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pion production and absorption in nuclear reactions.
I. The vertex function*
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We have performed a model calculation of the pion-nucleon vertex function for the case in which one
nucleon is allowed to go far off its mass shell. We discuss the relevance of this vertex function for the
calculation of pion production and absorption in nuclear reactions, such as (n+,p), (p,m+), and for the pionic
disintegration of the deuteron. The model used is based upon an approximation to an exact equation for the
vertex function derived from a field-theoretic model with pseudoscalar coupling. Our calculations indicate a
strong dependence of the vertex function on the invariant mass of the off-shell nucleon. The results are
dominated by the presence of the 1470 MeV, P» resonance.

NUCLEAR REACTIONS Pion production and absorption, calculation of pion-
nucleon vertex function.

I. INTRODUCTION

In this work we direct our attention to the calcula-
tion of the pion-nucleon vertex function and indi-
cate how this function may play an important role
in the calculation of various nuclear reactions
involving pion production and absorption.

As has been noted in the literature, "there are
many ambiguities in a nonrelativistic analysis of
such reactions and we believe that the use of a
covariant theory will resolve many of the problems
associated with the nonrelativistic reduction of
the vertex function.

In the covariant analysis the need for the m-R
vertex function, with various of the particles off
their mass shells, is manifest. In Sec. II we
comment on some features of such covariant cal-
culations, indicating the various diagrams whose
evaluation requires knowledge of the vertex func-
tion. In Sec. III we indicate how our model cal-
culation is performed, relegating many of the
details to the Appendixes. Section IG also con-
tains a discussion of the results of our calculation.
Finally, in Sec. IV, we summarize our results
and attempt to place our calculation in perspec-
tive. In that section we also present a simple
parametrization of the vertex function which
should be useful for future calculations.

-p+p has received much attention over the
years. ' In Fig. 1 we indicate two Feynman dia-
grams which are expected to be important for
this reaction. The evaluation of such diagrams
requires the knowledge of the deuteron wave func-

(b)

II. COVARIANT CALCULATION OF THE PION PRODUCTION

AND ABSORPTION REACTIONS

Recently there has been interest in understand-
ing pion production and absorption experiments
involving nuclear targets. The simplest of such
targets is the deuteron, and the reaction &'+d

FIG. 1. (a) Diagrammatic representation of the
simplest process in the pionic disintegration of the deu-
teron. The small circle denotes the m-V vertex function
and the large circle is the deuteron vertex function. (b)
Diagrammatic representation of a process leading to
pionic disintegration of the deuteron where the filled
circle denotes a x-N scattering amplitude.
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tion, (or alternatively the amplitude d-n+ p).
Further, in both diagrams (a) and (b), one needs
to know the &-S vertex function. The calculation
of diagram (b) also requires the knowledge of the
v-N scattering amplitude (shown as a black dot
in the figure).

Similar information is needed for the analysis
of the (&',p) reaction, however, in this case it is
clearly necessary to include the initial state inter-
action of the pion and the final state interaction of
the outgoing protons. A model for the (&',p) re-
action is indicated in Fig. 2." In Figs. 2(a) and
2(b) the large circles denote optical T matrices
for the &-nucleus or X-nucleus interaction. The
heavy lines denote various nuclei which are distin-
guished by capital letters, A, B,C, . . . , and the
small open circles are vertex functions. Again,
as in the case of the pion absorption on the deu-
teron, we need to know the &-N vertex function.
The vertex function for A -N+ B is readily ex-
pressed in terms of nuclear wave functions. For
the evaluation of the process depicted in Fig.

FIG. 2. (a) Diagrammatic representation of a process
contributing to the reaction A (w, p)C. The large circles
denote x-nucleus or proton-nucleus initial or final
state interactions and the heavy lines denote various
nuclei. (b) Another process contributing to the reaction
A (w', p)C where the filled circle denotes a ~-N scatter-
ing amplitude. (c) Representation of a pion-nucleus
vertex function and a model which may be used in the cal-
culation of that quantity.

III. CALCULATION OF THE VERTEX FUNCTION

In Appendix A it is shown that the vertex func-
tion for the emission of a pion of momentum p-p'
by a nucleon of momentum p, is given by

T(P,p') =1+T,(p,p')+ I'.(p, p'),

where

I,(p,p') ij,g(a)G(p -O)-d'k

xMi"(p —0 k.p' p —p') (2.2)

2(b), ' we need the v-N scattering amplitude (black
dot), the vertex function for A -N+ 8, and the
amplitude for 7r+ B-C. The latter amplitude may
be approximated as inFig. 2(c); this approxima-
tion again requires the knowledge of the m-N ver-
tex function.

In this work me will provide a model calcula-
tion of the r-N vertex function. We mill consider
the amplitude for an off-mass-shell nucleon of
four-momentum p to become a nucleon of momen-
tum p' and a pion of momentum p -p'. While it
mould be most desirable to have knomledge of the
vertex function in the case that the final nucleon
and pion are off-mass shell, we will direct our
attention to the simpler vertex function which has
p"=-m„' and (p -p')'=-p', m„and p, being the
nucleon and pion masses, respectively. This
particular vertex function appears in calculation
of the stripping mechanism Fig. 1(a). Even if
initial and final state interactions are included,
as in Fig. 2(a), the kinematic situation is such
that the vertex function considered here is one
needed for the evaluation of this diagram.

