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A formalism for distorted-wave impulse-approximation calculations of quasifree cluster knockout reactions is
described. Results are presented for (p, pa) and (a,2a) reactions. In both cases distortion effects are large. It is
concluded that incident energies between -100 and -200 MeV are most suitable for (p, pa) studies of nuclear
structure, whereas somewhat higher energies are more appropriate for (a,2a) studies.

[NUCLEAR REACTIONS DWIA reaction theory of cluster knockout. ]

I. INTRODUCTION

Studies of quasifree cluster knockout reactions
such as (P,Pn) can, in principle, provide quite
precise information concerning clustering effects
in nuclei. ' Such studies tend to emphasize low
momentum components of the ejected cluster wave
function and thus complement studies of cluster
transfer processes' such as ('He, 'Be) which tend
to probe higher momentum components of the
cluster wave function. Evidently a prerequisite
of this type of investigation is a good understanding
of the reaction mechanism so that the transition
amplitude may be separated (perhaps somewhat
artificially) into a reaction term and a nuclear
structure term. In the case of transfer processes
many successful distorted-wave Born-approxima-
tion calculations have been reported' which appear
to provide reliable tests of nuclear structure cal-
culations. For knockout processes distorted-wave
impulse-approximation (DWIA) calculations have
been reported' ' mostly for nucleon removal ex-
periments. %e are aware of only a small number
of DWIA calculations for the removal of two or
more nucleons, "and these have been restricted
to cases where no angular momentum transfer
occurs. In general, analyses of cluster knockout
reactions have used some form of plane-wave im-
pulse-approximation analysis (PWIA). Frequently
it has been necessary to introduce a radial cutoff
parameter in order to simulate the effects of dis-
tortion of the incident and emitted particle wave
functions by the residual nucleus. Such an arbi-
trary procedure raises doubts as to the validity of
the resultant nuclear structure information. Ev-
idently, cluster knockout reactions are in much
the same situation now as were transfer reactions
in the early 1960's. At that time only a few dis-
torted-wave calculations were available and most
experiments were analyzed using Butler theory,
a simple plane-wave calculation employing a rad-

ial cutoff.
In view of the improved precision of current

cluster knockout data' a proper treatment of dis-
tortion effects is essential to the utilization of this
reaction for spectroscopic studies. In the present
paper we wish to describe a general DWIA code
for nucleon and cluster knockout. This code is
used to investigate the effects of distortion in a
few typical experiments and to predict certain fea-
tures of cluster knockout which have not so far
been studied. Some limited applications to specif-
ic data for z cluster removal are also presented.

II. THE CALCULATION

In the following discussion we follow closely the
work of Berggren and Jackson, ' and of Lim and
Mc earthy' for nucleon knockout. The generaliza-
tion to cluster knockout is rather straightforward.

A, Formulation

Let us consider a cluster knockout reaction
A(a, a'b)B where the emitted cluster is b so that
A =9+b and where the ' serves to identify parti-
cle a in the exit channel. For this reaction the
differential cross section is given by

2m
&sa =

@
ITsxl &a ~

Av

where v is the relative velocity of a and A. in the
entrance channel and ~~ is the energy density of
final states. The reduced transition amplitude'
T» is given by

&a~ = (4 ' '(» a' b) I &~le"(A a))

where 4 ' is the exact wave function for the sys-
tem and C & & is the solution (with ingoing wave
boundary conditions) obtained when the potential
V~„acting between the particles b and a in the
exit channel, is neglected. The serves as a re-
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minder that both wave functions are antisymme-
tric mith respect to interchange of any two nucle-
ons. Introducing 4~'~(A, a), the wave function for
the entrance channel in the absence of V~, we can
define a t operator so that

Tsa = &4 ~ i(B,a', &) 1 ts~ I
4'~'l(A. , a)&

We next express the wave functions in Eq. (3) in

terms of products of separately antisymmetrized
wave functions. The result, provided terms in
which nucleons are exchanged betmeen the pro-
jectile a and the residual nucleus B are neglected,
is of the following form:

Tsa =(& llB l »)' '&+(B)+(s' h)l t»le. b+(&)+(s)&

where the wave function for particle E is C (g.
The operator Q,~ is an antisymmetrizer between
nucleons in the projectile and the b "extra-core"
nucleons which are ejected. Finally, 4(a', 5) is a
properly antisymmetrized product of functions
given by

e (a', b) =&.,(c (a)c (F)) .

Nom, writing out the wave functions in more de-
tail,

Tss =(& ~B h ) &+vs Bs rs Bs(B)stab lhab@bbob'bbvb(+)+b o' b v (h)lta la&ab"lxa@z& B&r&B (&)+b o b u (+)&

where the 4 are internal wave functions for the
various particles and g&„'& and g&~,~, describe the
relative motion of the mass centers of the parti-
cles in the entrance and exit channels, respective-
ly. The angular momentum and isospin quantum
numbers for the target are J„(projection M„) and

T„(projection N„), respectively. Similarly, the
corresponding quantities for the projectile are
s, (cr,) and t, (v,). The quantum numbers for the
emitted particles are defined similarly.

