6)

+(r, ~ ~ ~ r„,t) in terms of an amplitude Q(r, ~ ~ r„,t)
and phase factor S(r, ~ ~ ~ r„,f):
vis(r, ~ ~ ~ r„,t) = Q(r, ~ ~ ~ r„,t)exp[imS(r, ~ ~ ~ r„,f)/I],

(3 1)

where both Q and S are real functions. We wish
to have fIW} reflect the symmetry of 4, and S to be
symmetric with respect to exchange of particle
labels and to be single valued. That this is always
possible can be seen by considering the following:
If 4 is symmetric with respect to exchange of
particles, then define

(3.2}

r'—= (r„r, ~ ~ r,), (3.7)

where the ambiguity of r' defined above and the
usual definition of the sth power of r seldom
arises, and, even if it occurs, it can be easily
resolved from the context. Other collections of
vectors can be similarly defined. In terms of the
abbreviated notation, the quantum kinetic equation
can be written in the form

Without loss of generality, one can always choose
the spatial part of the wave function of a stationary
state to be a real. function of all the spatial coordi-
nates. With such a convention, the spatial vari-
ation of phase factor S then properly describes
the dynamics of the many-body system. From now

on we will consider only pure states. The general-
ization to mixed states will be straightforward.

We first derive an equation of continuity for the
s body density defined in the space (r„~ ~ r,). It
is sometimes convenient to treat the configuration
space (r, ~ ~ r, ) in our problem not as s particles
in a three-dimensionaI. space but as a singIe
particle in a 3s-dimensional space (x, "xs,), par-
ticularly when we wish to simplify our notations in
the gradient operator and the velocity fieMs. The
extensive repetition with which the coordinate
labels appear in our formulas calls for a need to
simplify the notation of a collectio~ of vectors in
the multidimensional spaces. Accordingly, we
introduce the abbreviated notation P' to denote a
collection of vectors (r, ~ r,) in the form

S Si' —x"'(r', r")= P (v„,2 —v„.)'x")(r';r' ) + P [v(r„r~)- v(r„r~)]%")(r';r' )
I i& j

iag

+ ~'+,.x v r„r„x —~ r„r„x +""' r,'r„,; r' r
in'

(3.8)

The equation of continuity for the s-body density
can be obtained by taking the limit r' - r' of the
above equation. From Eq. (3.8} we get first

dp, ,=
(

dr„, ~ ~ ~ dr„.NI
-s (3.10)

If we define the s-body density n"'(r') as the di-
agonal matrix element of the s-body density ma-
trix

S(td(V; 2 )+ V„ f dd S'(Sv)V„S(S.") = S,

(3 8)

where we have introduced an abbreviation

n(s)(rs) —31(s)(rs. rs) — d~ (t)2(r(() (3.11)

where i = 1, . . . , 3s, then we get the equation of
continuity for the s-body density

—n"'(r')+ &~ ~ [n"'(r')u"'(r')] = 0
at

(3.13)

Of particular interest is the equation of continuity
for the one-body density when s = 1. We have

and the s-body average velocity u"', which has
components in the Ss-dimensional space, as

,"'( ')= fd , (s")Sv, s( ')l "'( '), (s.(s)
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—n(r, ) + 0' ~ [n(r, )u(r, )] = 0, (3.14) rr(, )=frr, 0 (, r )r&(,r, r,)/ (r ). (r (())

( )=rf &r, ('( ,r",) (3.15)

where we have suppressed the superscript 1 and

We next wish to derive equations related to mo-
mentum conservation which are vector equations.
To get vector equations out of the quantum kinetic
equation (2.7), we operate on both sides of the
equation with (&, —&, ~ ) and then take the limit as
x "-x*. For the first term of Eq. (3.8) on the
right-hand side, we have (Appendix I):

rr, d)r, m('rr, sv, s — r, v, ("+ —v, (V, (), (r. )r)
owl

where and henceforth, for simplicity of notation,
all the independent variables of coordinates f~ and
time in (t) and 8 have been understood. The above
expression can be simplified. We note that (3.20b)

The term "quantum" is introduced here to em-
phasize its nonclassical origin and its being opera-
tive even for static stationary states.

The separation of the stress tensor into a par-
thermal part and a quantum part is a meaningful
separation for a nonstationary state in our con-
vention in which the spatial part of the wave func-
tion of a stationary state is chosen to be purely
real (achieved, for example, by using real single-
particle spatial basis functions for stationary
states). On the other hand, if one abandons such
a convention and insists on using complex spatial
basis functions for stationary states, then the
terms par-thermal and quantum lose their mean-
ing. The same thing happens when one deals with
a mixed state described in terms of a real linear
combination of stationary states (with, for ex-
ample, a Boitzmann weighting factor). In these
cases, it is still possible to define a P-stress
tensor and a q-stress tensor by Eqs. (3.19) and
(3.20), respectively, but one should speak more
appropriately of an intrinsic stress tensor as the
sum of the P- and q-stress tensors, and should not
associate any particular physical meaning to the
subscripts and the prefixes P and q. We shall, how
however, adhere to our original convention so that
the stress tensors have their physical origins. The
usefulness of the quantum stress tensor in under-
standing some peculiar phenomena of many- ferm-
ion systems has been discussed recently. "

For the other terms in Eq. (3.8), the limit ofx"-x ~ after the operation of & —&„.can be ob-
tained in a simple way. Putting all terms together,

dp @2V' SV S

=n~"u~ ~u~" + du $2(V S —u(")(V 8 u "~)s xg l xy

(3.18)

Thus, it is appropriate to introduce an s-body
"par-thermal" stress tensor P,'z,'~ defined by

(3.19)

This stress tensor arises from the deviation of
the s-body velocity fieMs from the average. We
use the term par-thermal with the prefix par(f&)
to denote that it can give rise to (but not neces-
sarily is) the thermal stress tensor. It becomes
the thermal stress when there is local thermal
equilibrium such that the s-body velocity fields de-
viate randomly from the average.

The expression in Eq. (3.17) suggests the useful-
ness of introducing also an s-body "quantum"
stress tensor"'" defined by

(3.20a)

or equivalently

k
)t,'r.'.(r')= &rr. (- r rr., rr.,(*r —rr.

,
(rrr ,(r).