In the process represented in Fig. 1(b), how-
ever, one needs the vertex function for an off-
mass-shell pion and (nearly) on-mass-shell nu-
cleons. This function has been discussed in the
literature' and me review some properties of this
function in Sec. IV.

In the next section me discuss a model for cal-
culating the vertex function in the case one nucleon
is off its mass shell and the other nucleon and the
pion are on their mass shells. As noted above,
this vertex function is needed when one wishes
to calculate the "stripping mechanism", Fig. 1(a).
Further, me remark that this same vertex func-
tion will play an important role in calculations of
(real or virtual) pion photoproduction from nu-
cleons. Application of this vertex function to the
description of pion photoproduction will be dis-
cussed elsewhere.
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, " d4kr,(p, p') = 3fg.' & .9(k)G(p k)y, r(p k, p) r P-P rP Pr
x G(p)y, r(p, p ). (3.3) pl Pl

fG(p}y,r(p, p )G(p )

=fG(p)y, G(p')F(p', (p p')', p"). (3.4)—

[We will in the course of this work ignore the
negative frequency parts of nucleon Green's func-
tions. The form taken by Eq. (3.4) is a conse-
quence of this approximation. ] The various func-
tions described above may be obtained from the
general function 5:

f2(v) = (-6m', »~, -m)»,

E(Ms, p') = 6:(-s,—u', —m»'),

(3.5)

(3.6)

As remarked previously, the function I'(p, p')
has been studied extensively in the case the nu-
cleons are on their mass shells (P"= -m„' and
p'=-m»'). Matrix elements of y, I'(p, p') taken
between nucleon spinors yield a function which is
usually called "the vertex function. " This function
depends upon the single variable T = -(p —p')' and
is denoted as f,(7) in this work. [See Eqs. (3.4)
and (3.5) for a precise definition. ] A parametriza-
tion of f,(T) was obtained in Ref. 7—see Eq. (4.8).

In this work we will consider the case in which
p"= m»' and -(p -p')'= -p'. Again, with two
particles on their mass shells, one may consider
certain spinor matrix elements of y, I'(p, p') which
are proportional to a scalar function of a single
variable. In this case it is convenient to use the
variable ~s, where s = —P'. The scalar function
defined in this manner could also be called "a ver-
tex function. " It is denoted as E(v s, p'} and given
a more precise definition in Eqs. (3.4) and (3.6).

In this work we will also discuss certain matrix
elements of y, I'(p, p'} with the restriction that only
a single nucleon be on its mass shell, e.g. , p"
= -m„'. In this case we define a "vertex function"
that is a scalar function of tsvo variables. These
may be chosen as the variables ~sand 7 defined
above. The resulting function may be written
as E(Ms, r). [See Eqs. (3.4) and (3.7).] While we
use the same terminology (vertex function) for
f,(r), F(v s, p'), E(v s, 7), and for the matrix
I'(p, p'), this should not result in confusion as the
reference wi11 be clear from the context in which
it appears.

W'e may make the foregoing discussion more
precise by defining the general matrix product of
the nucleon Green's functions G(p) and G(p') with
the (renormalized) vertex function I'(p, p'). We
define a function F:

lP-P

E(v s, r) = 6'(- s, —T, —m»'). (3.7)

We remark that the renormalization program
leads to the constraint

5 (- B1», —p, —t1l» )= l. (3.8)

Equation (3.l) is illustrated in Fig. 3. Here 9(k)
and G(p —k) are meson and nucleon propagators
and M' ' is a pion-nucleon scattering amplitude in
the isospin & channel. The term denoted as
I',(p, p') serves to remove certain contributions
contained in r, (p,p') which correspond to mass
operator insertions on the nucleon line of momen-
tum P. (See Appendixes B and C.) We find that
the inclusion of I',(p,p') in the calculations leads
to only small modifications of the results obtained
when 1,was neglected.

We now concentrate on the approximations nec-
essary in order to calculate I"(p,p'). We make
the assumption that the main contribution to the
k integral comes from the region where the nu-
cleon of momentum P -k is close to its mass
shell. Thus in Eq. (3.2) we replace G(P —k) by

G(p —k) = 2' " 5(p —ko —E"~)A'(p —k), (3.9)
p 2

where

A'(p -k) = g u'"(p -k)u'"(p —k} (3.IO)

is the projection operator for positive energy
spinors. We also multiply I', (p,p') on the right
by A'(p') since we will ultimately be interested in
taking matrix elements of I" between positive en-
ergy spinors. At this stage we have

p p

~~r
pl

FIG. 3. Bepresentation of the nonlinear equation de-
termining the vertex function. [See Eqs. (3.1)-(3.3).]
The quantity M is a pion-nucleon (invariant) scattering
amplitude.
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Mg 1
g(PlP } (2p)3 E k2 ~P2 (Po E )

x g ~&"(p kg" (p k)M'"(P —k, 0;P',P -P')u '"' (p')u'"'(p'),
ss'

where k =P —E~ for the evaluation of M'~'.
We now recall that with the nucleons of momentum p —k and p' on their mass shells, we can relate the

invariant amplitude M'~' to a two-body T matrix'

