States of ⁵⁴V and ⁵⁸Mn[†]

E. R. Flynn and J. W. Sunier

Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico 87545

F. Ajzenberg-Selove*

Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19174 (Received 16 November 1976)

The ${}^{54}\text{Cr}(t,{}^{3}\text{He}){}^{54}\text{V}$ and ${}^{58}\text{Fe}(t,{}^{3}\text{He}){}^{58}\text{Mn}$ reactions have been used to study the masses and the low-lying excited states of ${}^{54}\text{V}$ and ${}^{58}\text{Mn}$, using 23 MeV tritons and a quadrupole-dipole-dipole-dipole spectrometer. The mass excess of ${}^{54}\text{V}$ is $-49\,891(15)$ keV. At least 19 excited states of ${}^{54}\text{V}$ with $E_x < 2.5$ MeV have been observed. The mass excess of ${}^{58}\text{Mn}$ is $-55\,832(30)$ keV, assuming that an (unresolved) isomeric state exists at $E_x = 30 \pm 10$ keV. β decay evidence from other work, together with these results, suggests that these two states have $J^{\pi} = 3^+$ and 0^+ . Sixteen other states of ${}^{58}\text{Mn}$ have been observed with $E_x < 1.9$ MeV.

[NUCLEAR REACTIONS ⁵⁴Cr(t, ³He), ⁵⁸Fe(t, ³He), E = 23.0 MeV; measured (θ). ⁵⁴V, ⁵⁸Mn deduced levels. New masses of ⁵⁴V and ⁵⁸Mn.

I. INTRODUCTION

The decay of ⁵⁴V has been studied by Ward, Pile, and Kuroda¹ who found that $Q_{\beta^-} = 7.0 \pm 0.1$ MeV and that its half-life is 43 ± 3 sec. ⁵⁴V decays to high spin states of ⁵⁴Cr: No decay is observed to ⁵⁴Cr*(0, 0.83) with $J^{\pi} = 0^+, 2^+$. This is consistent with $J^{\pi} = 5^+$ for ⁵⁴V_{g.s} which is suggested on the basis of systematics.¹

In the compilation of Wapstra and Bos² the mass excess of 58 Mn is given as -56210 ± 100 keV, which leads to Q_{β} = 5940 ± 100 keV. Three recent experiments $^{3-5}$ have studied the β decay of 58 Mn. Ward, Pile, and Kuroda³ report that two activities are involved in the decay: One of these has $\tau_{1/2} = 3.0 \pm 0.1$ sec and $E_{\beta} = -6.1 \pm 0.3$ MeV; the other has $\tau_{1/2} = 65.3 \pm 0.7$ sec (see Ref. 4) and $E_{6} = 6.1 \pm 0.2$ MeV (Ref. 3), 5.9 ± 0.1 MeV (Ref. 4). The shorter-lived state decays 100% to the ground state of ⁵⁸Fe $(J^{\pi}=0^+)$ with a log ft = 5.0. This suggests³ that the 3-sec ⁵⁸Mn state has $J^{\pi} = 0^+$ or 1^+ . The most complete study of the decay of the 65sec state is that by Tirsell, Multhauf, and Raman⁵: They report that this ⁵⁸Mn state decays very strongly to ${}^{58}\text{Fe}^{*}(2.134)$ ($J^{\pi}=3^{+}$). The nature of the decay to this and to other states of 58 Fe leads Tirsell *et al.*⁵ to conclude that the 65-sec state of ⁵⁸Mn probably has $J^{\pi}=3^+$ but that a 4⁺ assignment cannot be excluded. The previous evidence thus suggests two closely spaced states of ⁵⁸Mn with $J^{\pi} = 0^+$ or $1^+ (\tau_{1/2} = 3 \text{ sec})$ and with $J^{\pi} = 3^+$ or 4^+ $(\tau_{1/2} = 65 \text{ sec})$: It is not clear which of these is the ground state.⁶ Kocher and Auble⁶ regard the assignment of the 3-sec activity to ⁵⁸Mn as uncertain.