D YNAMICS OF NUCLEAR FLUID. III. GENERAL. . .

we have the equation of motion for the +-body density and velocity field derived from the quantum equation:

8
3S

&nn&s&u&s&+ V (n&s&u&s&u&s&+P&s& +P&s& )et ffeP ffee
f&s1

n&"V, g v(r~, r )- &Pr &n&"{&(r~')V, v(r~, r„~), (3.21)
mAL

Sel xf

where x, &= r~. This set of equations relates the s-body current to the (s+ 1)-body density and forms a
hierarchy of equations coupling the different many-body currents in an ordered manner.

Of particular interest in the case for s =1 for which we have

3

mnu&+ g V, (nu u&+&P &s&+P&&,)= —J &Prsn&s&(r, rs)V, ;v(r„rs),
f 1

(3.22)

where the superscript 1 has been omitted.
An energy equation for the s-body density matrix can be similarly derived. One notes that the energy

density contains terms of the kind fd&&, &t&'(VS)s,

fdic,

,Vp ~ V&P, while the density matrix is of the form

fd&&s 44' So., to get an energy equation out of the quantum kinetic equation, one operates Eq. (3.8)
with Zs&.', V, V,f and then takes the limit as x" -&P'. First of all, for the first term on the right-hand side
of Eq. (3.8), we have

3S

Q V V ~ ig —X"&(r' r"}= —n"'(r')E&"(r')8 2im 8
(3.23}

~0 ve gf Xf et k
x ~x j~l

where E,'" is the 8-body kinetic energy density defined by

3S

s,'"(v')= f dv — s'(,")I (v,&s(v'))'v
&

I {v,&&&{v )'p
f~l

For the first term on the right-hand side, we have (Appendix II):
3S

lim g V V v(Vs Vs, )31&s&(rs rs')

&s&(rs) (3.24)

3S
n&s&E&s&u&s&+ P (P&s& +P ) u&s&+ F&s& (3 25)fAP ffee

f~l fsl

I»' (F')= Jdr(-'mS'{vv , s)'v
&

(va S)'){v, s —
&)

ji'
V, Vs &t& + —Vs &PVs &P (V, S —u&}+ &t&Vs &PV, ss ~ V ssS

foal

(3.26)

Gathering all the terms together, we have the +-body energy equation inthe form
3S

8
3S

n&s&E&s&+ g V n&s&E&s&u&s&+ ~ (P&s& +P&s& ) F{s&
gg k gf k f ~ ffeP ffea +f+ f

j~l fs{1

3S 3Sv"'I "& v I v{v v ) f&sr v' "(v"')—I v&""(v'")v v(v~), v(3.2v),
f~1 tsAI i*1

where xf (= r~. Of particular interest in the one-body energy equation for s = 1. %e have

3 3 3

nEs+ g V, nisu&+ P (P&& s +P&&, )u&+E&' = —f&fsrs P n&s&(r&rs)u&&s&(r, rs)V, v(r„rs),et f~l f~I i=1
(3.28)

where the variables on the left-hand side depend on the coordinate r, "-(x„,x„x,) and the superscript (1) has
been omitted for simplicity. %'e note in passing that in the TDHF approximation, the two-body current
n' I' ' can be written in terms of the one-body density matrix and we have
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8
3 l

nE + Q +„sE u(+ Q (P( +P(g )up+ E(8t Jx
3

2 rl 2+] rl ~ + r2 1 V 1 2 V„v rg r2 y 3.29

where the energy Qux E, is given explicitly as
I

I', = Q) am@ '(&S,}'+ (VQ )' (V, S —u, )
(I) &

+ —,V~ Q~ + —(P~ ~ Q~ ( ~S~ u~)+ /~V( P~ V S~ (3.30)

The energy equation (3.29) supplements Eqs. (2.8}
and (2.12) of Ref. 1 to form the set of exact macro-
scopic equations from the TDHF approximation.

Starting with the quantum kinetic equations, we
have now obtained the generalized Quid-dynamical
equation for a many-body system. It consists of
the equation of continuity (3.13), the equation of
motion (3.21), and the equation of energy (3.27).
The set of equations of continuity, of motion, and
of energy couple among each other and also with
other density functions. The totality of these equa-
tions can be arranged in an ordered manner in the
form of a hierarchy with the one-body quantitites
coupling the two-body quantities which in turn are
coupled to the three-body quantities. Such cou-
pling continues on and terminates when the N-body
quantities couple with themselves.

It might be worth noting that one can take more
higher moments by operating the quantum kinetic
equation with higher powers of the gradient V,
-V„. and taking the limits of x~' -P' afterwards.
In this context, one recognizes that for each value
of s, the continuity, momentum, and energy equa-
tions are just the first three moments of the sth
quantum kinetic equation.

The set of equations we have written down is the
same set obtained by Born and Green. ' We have,
however, derived it with a different method mak-
ing extensive use of the polar form of the wave
function which allows one to separate the stress
tensor into two components. Thus, for the static
ground state for which all the velocity fields (both
microscopic and macroscopic) canbe chosen to
vanish, we can see clearly the importance of the
quantum stress tensor in providing the necessary
force leading to static equilibrium. The importance
of the quantum stress tensor in many problems of
physical interest cannot be overstated. For many-
fermion systems, the peculiar dependence of the
quantum stress tensor on the second spatial de-
rivatives of the density leads to nonuniform
volume-type density oscillations in their ground
states. '4 For finite nuclei, such density oscilla-

tions, proposed by Friedel, Thorpe, and Thou-
less" using very different arguments, appears to
have recently been observed. " In a finite nucleus,
detailed investigation on the mechanism leading to
static equilibrium in terms of the quantum stress
tensor has not yet been carried out. However, as
the two-body nuclear interaction is short-ranged,
one expects that the nonuniformity and the non-

isotropy of the quantum stress tensor are responsi-
ble for the permanent ground state deformations of
many nuclei. For the energy equation, we use the
kinetic energy density as our dynamical variable
instead of the generalized temperature of Born and
Green' which has the disadvantage that it does not
vanish for the ground state and that its correspon-
dence with the temperature defined in the usual way
is rather obscure. In addition, we have also
written the energy flux explicitly in terms of the
many-body wave function.