[(2w) „„(k,p —k, s IT, )2(p )Ip-p', p', s')NR1

=(2~}'[-&»~I& i.(p') ll
' '&-I

=R '(k, p —k)[ '"(p -k)M's(P -k k;P', P -P')u'~'(P')jR' '(y -p', y'), (3.12)

a/2k'=l' —E; 0".,8; , ett:=. , an. dR'~'(k, j—k)=(
2(de& ~

The notation NH refers to the normalization convention

»«Ik'}»= 5(k -k'}

(3.i3)

(3.14)

The extra factor of (2v)' in Eg. (3.12) when compared with Eg. (2.11) of Ref. 8 is due to a different choice
of the normalization of the invariant matrix made in this work.

As for the T matrix, we make use of a separable model introduced previously. ' In the channel with /= 1,
T=&,J=&, we have

(k, ~Ii",g(E) Il', ")=«Qc.'-..".~.'» ~.'1'...-.(~) &';u(lkl)~~(ll'l)1';, .~(P')~DE(P') (3.15)

where the e,',(IkI) and D&,(p'} have been determined from an inverse scattering problem. 9 We choose a
model in which the e,',(I k

I ) is sufficiently small for large
I
k

I
such that we may further write

1 1 1
p+ g' —(po-E",~)' —i& 2(ofp' —(co; -E)~)+ fz

' (3.i8)

Finally choosing a Lorentz frame where p=O, we have

,(p, v)-
(2 ), E . ( E.) . &iAi(IkI}&idI9 I)

(3.iv)

from which we obtain

(s') (0)~ P (Po 9 )+(s" &(P )

1 k'dk EI ~I '" li'i&ii(IkI)ei~(IP'I)
7fp@ [2~ (E +~ )pf2 po (E +~ )+ff E + +z( 0} ~ 8 p p z, 3 ~(p') (3.18)

and

2w '~'I

2v' Ip'! Ef+m„p' —(Ef+(uf}+i@

EI, &oz.
'I' &»~I,( Ik I )U'„( I p I )

=&+Ms)(0)y s(8)$'f)y (0)(p0
I
pl I)

(3.19)

(3.20)
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We wish to introduce the usual renormalimation
procedure which requires evaluating y'" at the
unphysical point where all particles are on their
mass shells. The value at that point cannot be
obtained directly from the expression for y'", Eq.
(3.19), since

I
p'

I
would be imaginary, and we are

assuming that we only know o,',(Ip' I) for real
I
p' I.

Indeed the value of Ip' I, in the ease of the final
nucleon and meson are on their mass shells, is
denoted as Ip', I

and is given by

Ip I
[(po)4 2(pc)s(m 2+ )is} + (m 2 )ts)2]1/2

(3.21)

ec0
~~
Q.

I
co

I
f

Q 4
0

2(I

1
0

0
6 10 12

which is imaginary if m„—p, &P &m„+ p, .
We choose to continue y'e'(p', Ip', I) to the renor-

malization point via a dispersion relation in p .
In the region of the cut, that is for p'& m„+ p, , we
define

FIG. 4. The imaginary part of the quantity 8 0},
I p, I) defined in Eq. (3.26) is denoted by the dashed-
dotted line. The solid line denotes the quantity Ims(p,
I pI) obtained from the iteration procedure discussed
in Appendixes B and C.

disch(p') = disey'"(pc~
I pc I ) (3.22) u'"(o)r,u'"'(P')

and write a dispersion relation for h(p'),

1 disch(pc')dp~
2 ~ ~s p -p (3.23)

1 " dfscy"'(p", I p'. I )dp"
2F p p gg

[The quantity Ip,'I defined by Eq. (3.21) is real
along the cut. ] We further define,

h(m„) = 1/ZIo' (3.25}

"(p', Ip;I) =z,"h(p ) (3.26)

(3.27)

where we have made use of the fact that Ip',
I

is a
function of p' [see Eq. (3.21)].

Now we note that from Eqs. (3.25)-(3.26),

t /2
I

2tpl g (Eyi + w g)J

so that y'"(p', Ip' I) may be identified with the
quantity in the square bracket in Eq. (3.19).] The
evaluation of Eq. (3.24) yields h(P ).

For the calculations reported here we have used
the form factors t/,',(I p I } developed in a previous
work. ' These provide a good fit to the low-energy
pion-nucleon phase shifts up to energies for which
the pion-nucleon scattering has strong inelastic
effects, IpI =4OO MeV/e.

