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An approximate vr NN vertex operator is used to compute m N phase shifts.

NUCLEAR REACTIONS Theory of xNN vertex and ~N elastic scattering.

I. INTRODUCTION AND RESULTS

Chew and Low' showed that the main features of
low-energy pion-nucleon scattering can be under-
stood as arising from a basic nNN vertex of the
Yukawa type with the vertex operator for pseudo-
scalar meson absorption given by

o-k
I'ps =sg

k=p —q,
where p and q are the final and initial nucleon mo-
menta and M is the nucleon mass. (For the pres-
ent discussion, isospin factors are not relevant;
they are to be understood as implicit. ) However,
actual calculations with the vertex operator I'ps
would give divergent or nonsense results because
I"pg is ill-behaved as k--. Therefore, in prac-
tice a form fa,ctor v(k) is introduced so as to give
sensible answers; the vertex operator used is I'„

I'„=igv(k) (2)

I LMT I pg As was noted in Ref. 4, the vertex
operator I'«T has good convergence properties;
the no-pair quantum field theory based on I"«T
has no divergent integrals.

The vertex operator I'LMT can be used to compute
pion-nucleon scattering phase shifts in the nucleon-
ladder approximation with nucleon recoil. The ex-
tra convergence that comes from replacing k by
k„,~ and M by e(K) in 1» suffices to produce
sensible phase shifts in this approximation with-
out a cutoff function v(k). The results are shown
in Fig. 1. Note that the only parameter is the

—i y= l4'

=I2 J
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Of course, the results depend on v(k), which can
be chosen to give theoretical pion-nucleon P-wave
phase shifts that agree with the experimental ones. '
Naturally, the arbitrariness of v(k) has led to dis-
cussion of the relative advantages of various forms
of v(k). ' The importance of the form factor v lies
in the desire to use a nNN vertex operator in cal-
culations of pion-nucleus interactions.

In a recent article, ' it was shown that a low-mo-
mentum-transfer approximation to the relativistic
pseudoscalar Yukawa vertex gives a vertex oper-
ator

I'„MT =iso' k,~/2e(K),

PII

y y=l4

~(K) [~(K) + M j

K=z(p+g) pi

e(K) = (K'+M')"'

In the nonrelativistic approximation K/M-0,
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FIG. 1. Calculated ~N phase shifts.
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coupling constant g, with

g 2

(4)

where m is the pion mass. More generally, he
shows that if the vertex operator is I',

1' =ig (k —nK),

It is evident from Fig. 1 that the vertex operator
I'«~ is able to reproduce the qualitative features
of nN phase shifts. That is to say, the P33 phase
is resonant between 100 and 200 MeV and the other
phases have signs that agree with the data and are
small. It also seems clear that other processes
besides the nucleon-ladder graphs are contributing
significantly to mN scattering.

In a recent letter, ' Noble has compared the en-
ergy dependence of the forward (P, v) reaction
with that to be expected from the vertex operator
r» and the Galilean vertex operator

I" =ig k- ™K

then the experimental data favor a value of n near
zero and, in any case, much smaller than m/M.

For the particular case of forward (P, m) reac-
tions, k„~ can easily be computed; in the energy
range up to 200 MeV considered in Ref. 5, k„d is
nearly proportional to k, k„~=0.88k —0.01K,
corresponding to n= 0.01. Thus, the vertex oper-
ator l LM~ is also consistent with the data on the
forward (P, v) reaction.

In summary, the AN vertex operator I'L„~
seems suited to theoretical considerations of pion-
nucleon interactions involving low- momentum
pions. It does not require the sort of form factor
that is needed to make I'» useful and thus avoids
the extra parameters that characterize v(k).

II. DETAILS OF THE PHASE-SHIFT CALCULATION

The potential V«(k, q) that gives the same Born
term for going from pion momentum q to pion mo-
mentum k in the center-of-momentum frame as
the one that results from the crossed graph with
the vertices given by Eq. (3) is

V k
'%red+ ~red

18''[&o(k)~(q)]' ' &(k+ —,'q)e(q+ ~k)[A —&u(k) —&o(q) —e(k+ q)+ i0] '

where t is the isospin (~ or —', ),

y, = (3t- —,')y, &o(k) = (k~+ m')'i',

and A is the total energy

(8)

A= E(p) + (d(p),

where p is the incident pion momentum. The
vectors q„d and k ~ are given by

(9)

q (k+&q)
q„d=q — - k „,- k, (k+~q) =q(1 —B) 2kB,

e (k+ &pi je ik+ zq)+ M] k~,d=k(1 —B ) —2qBr,

(10)
q(q+ 2kx)

4f(k, q, x)[f(k, q, x)+M] ' Br= B(q, k, x), f(k, q, x) = e(k+ &q), x=k q/kq.

The potential in the tlj partial wave is

) „&(k,q)=kq f Fq (k)V, (k, q)Y'~(q)dod(), ,

where Y'~ is the vector spherical harmonic for the lj partial wave. Standard algebra gives

y, (kq)' ' 2F(k, q, x)P, (x) G(k, q, x)P;(x)
8))[ar(k)u(q)]'i', f(k, q, x)f(q, k, x)[A tu(k) (d(q) f, (k, q, x)+i0]

f, (k, q, x) = c (k+ q), E(k, q, x) =x(1 —B)(1—B') ——B(1—B ) Br(1 B), —— (12)

G(k, q, x) =1—B-Br 3BBr, —
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and l is the orbital angular momentum "opposite"
to / for the given j.

The corresponding potential for the vertex oper-
ator I ps is obtained by setting B= B~= 0 and re-
placingg

f(k, q, x) [but not f,(k, q, x) ] by M; in that
case, the behavior of the potential as k- ~ does
not allow a well-behaved solution to the Lippmann-
Schwinger equation. (A similar result holds when
B= Br= 0 with f left as is. )

The Lippmann- Schwinger equation

u,'"(k) = ~(p- k)+ [E(p) E(k) ~io]-'

with

A= ~(P)+~(p),

E(k) = &u(k)+

(14)

was solved numerically by using the method of
Ref. 6 to give the results shown in Fig. 1. Since
I'LMT is a low-momentum-transfer vertex opera-
tor, the nonrelativistic nucleon kinetic energy
was used in E(k).

~~„,(k, q)up'"(q)dq
0

(~3)

*Work performed under the auspices of the U. S. Ener-
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