IV. QUANTUM KINETIC EQUATION IN PHASE SPACE

IN TERMS OF THE REDUCED SIGNER FUNCTIONS

An alternative way of deriving the same fluid-
dynamical equations which appear in Sec. III makes
use of the Wigner function by going to the phase
space. Being a function of both position and mo-
mentum coordinates, its correspondence with the
classical distribution function was immediately
realized when it was first introduced by Wigner, '
as the classical Liouville equation could be ob-
tained from the equation of motion for the Wigner
function in the limit of h - 0. The Wigner func-
tion cannot, however, be really interpreted as the
simultaneous probability for coordinates and mo-
menta, as it is clear that it may take on negative
values. On the other hand, the Wigner function
obeys many relations which are expected of such
an interpretation. It is therefore useful to treat it
as an auxiliary function, analogous with, but not
identical to, the classical distribution function.

One knows that the classical Liouville equation
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leads to the hierarchy of BBGKY equations and
the BBGKY equations in turn lead to the equation
of classical fluid dynamics. ~' One may wish to
adopt a similar approach here. One can start with
the equation of motion for the Wigner function and
obtain the quantum analog of the BBGKY equation
involving reduced Wigner functions. This is just
the quantum kinetic equation (2.7) written in phase
space first obtained by Irving and Zwanzig. " The
generalized fluid-dynamical equation can then be
obtained by taking the various moments of this
hierarchy of equations.

The results of Irving and Zwanzig" can be sum-

marized, with a slight change of notations, as
follows:

We first introduce the coordinate transforma-
tions from r, , r', to 5» and y, :

(4.1a)

1 ~
r& =R&+ & y& ~ (4.1b)

With this transformation, the N-body Wigner func-
tion f '"' for a system of N identical particles is
defined in terms of the density matrix X'"' by

f'"'(R, ~ R„;p, . p„)=- d'y, (f'y„exp f pp» y»if» &™(R,—3y, R„-3y„;R-, +3y, R~+ 3g„),

while the reduced s-body Wigner function is defined in two equivalent ways:

(4.2)

~ ~ ~

R, R, ;p, p,) = (+, (f'R ~ ~ ~ d'R„('2„~); f (R, . R„;p
/ ~

(4.2)

3

d'y, ~ d'y exp i p& y; I X"' R, —~y, ~ .R —& y, ;R,+&y, R, +&y, .
i~I

(4.4)

For simplicity, we use the abbreviated notation introduced before

R'=(R,".R,},
P=(p ".pd

y'=(y, " y'),

and cP'R-d B ~ ~ d R„etc.

(4.5a)

(4.5b)

(4.5c)

To write down the quantum kinetic equation (2.7) in phase space, we integrate Eq. (2.7) with f(P y
& exp(fp' ~ y'/)f} and we obtain the quantum kinetic equation in phase space"

3S—f()(R ) P» Vf(«(R *)-.4() ~ f()(R ) d3R»'+ B('+) f(+)(R+ +) (46
Bt S41 + 3

where the operators A"' and B""'are given either in an integral of differential form. In the differential
form, the operators A"' and B""'are

S

g( ),f$($)(R$ p$) Q(sin[ —tf (pf, +$ ~ p'|(, pv )j}()(R R )f ($)(R$ p«$)

i&j

and
S

f) ( +1)$,f ($+1)(R$+1 P$+1) g (sin[»)f (Pf, +$ )]}()(R R )f ($+1)(R$+1 pal)

(4 7)

(4.8)

where the operator &~ and &"„ inside the sine function operate only on v; and &~ and &~ operate only onRg pg Pyf ($) and f ($+1)

In the integral form, the operators A"' and 8""' are

d38*I
g ($),f ($)(R$ «3) ) If($)(R$ «3 «3 )f {$)(R$ p$ )lP (2 g)3$ lP P (4.9)
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dss *&
g($4'I) f ($$1){/$4'I «$41) I L (RSPI s s )f ($4'1)(R$41 «s «)YP =

(2va)es P —P yp ps+i y (4.10)

where

' PY("'(R', P'- P) f$.Yvvvf''(P*-P') Y'/P]2 ["(R;—]Y; Rv-lVi)-'(R "V "v"*'Vf)l (4.11)

(4.12)

S

f(N)(RN pN)+g f (, V f(N)(RN p«N) g {sic[ g (off ~ 4()p + vff 4 gp ]}()(R R )f(N)(RN p«N)

S

'PL(R"', P'-P )= fd"VYPP[I(P'-P") Idfs] [v(R) —,Y(,R„,)-v(R;4 Y), R, )] .
=1

In the particular case when s=K, w'e have 8 ~"= 0 and we obtain the equation of motion for the signer
function f'"'.

Another case of interest is when s =1 for which A"'=0, and we have

(4.13)

fI"(R„p )+ —'4 f "(R„p )= fd'R,
(

'), —[4(v[—'P(pvV '4'„)]]v(R„R)f"'(R R, pp ). (4 (4)

The quantum kinetic Eq. (4.6) is an equation of
motion for the%'igner function. It couples the s-body
Wigner function with the (s + 1}-body Wigner function
and is the quantum analog of the BBGKY equation.

So far, the quantum kinetic equation in the phase
state given by Irving and d)lwanzig" is based on a
two-body momentum-independent potential. To
anticipate the application of the quantum kinetic
equation to the Fermi-liquid theory of Landau, "
we wish to write down the quantum kinetic equation
in the case of a momentum-dependent two-body in-
teraction ()(r(p„rf'pf'}. It is easy to prove that we
obtain again the quantum kinetic equation (4.6) with

a modified definition of the operators A"' and8""'. In differential forms, the operators A~"
and gy((f+&) become

g(e) vf(s)(R$ pe)

= —Q sin[-,' ff(Vfe V"„+VefV"„)]

Vefogerate only on the reduced Wigner function

f(I/)(Rs ps) and f($41)($$PI pspI)

Starting with the classical BBGKY equation, Born
and Green showed how it was possible to obtain the
generalized fluid-dynamical equation referring to
a cluster of s particles. ' The procedure involves
taking the various moments of the BBGKY equation.
Specializing in the TDHF and the corresponding on
one-body Wigner function, Koonin and Kerman"
followed similar procedures and obtained the one-
body fluid-dynamical equations from the TDHF ap-
proximation.

%'ith the knowledge of the quantum kinetic equa-
tion in phase space, we can carry out similar pro-
cedures to obtain the same set of generalized fluid-
dynamical equations (3.13), (3.21), and (3.2V).
These procedures of taking the various moments
of the ful/ quantum kinetic equation are lengthy but
straightforward. They will not be reproduced here
but will be supplied upon request.