The imaginary part of the function s"'(p', Ip', I)
is shown in Fig. 4 and the real part in Fig. 5. The
central feature of these figures is the importance
of the P„resonance at 1470 MeV. Since the cal-
culation is resonance dominated and the scale is
determined by the renormalization condition, Eq.
(3.2'/), it is expected that the result is not partic-

Thus, we see that s "'(p',
I p,'I } is the r enormafised

vertex function in the case that one nucleon is off
its mass shell, i.e. ,

in"'(o)r, [I+ I', (p', Ip.'I)] '"(p.')

~(o)r, '"'(p,') '(sp',
I p.'I }.

1

[The function s"'(p', Ip,'I), is the first approxima-
tion to the function defined in Eq. (3.4) for the ease
in which p=O, p"=-m„', and (p-p')'=-p'. ] To
obtain this function we need to calculate h(p').
This is done by obtaimng discy"'(p', Ip,'I) from
Eqs. (3.19) and (3.20). [We have made use of the
fact that

0 4.5—

o 30—
Vl

C

0
0

-1.5—
E
0 -30lL '

0
I I

4 6
p'/y

I I I

8 10 12 14

FIG. 6. The real part of the quantity s '(po, Ip, I) snd
the real part of s(po, I p, I). See caption of Fig. 4.
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ularly sensitive to the various approximations
used.

For future analytic work, we remark that it is
possible to approximate the function s(pQ, Ip, l) by
the following expression,

~(P', lp.'I)= p E ' F(po},

where

(3.30)

10 12 14 Se

I

18

E„=10.2 p. ,

I'(PQ)/2= 6(PQ &.-)~exp( &&(P'—-&.N,

Eo= tPlg+ P y

a = j,.88', ,

FIG. 6. The imaginary part of the quantity f (p )
defined in Eq. (3.36), is denoted by the dashed-dotted
line. The solid line denotes the quantity Imf(po) ob-
tained from the iteration procedure discussed in Appen-
dixes 8 and |.

P = 2.88', .
The above discussion completes our treatment

of the vertex function in the case that the pion and

one nucleon are on their mass shells. We now

turn to a more general situation in which we allow
the pion to be off its mass shell and keep only a
single nucleon (momentum p} on its mass shell.
We remark that the value of Ip'

I
is related to the

off-shell pion mass &. This relation is obtained

by Ietti~
I p.'I - lp'

I
and ) '- »n Eq (3 21).

We introduce the generalization of the function
s("(p', Ip,'I) and write

(P, lp l)=s (p lp I)h(~„). (3.31)

From Eq. (3.19) we see that the discontinuity in
y"' factorizes into a function of Ip'I multiplied

by a function of Po;

discy(Q)(&'
I
p' I= &) (~.)~(l p' l)discf '"(0') (3.32)

In Eq. (3.32)

~(lp' I) =-~'(lp'I }I:(Es + ~.)«;~s }j'"~lp'I (3 33)

and we have introduced a new function f(Q)(p ) for
which we may write the following dispersion rela-
tion.

(())( ())
1 dlscf (P )dp '

2' „p -p
Again using Eqs. (3.19) and (3.20) we may obtain
discy(Q)(PQ, Ip' I) from which discf (Q)(pQ) is found

upon use of Eq. (3.32).
We see from Eqs. (3.31)-(3.34) that

(3.34}

(3.35}

Equation (3.35}provides a natural generalization
of the s("(pQ, lp,'I) which appears in Eq. (3.28).
The function s(Q)(p',

I
p'

I ) is a first approximation
to the function 6' defined in Eq. (3.4} in the special
case in which p= 0, and p"= -m„'.

In practice one may avoid the evaluation of the
dispersion integral of Eq. (3.34) by noting the
simple relation

(3.36)

which follows from Eq. (3.35). In Fig. 6 we pre-
sent the real and imaginary parts of the function

f (Q)(pQ)

In Appendixes 8 and C we have discussed the
modifications of the theory necessary if the term
I', defined in Eq. (3.3) is included. There we have
defined a function s(pQ, Ip'

I }which contains the
effects of both I', and &, [see Eq. (B8)]. The de-
tails of the calculation of this quantity are dis-
cussed in the appendixes. In Figs. 4 and 5, the solid
lines represent the imaginary and real parts of the
function s(P, Ip, l). Correspondingly, in Figs. 6

and 7 we display the imaginary and real parts of
the function f(pQ) defined in Eq. (B13).

As may be seen from the figures, the inclusion
of I', leads to relatively little change from the
functions s(Q)(pQ, Ip, l) and f(Q)(pQ) Again. , we be-

2

I I

10 i2 14

FIG. 7. The real part of the quantity f (po) and

Ref(po). See caption to Fig. 6.
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lieve that this is a reflection of the dominant role
of the resonance and the constraints imposed by
renormalization procedure.

IV. SUMMARY AND CONCLUSIONS

We have presented a description of the vertex
function in the case that one nucleon and the pion
are on their mass shells. We have also provided
a simple method for taking the pion off its mass
shell. Using Eqs. (3.35) and (3.36) we have,

that E(m„, p') = 1, so we see that f,(T) is the usual
form factor for an off-mass-shell pion and on-
mass-shell nucleons.