II. EXPERIMENTAL PROCEDURES AND RESULTS

The present experiment uses the $(t, {}^{3}\text{He})$ reaction to measure the masses and to observe the lowlying excited states of ${}^{54}\text{V}$ and ${}^{58}\text{Mn}$. The reactions were studied using a 23-MeV triton beam from the LASL three-stage Van de Graaff facility and a magnetic spectrometer of the quadrupole-dipole-dipole-dipole (Q3D) type which uses a focal plane detector system involving a 1-m long helix detector with 0.8-mm spatial resolution.⁷

The self-supporting ⁵⁴Cr target, enriched⁸ to 94.35% ⁵⁴Cr (also 3.26% ⁵²Cr), was 120 μ g/cm² thick and was oriented at 30° to the incident triton beam. Data were taken at three angles, $\theta_{lab} = 25^{\circ}$, 30° , 35° , and two values of the magnetic field (B = 5.353 and 5.139 kG). Runs were also made with an enriched ²⁴Mg target under identical conditions to calibrate⁹ the channel number versus the energy of the outgoing ³He ions. The selfsupporting ⁵⁸Fe target was enriched⁸ to 82.48% $^{58}{\rm Fe}$ (15.57% $^{56}{\rm Fe},~1.48\%$ $^{57}{\rm Fe},~{\rm and}~0.46\%$ $^{54}{\rm Fe}). It$ had a thickness of 100 $\mu g/cm^2$ and was oriented at 30° to the incident triton beam. Again data were taken at the three angles, $\theta_{lab} = 25^{\circ}$, 30° , 35° . For calibration and contaminant subtraction, runs with enriched ²⁴Mg, ⁵⁶Fe, and ⁵⁷Fe targets were made under identical conditions.

A. States of ⁵⁴ V

Figure 1 shows spectra obtained at $\theta_{lab} = 25^{\circ}$, at B = 5.353 and 5.139 kG. The numbered groups correspond to states in ⁵⁴V: See Table I. With the ex-

15

879

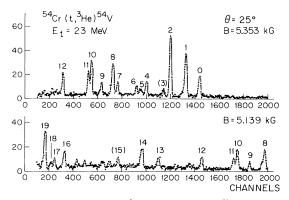


FIG. 1. Spectra of the ³He ions from the ⁵⁴Cr(t, ³He)⁵⁴V reaction at $E_t = 23.0$ MeV, $\theta_{1ab} = 25^\circ$, B = 5.353 and 5.139 kG. The ordinate shows the average number of counts recorded in a 5-channel bin. The abscissa shows the channel number. The numbered groups are due to states in ⁵⁴V: See Table I.

ception of group 5 the widths of the observed groups (full width at half maximum $\approx 25 \text{ keV}$) are consistent with the involvement of single states. However, states $\leq 20 \text{ keV}$ apart would not be resolved, nor would we resolve states which are weakly populated and which are located in the near vicinity ($\leq 40 \text{ keV}$) of strong groups.

Group 0 corresponds to the ground state of 54 V.

TABLE I. Energy levels of ⁵⁴ V.				
Group No.ª	E_x in ⁵⁴ V (keV)	$\frac{d\sigma}{d\Omega}^{b}$ (µb/sr)		
0	0 c	2.0		
1	111 ± 8	3.9		
2	238 ± 8	4.9		
3	(291 ± 10)			
4	442 ± 10	1.4 ± 0.5		
5	495 ± 10			
6	532 ± 10			
7	694 ± 10	0.9 ± 0.4		
8	739 ± 10	2.4 ± 0.9		
9	840 ± 15			
10	930 ± 15	1.9 ± 0.7		
11	960 ± 15	1.4 ± 0.8		
12	1200 ± 10	1.6		
13	1533 ± 15			
14	1662 ± 15	2.1 ± 0.9		
15	1852 ± 10			
d				
16	2309 ± 10	1.4		
17	2390 ± 15			
18	2425 ± 15			
19	2477 ± 10	2.8		

^aSee Fig. 1.