(4.15) V. MACROSCOPIC DESCRIPTION: ELASTIC RESPONSE

( foal) ssf( v1)
$(4Rspps )

——Q sU)] (ve 'vs }]I)(R(P(,R~IP~ )
~4

)(f(evl)(R$41 pep)) (4.16)

where the operators V~ and V"„operate only on
the two-body potential e and the operators V~, and

Rg Rg f

All the results in the previous sections have been
obtained in a rather general manner without ap-
proximations. The resultant generalized fluid-
dynamical equations are exact relations from the
many-body Schrodinger equation. They are sim-
ilar in form to those one encounters in the class-
ical kinetic theory of fluid, with the exception of
additional quantum stress terms proportional to 5'.

The generalized 8-body Quid-dynamical equation
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is useful in the discussion of the dynamics of a
cluster of s particles relative to the other par-
ticles and may find its application in some quasi-
elastic scattering processes in heavy-ion re-
actions. For many processes, it suffices to study

the density of a single particle and its time evolu-
tion. We shall limit our attention to such a con-
sideration.

We would like to write out explicitly the one-
body equation of motion

3—mn(r, )u((r, }+P [n(r, )u&(r, )u((r, )+p&( &(r,)+p&(„(r,)] = — d'r2n("(r» r2) v(r„r2) (5.1)

which is written in such a way as to exhibit the spatial dependence on the radius vector r, (with components
r„) and r„ the superscript (1) being omitted for simplicity. In order to show the importance of the inter-
action v in contributing to a pressure stress tensor, we can write E(I. (5.1) in a slightly different way. We
separate the two-body interaction in terms of a short-range part n, and a long-range part. We further as-
sume that the short-range part of the interaction depends only on the magnitude of the relative coordinate
r = r~ —r~',

v(r„r,}= v, (r}+ zv(r„r, ) . (5.2)

For the short-range force, one can adequately expand the two-body density matrix in powers of r and ob-
tain""

(5.3)

d'r n"'(r„r,) vz, (r„r,),

(5.4)

where the stress tensor p(&,(r, ) is given by

) j.

where x, and x, are components of r. It is thus possible to write the equation of motion in the form
3

mn(r, }u,(r,)+g [n(r, )u((r, )u&(r, )+p(~,(r,)+p(~ ~(r, )+p,~,(r,)] =-
l rl

»;», dv, (r) (,)p, ,(r}= — d r '„' ' n (r, ——, rr+-, F),r dr (5.5)

and the subscript 5 denotes that this is a stress
tensor arising from the short-range interaction be-
tween particles. It is clear that for a strongly in-
teracting dense system, the pressure stress ten-
sor arising from the interaction p, &, can be sub-
stantially greater than that arising from the ther-
mal-like motion of the particles p, ~ ~.

The formal analogy between the one-body Eqs.
(3.14), (5.4}, and (3.28) and the e(luations of class-
ical fluid dynamics does not immediately imply
the validity of a completely macroscopic descript-
ion of a quantum fluid. Additional conditions need
to be satisfied. Of all the variables we introduce
in the fluid-dynamical e(luation, we can taken(r„ f),
u(r„ f}, and E~(r„ f) as our basic macroscopic
variables and consider the equations of continuity,
of motion, and of energy as the necessary equa-
tions to propagate these quantities in time. The
equation of continuity involves only macroscopic
variables; however, the equations of motion and of
energy contain subsidiary variables p, ~(r,}, E((r,),
n(2'(r„r, ), and u("(r„r2) which are given in terms
of the microscopic many-body wave functions. The

e(luations (3.14), (5.4), and (3.28) can therefore be
viewed as equations coupling the microscopic mo-
tion with the macroscopic quantities n, u, and E, .
Such a view is a useful one in some problems where
the coupling gives rise to interesting effects. For
example, in the consideration of nuclear ground
states, the possibility of an anisotropic and non-
uniform p(&,(r,) arising from the microscopic
wave functions is very likely the origin of the per-
manent deformation of a nonspherical nucleus.

In many problems it is desirable to seek a com-
pletely macroscopic description of the dynamics.
It is then required that the subsidiary variables can
either be expressible in terms of the basic macro-
scopic variables n, u, and E~ or be evaluated by
other means. Even when a macroscopic description
is possible, the pattern of behavior of the Quid is
not necessarily that of hydrodynamics. In spite of
the close analogy between E(I. (5.4} and the Euler
equation, the pattern of behavior of a quantum fluid
is governed in an important way by the quantum
stress tensor, the extra term of quantum origin.
In some dynamical motion of the system such as
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that described in a special case of the random phase
approximation, one obtains the quantum stress ten-
sor proportional to the first spatial derivatives
of the displacement. " The dynamic equation ob-
tained from Eq. (5.4) is the Lamd equation govern-
ing the propagation of elastic waves. As was first
observed by Bertsch, "nuclear giant multipole
resonances can be properly described by such an
elastic response of the nuclear Quid. Therefore,
nuclear elasticity is of physical interest.

We shall discuss brieQy the elastic response of
a Fermi fluid as a proper limit of Eq. (5.4). De-
tailed discussions will be found elsewhere. " We
can imagine that initially we have a Fermion sys-
tem in its ground state properly described by a
single determinant of product wave functions. The
single-particle spatial wave function P"'(x, 0) can
be chosen to be real functions of spatial coordi-
nates. Then, in special cases of the random phase
approximation (RPA) when the strength for collect-
ive motion is concentrated in one particular state,
the time dependence of the spatial wave function can
be properly described in terms of a displacement
D and a phase factor S by"

P"'(r+D, 0) exp[imS(r, t)/tt+iq (t)t/t]
(l v f}) ~

(5.6)

P (0) + 2&(0)g .D
&»e e &fa e

+ p [v, (pq'„"q D„)+vq(p, ',"q D„)]+0(v'D„),

(5 6)

where the superscript (0) denotes equilibrium
quantities and w~+») is the equilibrium kinetic ener-
gy density. One notes that for a Fermi fluid which
is initially spatially homogeneous, the quantum
stress tensor is proportional to the first spatial
derivative of the displacement. Furthermore,
from the equation of continuity, we obtain

8D
u= ——

8E
(5.9)

and thus Eq. (5.4) becomes the Lamb equation
which describes the propagation of elastic waves.