The factorized approximation given in Eq. (4.7)
is expected to be good for small 7, since this
expression is used in the domain

I
v s —m„l & Mi'.

Therefore, if 7 is small we have v s = m„and
therefore E(v s, p, ') = l.

A reasonable parametrization for f,(v) was ob-
tained in Ref. 7:

s(p' Ip' l)=s(p' Ip'l)n(lp'I)/n(lp'I) (4.1)

Here, &(Ip' I) is given by Eq. (3.33) and
I
p',

I
[see

Eq. (3.21}]is the value of lp'I when the pion is on
its mass shell. Further, we have provided a
useful parametrization of our results for the func-
tions s(P', lp,'I) in Eq. (3.30).

At this point it is useful to introduce the invari-
ants s = -P' and r = -(p -p'}' (see Fig. 3) and de-
fine a function of these invariants which is identi-
cal to s(pc, lp' I) in the special frame where p= 0:

E(v s, 7):s(Ms, p (Ms, T)). (4.2)

In the right hand side of Eq. (4.2) we have replaced
p' by Msand written p' = lp'

I
as a function of Ms

and 7. Clearly ~sis the invariant generalization
of P'. (Note that 7 = p,

' for an on-mass-shell pion. )
Further, the dependence of p'= lp'I on s and r,
when

I
Ms —m„l & Ei, is given by,

2f"-. ..+ fy(.)f2

where

y(v) = 1.232(7 —IDp') 8(T —10'')
and

gs —M
N

(4.8)

(4.9)

I
p'

I
=

2
[s' —2s(m„'+ T)+ (m„' —r)']'"

2Ms
(4.3)

(4.4)

where

In this case (where
I
~s- m„l & v v ) we may

write Eq. (4.1) in an arbitrary frame as

E(v s, v) =F(Ms, g')f, (s, T),

f,(s, v) =-~(IP'I)f~(lp.'I) (4.5)

It is useful to note that f,(s, p') = 1 and

F(v s, p, ') = s[v s,p'(Ms, p')]. (4.6)

{Note further that for p=D we have s[Ms, p'(vs, p')]
=s(p', Ip.'I) )

We now consider the case for which
I

v s -m„l
In this case E.q. (4.3)would give an imaginary

value for lp' and we cannot use Eq. (4.5). There-
fore, for v s —m„l & drwe make an alternative
extension for E(Ms, T ):

E(» s, T) = E(Ms, p, )f,(v). — (4.7)

In Eq. (4.7) we have an expression for the vertex
function in the case that one nucleon is on its mass
shell. %'e obtain the usual form factor if both
nucleons are on their mass shells. This may be
achieved by placing vs =m„ in Eq. (4.7). We note

FIG. 8. Regions of applicability for our approxima-
tions to the form factor E{&g,7). The parabola shown
in the figure is given hy the relation Ps —m„~ =v v.
Region I is contained wholly within the parabola and
extends up to v- 30 p -40 p, . Regions II and IV (cross
hatched) are the two regions of applicability of the pro-
duct form E~s, v)=E(v s, fS,2()s, ), vEq. (4.4). These
regions are bounded on the lef't by v. = 0; however, the
right handboundary is uncertain (v 2 p, 10 p ) and
depends on the validity of the separable approximation.
Region III is centered on v s = ms (~~~s —ms ~

S3 p). This
region is bounded on the left by v ——30 p2 and on the
right by r= 0. In regions I and III one may use the
approximation given in Eq. (4.11).
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Thus using Eqs. (3.30), (4.2), (4.7), and (4.6)
we h ve (when

I
~s- m„l «)

N R

/s —8 + T(Ms)/2 & —& +'8 )/2)

(4.11)

The regions of applicability of our two approxi-
mations, given in Eqs. (4.4) and (4.11), are shown
in Fig. 8.

Since the r-N vertex function is important for the
study of various processes in pion-nucleus, pion-
nucleon, and nucleon-nucleon interactions we feel
that the parametrizations given in Eqs. (4.4) and
(4.11)will find extensive application. We will use
these parametrizations in a future work to study
pion production and absorption in nuclear reac-
tions.

APPENDIX A

In this appendix we develop the equation satis-
fied by the pion-nucleon vertex function. We use
the notation of Ref. 10 for simplicity and introduce
an index g which refers to both the Dirac spin and

isospin indices of the nucleons. When we wish to
refer to the spin and isospin indices separately we
will use the indices &, &', etc. for spin and P, P',
etc. , for isospin. The index j refers to the three
(Hermitian) components of the meson field.