 ${}^{b}\theta_{lab} = 25^{\circ}; \pm 30\%$ except where shown otherwise.

 $^{c}Q_{0}$ measured in this experiment is -7023 ± 15 keV. d There is weak evidence in two runs for states at

 $E_x = 1.92$, 1.98, and 2.13 MeV.

We find $Q_0 = -7023 \pm 15$ keV which leads to an atomic mass excess of -49.891 ± 15 keV (based on the Wapstra-Bos masses² for ⁵⁴Cr, *t*, and ³He). The mass of ⁵⁴V is then 53.946 440(16) amu and $Q_{\beta} = 7042 \pm 15$ keV. This value for Q_{β} - is in agreement with the value 7.0 ± 0.1 MeV determined by Ward *et al.*¹ and substantially reduces the error in the mass value.

In deciding on the location of the energy levels of ⁵⁴V we have to consider the possibility that some of the structure might be due to the ${}^{52}Cr(t, {}^{3}He){}^{52}V$ reaction since ⁵²Cr was a 3.26% component of the target. Fortunately the mass and the energy levels of 52 V are well known: $Q_0 = -3958 \pm 2.7$ keV (Ref. 2) and the level density of ⁵²V is very high.¹⁰ Figure 1 covers approximately the range $2.5 \le E_x \le 4.2$ MeV in ${}^{52}V$, yet we do not observe any evidence for individual groups for channels 300 - 500 and 1500 -2000 at B = 5.353 kG, regions in which 52 V states would be expected to appear if very strongly populated. We conclude therefore that none of the numbered groups are due to 52 V: The unnumbered groups at channels 500, 650, and 700 (B = 5.139 kG)are weak enough so that they might be due to particularly intensely populated states (or unresolved groups of states) in 52 V. A general rule of thumb that one might take is to consider the strongest populated state in ⁵⁴V, the state at $E_x = 238 \text{ keV}$ (group 2) which has a differential cross section of 4.9 μ b/sr at 25°. If the most intense state in ⁵²V were populated with the same cross section, it would appear (taking into account the relative amounts of ${}^{52}Cr$ and ${}^{54}Cr$ in the target) as a group with an intensity of 40 counts above background, spread over some 30-40 channels, i.e., it could not be distinguished from background. Thus the background presumably reflects the contribution of the 52 Cr (t, 3 He) 52 V reaction and the groups we observe are due to states in $^{\rm 54}\rm V.$

The differential cross sections we have observed for the states of ⁵⁴V are appreciably smaller than those for the ³⁴S(t, ³He)³⁴P reaction⁹ (highest differential cross section observed in that reaction was 94 μ b/sr) and in the ⁶²Ni(t, ³He)⁶²Co reaction.¹¹ This is not surprising for two reasons: (a) The Q value for the reaction to ⁵⁴V_{g.s} is 1.7 MeV more negative than Q_0 for ³⁴P_{g.s} and ⁶²Co_{g.s}; (b) the ΔJ between the target nucleus and the ground state of ⁵⁴V, for instance, is very large: 0⁺-(5⁺).

B. States of ⁵⁸Mn

Figure 2 shows spectra taken at $\theta_{lab} = 25^{\circ}$ and 35° . The groups labeled 0-16 correspond to states of ⁵⁸Mn: See Table II. The other structures are due to states in ⁵⁶Mn and ⁵⁷Mn from the ⁵⁶Fe and ⁵⁷Fe in the target.

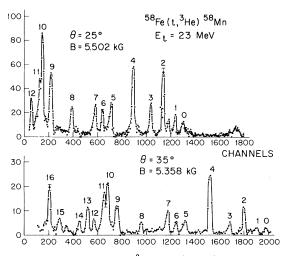


FIG. 2. Spectra of the ³He ions from the ⁵⁸Fe(t, ³He)⁵⁸Mn reaction at E_t =23.0 MeV and at θ =25° (B=5.502 kG) and 35° (B=5.358 kG). The ordinate shows the average number of counts recorded in a 5-channel bin (θ =25°) or in a 10-channel bin (θ =35°). The abscissas show the channel number. The numbered groups are due to states in ⁵⁸Mn: See Table II.