Note that in Eq. (5.6), all the different single-
particle states are governed by the same displace-
ment and phase factor S. Knowing the wave func-
tion, it is a simple matter to evaluate the par-
thermal stress tensor and the quantum stress
tensor. One finds

(5 7)

and for the quantum stress tensor

VI. MACROSCOPIC DESCRIPTION: H YDRODYNAMICS

The dynamics of the quantum fluid can take on a
different form in the presence of a different type
of perturbation. In problems where the time scale
for the macroscopic motion is long compared with
the microscopic relaxation time such that local
equilibrium can be maintained throughout, a plaus-
ible approximation to the exact many-body prob-
lem is to introduce a local specific entropy o to
identify the par-thermal stress tensors as the
thermal stress tensor to be written in terms of
the local basic macroscopic variables. The ap-
proximation of the quantum pressure as a function
of local macroscopic variables imposes a lower
limit on the dimension of the system. By such an
approximation, one also foregoes the hope of de-
scribing irregularities of single-particle origin.
Likewise, the replacement of P,», by local macro-
scopic variables requires that the dimension of the
system under consideration is large compared with
the range of the short-range interaction. Indeed,
in large enough systems such as in classical or in
the He and ~He fluid, these conditions are satisfied
for many phenomena and a completely hydrodynam-
ical description has been found useful. " The pres-
ence of off-diagonal long-range order'4 in some
quantum fluid may give rise to peculiar dynamical
properties which car still be included in the hydro-
dynamical description in terms of a new degree of
freedom. "

For a Fermi liquid, we can make use of the
Thomas- Fermi approximation for the quantum and
thermal stress tensor to write

pfy p+ p$ j (l ~ 572) n
' 1 5 2/s s/3

(6.l)

We hope to give in the near future an estimate on
the time scale and the length scale for which the
above approximation leading to a completely hy-
drodynamical description can be a meaningful
concept.

Assuming that the necessary conditions are sat-
isfied, we can write down, at least formally, the
Navier-Stokes equation following the general ex-
pansion procedure of Born. and Green. "" Such an
expansion was used by Born and Green"" and
Bogoliubov" for classical fluids and by Bogoliu-
bov" and Frohlich" for quantum fluid.

We consider first the equilibrium case for
which the two-body density function n"'(r„r,) is
obtained. In the presence of a velocity gradient,
the two-body density gradient will. be distorted.
To the first order in the velocity gradient, we ex-
pand the two-body density n"'(r„r,) as
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(2) ~ ~ +(2) ~ 3 8+j ~+l
g

9 3 x) xj 8
n (r„r,)=&T (r„r,)+g (&z + + ——g 6&& +g $«

&a j
(6.2)

where the functions $&& may, of course, depend on r= r, —r, = (x„x„x,}and R = ~(r, + r2}. Not only is the
two-body density distorted by the presence of the velocity gradient, so is the one-body Wigner function
which can be expanded about the one-body Wigner function for the equilibrium case f ' (R„p,) by:

&&) &~& q (p~& —mu&)(p&g —mug) au& aug 2 &tu&

aR aR 3 aR
fa j (p- mu, )' l j lf g Xl

(6.3)

where &,j depends on R, and p, and only i 0j need be considered because of the normalization requirement

(a)
1 Pl) (2 g)3/2 { 1) (6.4}

As a result of the expansion of n&2' and f"', we have

(6.5)

3 3 3
8Q] 8Qj 2 ~ Qg ~ Q]

P&&p(rg)+P&g, &&(r&) = P&gp(r&)+P&$, 5(rg)+ ~ n&y
'+

a
—

2 ~ s + ~
f. j ~l j +ii l g +gg f=y

where P&z ~(r,) and P&~,{r,) are evaluated with the equilibrium one-body Wigner function and two-body den-
sity matrix. The coefficients of shear viscosity are, for i ~ j

&Pp, (p, &
—mu&)'(p, i —muq)' 1 x,. x, dv, (r)

(2v}f) && ' ~2 2 ~&& + dr( p~ —~&r

and the coefficients of compressional viscosity are

1 + x, x, dv, (r)

(6.6)

(6.V)

With the extra terms linear in the velocity grad-
ient, Eq. (5.4) becomes now the Navier-Stokes
equation.

Although it is possible to obtain a formal de-
finition for the viscosity coefficients, it is still
necessary to calculate the distortion off"' and
n"' in the presence of a velocity gradient. This
may seem a difficult task, but its usefulness lies
in requiring only very specific information from a
microscopic calculation for its evaluation and not
of the complete microscopic solution.

VII. QUANTUM KINETIC EQUATION

AND LANDAU'S FERMI-LIQUID THEORY

starting point of Landau's transport equation for
quasipartic1. es. Our attempt to go into some detail
to establish such a connection is to indicate the
tacit assumptions entering into the derivation so
that correction terms or alternative assumptions
can be systematically introduced if one so desires.

First of all, we identify the one-body Wigner
function f "'(R,p) as the distribution function for
the "quasiparticles. " To make our problem sim-
ple, we shall consider a temperature near ab-
solute zero so that collisions between quasiparticles
can be neglected. Because of having no collisions
between quasiparticles, the two-body Wigner func-
tion can be approximated as a simple product of
one-body Wigner functions:

As we have emphasized, the quantum kinetic
equations are general and exact equations. They
may be the starting point for many simplifying ap-
proximations for the investigation oi the dynamics
of the quantum many-body systems. We shall
illustrate another application of the quantum kinetic
equation to the discussion of transport phenomena
of the Fermi liquid at very low temperatures and
shall establish the connection between the quantum
kinetic equation of the Landau's transport equation
for simple cases. Such a connection is a simple
observation as the Boltzmann equation is the

f"'(R,R, ;p,p,) =f"'{K„p,)f "'(R„p,). (V. 1)

We consider now small deviations from equili-
brium:

f"'(R p)=f"'(R p}+5f(R p) (V.2)

where the equilibrium distribution function f&" (R, p)
can be chosen to be time independent by a
proper choice of our coodinate system. From Eq.
(4.14) it then satisfies the equation
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dRdP 2 . 2

m R ' (2v)f)' I 7)

—~ V" f"'(R p)= ' ' * — sin —& ~ &" ()(Rp R,p)f"'(R p)f"'(R, p)2 (7.3)

while the deviation from equilibrium satisfies, up to the first order in 5f "'

6f "'(R,p)+ —&R 6f "'(R,p)

V, V'„" z Rp; p, '"R,p 4 '"R„p, + ' R„p, 6 '"B,p (7 4)

Upon making the expansion of the sine function in Eq. (7.4) and neglecting terms of order I and higher,
and assuming further that

()(R,p); R,p, ) = V(p,p2) 6(R, —R, ), (7.5)

we have the following transport equation for the deviation of the quasiparticle distribution function fry~
equilibrium:

6f (l)(R p)

In the case of an infinite medium for which the
equilibrium distribution function f"' is indepen-
dent of positions, the last term vanishes and Eq.
(7.6) is identical to Landau's collisionless trans-
port equation (which is also known as the Landau-
Vlasov equation"). The deviation 6f "' is now cou-
pled to the equilibrium distribution function f "'
through &p f ~ . In I.andau's theory the equilibrium
distribution f"' is, however, not evaluated with
Eq. (7.3) but taken to be a Fermi-Dirac distribu-
tion (as a definition of his "normal" Fermi liquid),
justification of which is discussed in great detail
by Nozi&res. The study of the dynamics of the
system can thus be greatly simplified.