Following Ref. 10 we write the field equation for
the nucleon field )P„(x):

and a Green's function for the pion,

9~~ (x, y) = 5~~.9(x,y)

= i&0I T(e'(x) e'(y)] I0}. (A3)

(&'p+m. ) -G.~(x,y)

= -Q!N gy (x,y;x)+6 6"'(x -y). (A4)

In Eq. (A4) we find that the nucleon Green's func-
tion is coupled to a three-point function whose
general definition is

G.'(., y; )= &0I~B.(.)~. (y)~'( )}I0). (A6)

We are now able to define a pion-nucleon vertex
function through the following relation:

G~. (x, y;z) =iG„„.(x,x')Qr„ I'~'„(x', y', z')

x G„„,(y',y)9"(z', z). (A6)

We can show that

(y''p+ mo)~ G~. (x,y;z) =i Q~~„G~~~, (x, y;x, z),

(AV)

where

G'" «»'x' z}-=i&0
I TA.(x}&,(y)e'(x')e'(z}] I0}

(AS)

Now Eq. (AV) may be written

(y' p+ ma)~ [G„„(x,x')G„~~(x', x")]G~n~(x",y;z)

We now make use of the field equation, Eq. (Al),
to obtain,

(y' p+ m)„„,)p„, (x) = -Q~, )p (x))p~(x), (Al)
or

=iQ~„.G„"~,(x,y;x, z) (A9)

where we have adopted a summation convention for
repeated indices. In Eq. (Al), the quantity Q~„, is
a numerical matrix which in the case of pseudo-
scalar coupling is equal to g,(y,},(r~)zz, . We also
introduce the nucleon Green's function

[6„„6«)(x x ) Q~„.G~.„(x,x', x)]

xG„, '(x', x")G',&(x",y;z)
=iQ'„„G~~,(x,y;x, z), (A10)

G- (x y) - i&0
I
TA'n(x))i/~ (y)] I

0) (A2)
where we have made use of Eq. (A4).

From Eq. (A10) we obtain

G~. (x,y;z)=iG~(x, x')Q~iG~))t, (x', y;x', z)+ G( ,xx) Q~ G(6xy', x')G„'(y', x")G,'„,(x",y;z),

and then using Eq. (AS},

(All)

I'~ .(x,x';z) = Q„'„~Q~ „G~'„' (x,y;x, z')G„„, '(y, x')9 "~(z',z)+ Q„„'~Q~'„G„„(, x)QxF~~» „(x'",y";z")

x 9»'(z",x)G„' (y" x"z'}G -&(x" x')9-»~(z' z) (A12)

We now use in Eq. (AS) again the form

G„' (y",x";z')G„'(x" x')9 "~(z',z)=iG„„(y",y')Qi „ I'~ „(y',x', z)

to write Eq. (A12) as

(A13)
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(A14}

I'~(x x'z) = T~r~'G& ~(x, y x, z')G '(y x')9 '(z', z) +gf, ' r~ rr G(«, x')r' y, i~('x", y",z")

I'&„,(x,x', z) = Ii„'„~Q~'„G~'„' (x,y;x, z')G„„.~(y, «')9 &'~(z', z)+iQ„'„~Q~r „G„„(x,«")0„„I'„„(x",y";z")

Specializing to the case of pseudoscalar coupling we have upon suppressing the spin indices, and using

Eq. (A3),

x 9(z",x)G(y", y')~&y, r&(y', x', z).

[We remark that in Eqs. (A13} to (A15) there is no sum on the index j.]
At this point it is useful to define a scattering matrix M:

G~~(x, y;x', z')=9(x', z')G(x, y)5r& IG—(x, y')9(«', "z)M~'~(y', z";y"z)G(y",y)9(z, z').

Inserting the last expression into Eq. (A15) we find (with no sum on j)
1~(x,x', z) = 5 "&(x -«')5"'(x -z) —fr'~'G(x, y')9(, z")M"(y', z";x',z)

+ ig,'r'r ~ G(x', x")r'y, I"(x",y"; z ")9(z",x)G(y", y')7'y, l'~(y', x', z).

It is useful to write

(A15)

(A16)

(A1V)

r~(x, «', z) = 5"&(x x )5"&(x z)+ r~(x, x', z)+ r~(x, x', z),

where I"&~ is used to denote the second term of Eq. (AlV) and I'~2(x, x', z) denotes the remaining term.
We first consider the equation for I' in momentum space. We write

e -ip~x eip' x' e"'
1(x x iz)=

(2 )4 (2 )c (P j& i9) (2 )4& j&&~P ~ 9

and put

I'(j,j ', e) =(2v)'5"'(j j'-9)I'(j,-j')
so that

&-ip- (x-s) eip" (x'-~)
N(*,*': ) —f (2,}. (g, &.