The highest energy ³He group which can be attributed to the ⁵⁸Fe(t, ³He)⁵⁸Mn reaction is that at channel 1300 in the 25° spectrum: It corresponds to $Q = -6318 \pm 15$ keV but its width is appreciably greater than that of other observed groups in this reaction (full width at half maximum $\simeq 50$ keV, rather than ~ 30 keV). We suggest therefore that

TABLE II. St	ates of	³⁸ Mn from	58 Fe $(t, {}^{3}$ He $){}^{58}$ Mn.
--------------	---------	-----------------------	---

Group No.ª	E_x in ⁵⁸ Mn (keV)	$rac{d\sigma}{d\Omega}^{ extbf{b}}$ ($\mu extbf{b}/ extbf{sr}$)
0	0 c	3.7
1	77 ± 8	2.8
2	174 ± 12	6.4
3	294 ± 10	5.4
4	454 ± 8	11.8
5	665 ± 15	6.4
6	744 ± 8	4.9
7	813 ± 15	6.0
8	1036 ± 15	5.7
9	1250 ± 15	10.6
10	1332 ± 20	17
11	1370 ± 20	
12	1456 ± 20	
13	$1515 \pm 20^{\ d}$	
14	$(1595 \pm 20)^{d}$	
15	1776 ± 20 d	
16	1872 ± 20^{d}	

^aSee Fig. 2.

^b $E_t = 23$ MeV, $\theta_{1ab} = 25^\circ$; values are $\pm 30\%$.

 $^{c}Q = -6.318 \pm 0.015$ MeV; this group probably consists of two unresolved groups 30 ± 10 keV apart: see text.

^dObserved in only one run.

group 0 is due to two unresolved states with a separation of 30 ± 10 keV, and we adopt $Q_{g.s.}$ = -6300 ± 30 keV. Then the mass excess of ⁵⁸Mn is -55832 ± 30 keV, the mass is 57.94006(3) amu, and the E_{β} - (max) (to ⁵⁸Fe_{g.s.}) is 6320 ± 30 keV. This E_{β} - is ~ 380 keV greater than the value previously used (see Introduction) whose error was estimated to be 100 keV. It should be noted that if the earlier value of the mass of ⁵⁸Mn were used to calculate the ground state location, the ground state group should occur at channel 1650 in the 25° spectrum. No evidence is seen for such a state in the three runs which were made with the same value of the magnetic field (B = 5.502 kG) at $\theta = 25^{\circ}$, 30° , and 35° . The structure at approximately channel 1750 in Fig. 2 is due to imperfectly subtracted ⁵⁶Mn and ⁵⁷Mn groups.

Thus we find $Q_0 = 6.30 \pm 0.03$, and $Q = -6.33 \pm 0.03$ MeV for an isomeric state: One of these presumably corresponds to the state with $\tau_{1/2} = 65.3 \pm 0.7$ sec with $J^{\pi}=3^+$ (or 4^+) and the other to the possible state with $\tau_{1/2} = 3.0 \pm 0.1$ sec and $J^{\pi} = 0^+$ or 1^+ . We cannot state which of these two states is the ground state of ⁵⁸Mn but the spacing of the two states, 30 ± 10 keV, enables us to eliminate the possibility of an E2 transition $(1^+ \rightarrow 3^+, \text{ or } 3^+ \rightarrow 1^+)$. The lifetime of an E2 transition with $E_{\gamma} = 30 \pm 10 \text{ keV}$ is $\approx 10^{-2} - 10^{-3}$ sec.¹² Both *M*3 and *E*4 transitions have sufficiently large lifetimes $(10^6 - 10^8 \text{ s and})$ $10^{13}-10^{15}$ sec) so that the direct β decay of the isomeric state can take place. If we assume that the 65-sec state has $J^{\pi}=3^+$ (which is the most reasonable value from the β -decay work⁵), then the possible 3-sec state has $J^{\pi} = 0^+$.