Our simple result outlined above gives an indica-
tion of how generalizations and corrections can be
introduced. First of all, in situations where the
equilibrium distribution f "' is spatially inhomo-
geneous such as in a finite nucleus, there is the
additional last term in Eq. (7.6) which must be in-
cluded in the dyn:cynics. Secondly, the expansion
of the sine function leads to quantum corrections
of order h', h4, . . . and higher-order derivatives of
the potential and of the equilibrium distribution
function. Finally, in situations where the collisions
between quasiparticles cannot be neglected, Eq.
(7.l) needs to be modified to include the effect
of correlation in the two-body %igner function.
One can follow, for example, the arguments of
Ross and Kirkwood' to obtain a transport equa-
tion with the proper collision term.

3i"'(r r') =Q(( (r)(t' (r') (B.l)

where the sum is carried over the occupied states,
and

rg(2)(r P . PgPi) cg(l)(P ~~g)3i(1)(~r .P )

3i(2)(~r .Pi)6i(l)(P . PI) (8 3)

As the two-body density matrix is now written in
terms of the one-body density matrix, the hier-
archy of the quantum kinetic equation terminates
at the lowest level and one obtains from Eq. (2.8)

UIII. TDHF AND MDTDHF AS SPECIAL APPROXIMATIONS

OF THE QUANTUM KINETIC EQUATIONS

It is clear that in a microscopic theory it is
difficult to solve the set of quantum kinetic equa-
tions in its entirety. One usually resorts to sim-
ple truncations so thai the hierarchy of equations
terminate. In this section, we shall restrict our-
selves to the considerations of Fermion systems
for which the microscopic time-dependent Har-
tree-Fock approximation has been used to study
the dynamics of many nuclear systems. '~~ In
Ref. 1 we discuss how TDHF can be viewed as a
special case inwhich the quantum kinetic equation
can be truncated at the lowest level. Specifically,
with the assumption of a single Slater determinant
consisting of single-particle wave functions (),(r)
for a Fermion system, the one-body and two-body
density matrices are



16 DYNAMICS OF NUCLEAR FLUID. III. GENERAL. . . 1209

the TDHF equation

oJt(1)(r .pg) (v 2 v 2)cg(1)(p ()
Bt ' 2m "x

+ d r2[v(r, r, ) —v(r, r,}][R"'(r„r,)Z"'(r, ; r, ) -X(('(r, r )Q"'(r, r,')] . (8 3)

8s—+& (nu)=0
Bt {8.5)

and the equation of motion

B B
SQ]+ SQ) QgBt . Bxy

3 B

8» (t (At t(Ao)
PPl

n B
(Pr~(r, ) — v (r, r,)

+ — d r2 lX("(r;r ) l' v(r, f'2), (8.6)

where

The transition from the microscopic description of
TDHF to a macroscopic description in terms of the
total density field and velocity field was discussed
in Ref. 1. We sha11 briefly summarize the results.
One introduces an amplitude factor $ (r, t) and
phase factor 8 (r, t) to write the wave function of
an occupied single-particle state g in the form

g (r, t)=Q (r, t) exp[imS (r, t)/tt-iQ {t)], (8.4)

where 0 (t) is a factor which depends only on
time. One obtains from TDHF the equation of
continuity

and using the one-body Wigner function led to sim-
ilar results.

It is clear that a single Slater determinant can-
not be the complete solution of the many-body prob-
lem. It is necessary to include the possibility of
transition from one Slater determinant into another.
We can generalize the TDHF formulation of the
many-body problem to include many determinants
and obtain the multideterminant time-dependent
Hartree- Fock (MDTDHF) formulation of the many-
body problem.

We envisage that we can construct a set of TDHF
solutions 4~ such that at time t = 0, the expectation
values of the many-body Hami1. tonian, the total
energy momentum, and the angular momentum are
all the same for the different determinants 4', :
(4(,(r, ~ ~ r„,t=0), Hof(, (r, . ~ ~ r„,t =0)) =E, (8.12)

l 4.(r( ""t=O} —. Zv. 4'a(r( "r. t =O} I=P,

(8.13)

l
4(r(, . ~ ~ r„,t = 0), m r(„&, %(~(r, ~ ~ r„,t = 0)

l
= 1, .

i

(8.14)

In addition, we require that at t = 0, the first and
the second moments of distances are also the
same for the different determinants:

n= Q $,'(r, t},

u(r, t ) = P P 'V„S,/n,

and

r= (x„x„x,).

(8.7)

(8.8)

(8.9)

l(4,(r, ~ ~ ~ r., t = 0),P r, 4,(r, ~ ~ ~ r., t = 0),l= ft,
t

(8.15)

(o,(,, (=o(, P" *„,*o,(, ,;~=o()=x,

(8.16)
The par-thermal stress tensor p, ~ ~ is

l', ~,~= Qo(„' —,) (
','—~) (o.lo)

and the quantum stress tensor is

(
(((r, ~ ~ r„, t=0), gY('4„(r, ~ ~ ~ r„;t= 0)&

and

(8.17)

An independent approach undertaken by Koonin
and Kerman3' by starting with the TDHF equation

l4„(r, ~ ~ r~, t=O), gx('4, (r, r„;t=0)~I=Z'.