~'(P& && l&'l, ''
Wit

P eik (XW)

G(x, y) = Jl, G(k} d'k, etc. ,

(A18}

(A19)

(A20)

(A21)

(A22}

one finds, for example,

(A23}I't(j&,j&')=-IZ 2,9(&)G(j —&)r'&'M"(j -I,&;j&',j -j'),
gl

where we have made the sum on j' explicit. Equation (A23) may be simplified further by writing M~~ in
terms of an isospin symmetric and isospin antisymmetric part

M"= 5,.,M. + -.'[~~', 7']M

Now,

(A24)

(A25)r'Q T"M"=M +2M -=M'"
gl

where M' ' refers to the channels with isospin & as expected. Thus, dropping the j superscript, we have

dkI",(j,j')=-f,9(~)G(j -I)M'"(j —&,I;j',j —j'). (A26)

In an analogous fashion, we obtain

I', (P, j&') = »g.' J' 2,9(I&)G(j ~)y, i'(j& ~,j&)G(j&)y,I'(j&,j ')

which follows easily from Eq. (A1V) if we note that I' (x,y;z) is actually independent of the index j.
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APPENDIX 8

In this appendix we present the approximations we have used to estimate the size of the contribution of
the term I', to the vertex function. We recall Eq. (A27) and note that when written in terms of renormal-
ized quantities, we have [gz =Z,'~'Zg, 'g,],

(81)

(82)

We recall that in the calculation of Sec. III, where we neglected the quantity I"„ the right hand side of
Eq. (83) reduces to [Z,"'] 'u"'(0)y, u" '(p')s'"(p', Ip'I). The renormalization constant in the presence of
the I', term is denoted as Z, .

We will again use an approximation for the first two propagators appearing in Eq. (81):

G(p —ij=2wii(p —k —E )( +) A.( 'ii'-
with

A'(-k) = Q u '"'(-k)u '«'(-k)

We are now interested in calculating the quantity

iu'"(0)y, [Z,I'.(p = o,p', p')]u"'(p'),

which may then be compared in importance with the expression iu'"(0)y,u'~'(p')s'"(p',
I
p'

I
). Indeed the

complete vertex function is given by

iu'"(0)[I+I', (p', p')+I".(u', p')]u'"'(p') = —.
'

Iu"'(0)y.u'"'(6')z"'(p', Ip'I)+u'"(»y, Z, I'.(O', p') "'(p')]. (83)
1

and

1 1 1
II +P —ii Uti —(P —EiP —Ii Std„ i —(iii+ i}+if) (85)

In addition we put

(86)

to obtain

dyop2d
[~"(5)z,i,r, (p, i'lu"'[p'H =alii, z, ',","',' (, ~

' „.,) i.;II(i -i z)("')

dO; u'"Oy~«~ -k 7«& keg~~) 0 8 po, k

In writing Eq. (87) we have made the definitions for the renormaHzed vertex functions

u'~'(-k)y, l (p —k, p)u' '(0)=u'"(-k)y, u' '(0)s(p', IkI)

and

' '(O)y, i'(p, p')u' '(p')= '(0)y, ' '(p') (P', Ip'I).

We now use the result

J dii. tir'"(o)i', ' '(-ic)I ' '(-i)i', '"toH = s (ii; — J&2~,

(87)

(88)

(810)

to obtain

u '"(0)Z,y.I .(O', P')u '"
(P ')

s(~' IkIY. (P')[u'"(0)y,u'"'(p')]z(P'
I

'I)
(2v)' 0 267IEf P —(Ez+ &dr) + iz

(811)
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so that Eq. (83) becomes
' "'(&)[1+1',(P', p')+ 1'.(P', p')] ' '(p')

(812)

with the requirement that

s(p', lp', l)=1 if p'=m„.

=-—,
* [~'"«»; "'(p')] (p', lp'I)

1

= —*.-u Irl&. "„". " ',"',-"'. ..'. „,).u', 1~1&G.r~'&. u', 151&

~[ '"(&)y, '"'(p'}]

Now let us recall that in our model the function s(P', lp'l) factorizes. We write

s(p', lp' l) -=f(p')a(lp' l),
where

a(lp'l) =~'„(lp' l)[(EN + ms)(E;~y)1'"alp' I.
Thus we have from Eq. (812},

0) (0) 0) 3g„2Z, hmdh(Eg —m„) a(lk I )f2(po)G, (po)
2(2'w) 0 (ogEg p —(Ef+ (df)+ fe

(813)

(814)

(815)

We may iterate this nonlinear equation by the following procedure. [We are reminded the G,(p') is a
functional of f(p') since the mass operator appearing in G, (p') depends on the vertex function. ]

Let us denote an sth order approximation to f(po) as f '"'(p'), the corresponding value of Z, as Zf"',
and the associated G,(p'} as G,'"'(p'}. We then write

3g„'Z,' " "h'dh(E;-m„)a(lkl)f'"-"(p')f'"'(p')G, ' "(p')
2(2v} 0 (dppg[p —((df+ Eg)+ fe]

and obtain for an (unrenormalized solution)

(„)(,) [ (0)(,)] 3g„'8,'"~' h'dh(Ef —m„)a(lkl)f'" "(p')G,'" "(p')
2(2v)' &P)Ef[ p —((df+E))+ iC]

and

Again with

p'"'(P') = lmy'"'(P',
l p.'l ) -=lmh'"'(P'),

we may write

p(tl)(POI}dpol i 1 p(ll)(po&)
(P')

Z, .— P" p„, .— P

where

h .( )
1 p'"'(P")dp"

Z(nj N ~ pot
1

Ne define

s(n)(po
l
«il) 3' (P ~ p )

h'"'(m„)

and note that

From these results we may define a renormalized f '"'(p') for use in iteration:

(816)

(81'f)

(813)

(819)

(820)

(821}

(822)

(823)
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f (n)(po) =
&(lp'l)

(824)

At this point we may obtain f ' "(p'}from Eq. (817) using the result for f '"'(p') in Eq. (824) if we also
provide a scheme for calculating G.'"'(P'). This scheme is discussed in Appendix C.