How will the new mass of ⁵⁸Mn affect the logft values calculated previously?^{3, 5} (a) Assuming the ground state to be the 3⁺, 65-sec state, the log *ft* value¹³ for the predominant transition (75.8%) to ⁵⁸Fe*(2.134) (J^{π} =3⁺) becomes 5.56, rather than 5.5 based on Q = 4186 keV instead of Q = 3966 keV.⁵ The log *ft* values to the 2⁺ states ⁵⁸Fe*(3.233, 4.313) (branching ratios 3.2 and 2.25%) change from 6.2 and 5.5 (calculated by Ref. 5) to 6.35 and 5.70, respectively.

(b) Assuming the isomeric state to be the 0⁺, 3-sec level at $E_x = 30 \pm 10$ keV, $\log f_0 t = 4.9$ for the only transition observed,³ that to ⁵⁸Fe_{g.s}, as compared with the previous value of 5.

There had been no previous evidence on other states of ⁵⁸Mn. Table II lists 16 other states of ⁵⁸Mn with $E_x < 1.9$ MeV observed in this reaction. It should be noted that we observed the region $1.5 < E_x < 1.9$ MeV during only one run (see lower part of Fig. 2) and that we might have missed weakly populated states in that region. All the states we observe are bound, and the widths of all groups, except group 0 which was previously discussed, are consistent with widths of single states. However, states separated by $\lesssim 15$ keV, or weakly populated states within ~40 keV of the observed groups, would not have been observed. We acknowledge with many thanks the assistance of Ms. Judy Gursky who prepared the targets and of S. Orbesen and R. Poore who aided us during the experiment.

- *Work supported by the U. S. Energy Research and Development Administration.
- [†]Visiting Staff Member, Los Alamos Scientific Laboratory.
- ¹T. E. Ward, P. H. Pile, and P. K. Kuroda, Nucl. Phys. A148, 225 (1970).
- ²A. H. Wapstra and K. Bos, At. Data Nucl. Data Tables 17, 474 (1976).
- ³T. E. Ward, P. H. Pile, and P. K. Kuroda, Phys. Rev. 182, 1186 (1969).
- ⁴N. C. Dyer and J. H. Hamilton, Nucl. Phys. <u>A173</u>, 393 (1971).
- ⁵K. G. Tirsell, L. G. Multhauf, and S. Raman, Phys. Rev. C 10, 785 (1974).
- ⁶D. C. Kocher and R. L. Auble, Nucl. Data Sheets <u>19</u>, 445 (1976).

- ⁷E. R. Flynn, S. Orbesen, J. D. Sherman, J. W. Sunier, and R. Woods, Nucl. Instru. Methods <u>128</u>, 35 (1975); S. Orbesen, J. D. Sherman, and E. R. Flynn, Los Alamos internal report (unpublished).
- ⁸The isotopes were prepared by the Stable Isotopes Division of ORNL.
- ⁹F. Ajzenberg-Selove, E. R. Flynn, S. Orbesen, and
- J. W. Sunier, Phys. Rev. C <u>15</u>, 1 (1977).
- ¹⁰J. Rapaport, Nucl. Data <u>B3</u>, (Nos. 5-6), 85 (1970).
- ¹¹F. Ajzenberg-Selove, E. R. Flynn, O. Hansen, J. D. Sherman, N. Stein, and J. W. Sunier, Phys. Rev. C 14, 767 (1976).
- ¹²D. H. Wilkinson, in *Nuclear Spectroscopy*, edited by F. Ajzenberg-Selove (Academic, New York, 1960).
- ¹³N. B. Gove and M. J. Martin, Nucl. Data <u>A10</u>, 206 (1971).