(8.18)

These conditions insure that all these different
determinants 4'~ have the same relevant initial con-
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ditions. The determinants differ from each other
by the different ways energy and/or mass can be
partitioned. For example, consider two identical
nuclei approaching each other at time t = 0. We
can choose C,(r, ~ ~ r„;t = 0) as the single Slater
determinant for which the lowest single-particle
states up to a certain Fermi level are occupi. ed
and the two nuclei move toward each other with a
velocity vp which enters into the phase factor for
the single-particle states. We can construct 4,
as the self-consistent Slater determinant for which
one of the single particles is promoted to occupy
a higher single-particle state and the two nuclei
move toward each other with a sI,ightly smaller
velocity v, . Other determinants 4k can be sim-
ilarly constructed to partition the energy E into
intrinsic and relative energies and/or the mass
number as shown in Fig. 1.

For each of the determinants 4'~(t = 0), one, can,
in principle, follow the time evolution with the
TDHF equations. One then obtains the set of 4'k 's
which are now known functions of time and space.

The general solution can be written using the
Ck's as the basis wave function:

VO

Vp
—v2

4'(r, r2 ~ ~ r„;t) = g a~(t)%'~(r, r~ ~ ~ r„;t) (8.19)

which satisfies the many-body Hamiltonian:

itt —4'(r, r, ~ ~ r„;t}=HI'(r, r, . ~ ~ r„;t) . (8.20)et

Therefore, %e have

ilfg a~ 4, = Q a~ H - itt—8

k k
(8.21)

Upon taking the scalar product with 4„, we have

AND SG ON. . .
FIG. l. Schematic representation for the set of 4k's

used as basis wave functions in describing the many-
body wave function for the coQision of two identical nuc-
lei.

In Eq. (8.22), the scalar products can, in princi-
ple, be calculated as all the 4k's are known func-
tions of space and time. It therefore allows the
evaluation of a~(t) once the initial amplitudes a,(0)
are known. With the knowledge of a,(t}, one can
construct the one-body density matrix

+ g a, a~, N d'r, ~ .d r„C,(r,r, ~ ~ r„)4~,(r,'r, ~ ~ r„)
k. k'
k& k'

(8.23)

and the two-body density

X'2'(r, r, ; r', r,) =P ia, i'X,"'(r,r, ; r,'r, )
k

+ g a, a,*,N(N- 1) d r,. ~ d'r„4'~(r, r, ~ ~ r„)4~,(r,'r, ~ ~ ~ r„).
k& ke

(8.24)
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5I(1)(r .rt) Q g) 3I(1)(r .rt)
k

(8.25)

These density matrices describe the one-body
and two-body density correlations exactly.

It is clear that with a many-body system, it is
virtually impossible to make all the measurements
on aQ th0 variables whose operators commute with
H. This being the case, one resorts to a statistical
description of the system and gives up hope of ever
measuring the phase relationship between the dif-
ferent basis wave functions. Therefore, even
though one may begin by having the system de-
scribed as a pure state, in subsequent times, the
system becomes a mixed state where one knows
only the probability for the occurrence of a certain
Slater determinant Ck and not the phase relation-
ship between them. In mathematical terms, a statis-
tical description of the system amounts to writing
the density matrix in the form

the microscopic to a quantum statistical descrip-
tioniscompleted by making the approximations
(8.25) and (8.26) so that the cross terms in Eqs.
(8.23) and (8.24) do not appear. It is obvious that
because of the loss of the phase relationship be-
tween the ak's, the coherence of the different 4k's
is lost, and one cannot construct by passage back-
ward in time the original wave packet. In other
words, the microscopic time reversibility is
violated by making the approximations.

With the knowledge of only the density matrices
X"' and X"', we forego also any hope of obtaining
higher correlations between three and larger num-
bers of particles. The set of many-body equations
can be truncated at the lowest level. The equation
of motion is then as given by Eq. (2.8).

To obtain the macroscopic equation of motion,
we again introduce an amplitude factor and a phase
factor for each of the single-particle states ak be-
longing to the kth determinant

)t «(r, t) = Q «(r, t) exp[imS «(r, t)/ti —iQ «(t)] .
X")(r,r, ; r,'r, ) =Qn)«Ql',")(r,r, ; r)r, ) .

k

(8.26) (8.2V)

Comparing Eqs. (8.25) and (8.26) with Eqs. (8.23)
and (8.24), one recognizes that the passage from

After substituting Eq. (8.27) into (8.25) and (8.26)
and making use of Eq. (8.8), one obtains, after
much simplification,

an—+ & nu=0
at 1

3

t
' + g ()nnu)u)i+p, ~ «+t)&&„)= —n d'r, n(r, ) —v (r, r,)+ d'r, I Xu)(r, r,}i' u(r, r, )

f~j. f j

(8.28)

+2 &ok nk r n r nk r2 —n r, v r, r,

(8.29)

where the density is now

n(r) =P n)«n«(r)=Pn)«g Q «'Pr), (8.30)

the average velocity is

u(r) =Q M)«Q Q «'(P}VS «(r)/n(r),
k ak

8 8')., s..-., s..—.,),ax) axf

(8.31)

(8.23)

(8.33)
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In Eq. (8.29), all the terms but the last two have
a correspondence with the terms in Eq. (8.8) ob-
tained for TDHF. The last two terms are new,
and they represent viscous forces arising from
the dispersion of the original state into other
states.

To close the set of dynamical equations, it is
necessary to know the behavior of ~„on time.
This can perhaps be done by considering the Pauli
master equation for u~ and looking for its solu-
tions. Qn physical grounds, one knows that for a
closed system w'here there is no current disper-
sing into infinity, the probability of occupation u~
behaves as shown in Fig. 2. Suppose at time t= 0
we have a pure state such that u, = 1. As time
proceeds, theweight ~, goes nearly to zero, but
after a while will increase again to unity. The re-
currence time is of the order 5'5 where 5 is the
level spacing. Qf course, when there are currents
radiating toward infinity, the recurrence time is
infinite. In a heavy-ion collision, one expects that
the collision time involved is much smaller than
the recurrence time, so that within the time in-
terval of interest, u„ is essentially linear in t.
Because of such linear dependence, the operation
of time reversal onto Eq. (8.29) will alter the equa-
tion and hence violates time reversibility.

What we have presented is a framework by which
dissipative mechanisms can be studied. What re-
mains to be investigated is how P, & ~, the kinetic
energy term, and the extra new terms in Eq. (8.29)
depend on macroscopic quantities. In this con-
nection, the recent work of Bonche, Koonin, and
Negele" on a direct solution of the TDHF will be
of great help in determining such dependence.