APPENDIX C

Gv = Go+ GPI(&G(&, (C1)

where we have suppressed isospin and spin indi-
ces. [The structure of M„, however, may be ob-
tained by combining Eqs. (A4) and (A6).] The rela-
tion between the renormalized Green's function G

and G„ is G((=Z,G and we also have Z jlfv ~Z,Mz

where I& is the finite part of the mass operator.
(See the discussion of "overlapping" divergences
in Ref. 11.} Thus we may write

(C2)

In Appendix B we obtained an equation for the
function f(p'} and discussed the renormalization
procedure. [See Eqs. (817)-(824).] In this appen-
dix we give some further details necessary for
implementing our calculational scheme. In partic-
ular we need to calculate the nucleon Green's func-
tion G,(p'). To this end we review some well
known equations relating the Green's function to
the mass operator. In this section we use a sub-
script U to denote unrenormalized quantities.
Thus we may write

[M(n)(po}] gJ&3
2(2»}'

"
I&'df&(EI —m&()a(l kl )f'"'(po)

o&IEn[ P —(o&I+ En) + ff ]

(C6}

Using Eq. (C5} we may write [suppressing the
subscript (+) for convenience]

Z,G,-~G = 1+Z,M,G. (C7)

The right hand side of Eq. (C7) is seen to be the
denominator of Eq. (817) which may therefore be
written as

f (0)(po}
fU (P } Z(n-1&(G c)(n-1&G(n-1)(po)

0
(C6)

f (0)(po)
Z(nw)[m(n-1) po]G(n-1)(po) ~ (C9)

o(po) = —Im[Z, M~(po)].

We will now obtain expressions to be used to cal-
culate the quantities Z'"" m', "", and G'" "(p')
which are to be inserted in Eq. (C9). We proceed by
by defining

where G,"&=y p+mo. Equation (C2) may be de-
composed to give relations for the positive and
negative frequency parts of G ' denoted as G x

and G '. Note that

Then from Eq. (C5}, we have

G '(p')=Z [m -p']—0, &(p")dp"
(C 11)

G"(p) = G. '(P)A. (P)+ G 'A (P),

where

(C3)
We remark that G '(p'= m„) = 0 so that

o(p")
m, = m„+— „dP",~ mg

(C 12)

1 y'p
n(p} 2

1
[(po)R R]1/2 (C4) which for the purposes of the iteration scheme

may be written as

The projection operators in Eq. (C4) become the
more familiar projection operators if the nucleon
is on its mass shell, that is, if (po)*= m'+ pn.

Our approximation requires that we neglect the
coupling of the positive and negative frequency
parts of G through the mass operator. Therefore
we put

G, ' =Z,(G, '), —Z, (MI)„

l- O(n) (pol )dpol
mo m8+ n4n) 'I Ofp mg

with

(C 13)

o(n) (Po}= Im[Z (ll&M(n) (Po)]=1
(C 14)

The expression for m, given in Eq. (C12) may be
inserted into Eq. (C 11}to obtain

where from Eq. (817) we can see that in this ap-
proximation (and with p= 0) (C15)
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Since G '(PP) is the renormalized Green's function,
it follows that

G '(f'- m»)-(m» f')-

(C 16)

cleon on its mass shell in evaluating M&.) There-
fore it would be somewhat inconsistent with our
treatment of the nucleon Green's function through-
out the rest of this work to use the full spectral
representation given by Eq. (C IV). Therefore, we
have used the approximation

(C 18)

Of course, as above, Eq. (C16) may be rewritten
with superscripts (n) for purposes of iteration.
This expression may be inserted into Eq. (C16) to
yield

in Eqs. (C8} and (C9).
Thus we have,

(„& p f"'(P')(m» -P'}f (P ) =Z(n-1)(m(n g) pP)
~

2 0
(C19)

~ '(P') = (m» f')-

(CIV)

and a similar superscripted expression.
It would be desirable to carry through the above

program in its entirety. However, in evaluating
I& we have only used the pole term of the nucleon
Green's function. (Indeed, we have placed the nu-

The renormalization constant Z, may be obtained
from Eq. (B21). Then a(PP) may be calculated
from Eq. (C10), and Z, is given by Eq. (C16).
Finally, m, is calculated using Eq. (CI3).

Even with the approximation of Eq. (C18}, this
is a nontrivial iteration scheme. However, it is
convergent with the value of mp converging to
4.65 p. In the converged solution one finds Z, -~
and Z, — . However, as the magnitude of Z, and
~, increase, m, and the various form factors
reach stable values.
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