IX. DISCUSSIONS AND CONCLUSIONS

Qn the basis of the quantum kinetic equation derived
from the many-body Schrodinger equation„we inves-
tigated the equations of motion involving macroscopic

FIG. 2. Schematic representation of the occupation
probabilities for various determinants 4~ as a function
of time.

variables such as the s-body density, current,
and kinetic energy. Vfe obtain a hierarchy of general-
ized fluid dynamical equations involving these vari-
ables. Some of the results wepresented are given in a
general and exact form. Their usefulness lies in
being the starting point of many simplifying ap-
proximations for the investigation of the dynamics.
We mentioned TDHF and MDTDHF as two approxi-
mations to the quantum kinetic equation. One can
also consider the elastic response and hydro-
dynamics even for quantum fluids. There are also
other kinds of approximations one may make in
connection with off-diagonal long-range order cor-
relations where one writes down the appropriate
form of the density matrix and proceeds to study
its dynamics. " The possibility of having mixed
states which depend on temperature makes the use
of the density matrix even more attractive.

Another important application of the quantum
kinetic equation is the possibility of a systematic
elucidation of the connections between the Fermi-
liquid theory of Landau" and the microscopic
many-body problem. One knows that starting with
the classical BBGKY equation, one can derive the
Boltzmann equation for the one-body distribution
function. Qn the other hand, the Boltzmann equa-
tion has been taken as the starting point for the
transport of "quasiparticles" in the Fermi- liquid
theory of Landau. One expects that the transport
equation in the Fermi-liquid theory of Landau is
intimately connected with the one-body quantum
kinetic equation in phase space. We outline the
assumptions involved in connecting the one-body
kinetic equation and the Landau transport equation
for the simple case when there is no collision. It
will be of interest to investigate more complicated
cases and the corrections to the Landau Fermi-
liquid theory.

As with the classica1. BBGKY equation, the neces-
sary and sufficient conditions for a truncation and
approximation of the hierarchy of the quantum
kinetic equations are difficult to spell out for the
general case. Qne is usually guided in a qualitative
way by the importance of the two-body collisions
or three-body collisions, denseness or diluteness
of the system, time scales and length scales, and
whatever physical intuition there is to help select
a certain type of truncation or approximation. Our
lack of a systematic guideline is a shortcoming in
working with the quantum kinetic equation (and its
related macroscopic equations). In consequence,
the ultimate confrontation between experimental
results and theoretical results obtained from dif-
ferent truncations and approximations is of sing-
ular importance in determining the correct ap-
proach.

With regard to the nuclear fluid, there is the
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additional problem of the nuclear hard-core inter-
actionwhichgives rise to special short-range cor-
relation between nucleons. In the Brueckner theo-
ry, this is studied with the defect wave function
and the independent pair approximation. How such
a correlation can be studied within the framework
of the quantum kinetic equation needs to be

spelled out in detail. The recent work of Kummel
and Zabolitzky33 for the ground states of many
finite nuclei contains a hierarchy of equations
which is similar to the quantum kinetic equation in
nature. A simple extension of their results to non-
equilibrium cases and a careful comparison with
the quantum kinetic equation will be of interest.

APPENDIX I.

We wish to evaluate

3s]l

( — ) ( '- ') "'(' '}
gas' ps 2m

f~l

where x„x,.c r' and x,', x&(=- r'. We consider first the l.imit

(v, —v,') (v~' —v,"))is(r"))I '(r"') = 2 Re([v, vp'&)is(r") tsis*(r") —vf 4'(r") v '4'*(r„)),
AN'~gS N

where for convenience we use the simplified notation &, and ~; to stand for ~„, and &„;, respectively.
Upon using the polar form of (2.1) to represent the wave function 4', we have

(I2)

m2
vqvv=v' ]v,vp —V-Sv, svqs+ —(v, (Svqs) vqsv, s]I,

m2 v

V~'ps=e fm~~" V,.'(f) ~QV~SV)S-
™

[Vq((t)vqS)+ VPVqS]

m2
v (v, v, v)=v' I"

(v v~s v,.vp ~SVSV~S '(v(sv~s) v~svs)

Substituting (IS)-(16) into (I2), we obtain

m2
(V —Vf'}(Vg'- V j~)+(r")+*(r"')= 2 — Vg(4"V;S'Vg S) —2V;(V;O'V;0) + V; Vg'(' 0')

AN' g3 N

Thus, we have

38 38 e2 S2iim (v v;) p (v,*-v] )V(v')v'( "')=s I v, S*v,.sv, .s- v,. V, s*~" V,SV,S) .

(18)

(17)

(18)

We integrate both sides of the above efluation by f deaf, . Because V,. and V~ commute with f dp, „we obtain

) m (v. v') I (vI' v)')s(')( ', ')=2 p v. ss, S'vsvqs ——v, v, S' —vSvqS)
/=1 g=l

which is Efl. (3.1V}.

(19}

APPENDIX II.

We wish to evaluate
3fg

lim ~V V ~ (V 2 V 2)Zfs&(rs. fs')
$~1
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where x„x&(=- r' and x,', x& e r". %e consider first the limit

(v, v )(v' v, ,')0'(r")0 (r" )=2i8m([v, v,'C(r")]v,4"(r")j, (112)

where, for convenience, as in Appendix I, we used the simplified notation of V, to stand for V„,. Using the
polar form of Eq. (3.1) to represent the wave function 4, we have

-i fes /h
(113}

m2
V, V~'0'=e' " V, +—Vi$ V&'Q- Q V~S +—V& QVf$ + VffVj$

Substituting (II3) and (II4) into Eq. (II2), we obtain

(II4)

Ilm V V (V 2 V 2)@(rN)@s(rÃ )pN' p iv 2'

V( smQ (V~S) V(S+—(V~&f))sv(S + — —
V~ Qsv(S+ V(p —VS + pv(pv sS

Hence, we have

3S
lim ~ V VI(V s Vi&)@(rg@s(r&')f i j

x

2m'" -. . . I
Q V( am''(V~ S)'V,S+ ( V~*&)' V, S+Q — V(v, p'+ —V, pv~p V~S+ yV, yV,„~V,s~
iei jag

Upon integrating both sides by f d p„we obtain

3S
lim ~ V Vt(v 2 Vgs)31(s&(~rs fs')

2m ~
3S S2

Q V( dp, smuts(v~sS) V(S+ (V~sp)sv(S
i~1

3S
+ Q — Vsvg Q +—Vgpvyg VyS+ Qv(pvsss ~ VsssS

which leads to Eq. (3.25).
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