At this point we are in a position to integrate
over the internal coordinates of the residual nu-
cleus provided that t» is assumed not to act upon

these variables. Evidently the result of projecting
the target nucleus 3 onto the residual nucleus B
is a complicated function of the coordinates of the
remaining 5 nucleons. In order to simplify mat-
ters somewhat, we assume that these nucleons
contribute significantly to the cross section only
when their relative motion and spin-isospin wave
function is identical to that in the emitted cluster
b. Thus, projecting out this mave function, which
we denote by 4. ..„(b), and at the same time

sg oyt~v~
integrating over the internal coordinates of B, we
can write

Ts~ = (& l&B!h ()' ' 2 tt~s(«sb~tb)(tbvbTB&sl Ta&a)(~~~s~sl JaIVIa)(L»bo'bi~A
aLZo&A~

"&&.brt'B'b@', o,b:.(s)@b,~,bbb, (h) Itsa If'.bri~a'4z A(rbs)+, ,b.b:,(s)+...,b;,(h)&, (t)

where

r B (B)@b a b b (&)I+z a r B (&)& = 2 ttas(«sb~tb)(tbvbTB&al Ta&z)(~tvf~sMsl~gMg)
nZ~c AX

x(LAsb&blJ'XQ A(rbs) (8)

where QBA(rbs) describes the motion of the c.m. ofh with respect to the c.m. of B and is normalized to
unity. The relative angular momentum of 5 and B is L (projection A), and any other quantum numbers
needed to specify the motion are denoted by o, . Equation (8) can be regarded as defining the "cluster co-
efficient of fractional parentage, "8„B(«SZT).

We now introduce the impulse approximation, which is to replace t» by the two-body operator for the
free a+b scattering process t&&'. Noticing that the operator 8,~ acting upon the wave functions to its right
yields the antisymmetrized product 4, b. ..„,„(a,h), and employing expansions of the relative motion

Sa syO& Z N ~I'

wave functions in momentum space, it is possible to isolate the matrix elements of t&+ . Introducing the
additional assumption that the resultant reduced t matrix varies sufficiently slowly with momenta that its
arguments may be replaced by their asymptotic values, we obtain a factorized form for T». As is mell

known, this procedure leads to a convenient zero range expression. The result is

TBA (+ ~B (h ) 2 @As(«sb~tb)(tbvbTB+Bl TA+A)(~~~BMBI+A~A)(LABb&bl~&&ky'&a'&bit@+ Iki ~ &b'&b&
os, so~Au

&& &nh'bl6(r. »)Iriab AiA(rbs)&—
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where k& and k& are the initial and final relative momenta of particles a and b, and where for brevity we
have retained only spin projection quantum numbers in writing the two-body reduced t matrix. Now writing

Snl'. z = (A ~/8! 5 ') Swa(nLsb Jtb),

TBA (2L + I) &9Babl5(r. r—b)lnAo QJA(rba)&

and denoting the isospin coupling coefficient (tbvbTaNaI T„N„) by C, we have

T» =C 2 S„»' '(J™ZaMalZ~™~)(LAsbo'blZM)(2L+1)''Ta~ &ky~oa~&blt't'lk;, o.~oh& ~

nLJ ANob

Inserting Eq. (12) into Eq. (1), averaging over M„and v„and summing over Msio,' and a b we obtain

o» +eC ~
&2 1&12 I& ~ SaLz (Lti sb~bl&M) (2L + I)"

SV a o'a'JM ~ A+ ~k a+ ) nLAaa a b b
2"T» &kt o~bltt 'I&& ~a ob&

(10)

(11)

(12)

(13)

Notice that, in general, the summation over the orbital angular momentum transfer LA is coherent despite
the omission of spin dependent distortions in evaluating T ~AL . Furthermore, even if the additional as-
sumption is made that the two-body t matrix is independent of crb, the coherence between different values
of I and A persists. Nevertheless, in many cases of interest further simplication of Eq. (13) is possible.
Thus we may write

2

o'»
~ &eC I(t&l Q Q Sa» T»
kV LJA cx

where

(14)

=(2 12 1Sa+ Sb+ t a a a ~ aa b a b

(15)

X/2
LJ — ~ ScfL (16)

and for specific values of L and J

is the square of the two-body matrix averaged
over initial spin projections and summed over final
spin projections. The expression given in Eq. (14)
is exact provided s, =0, L =0, or sb =2. The first
two cases are obvious by inspection of Eq. (13).
For s, = 2 it may be shown that the form of the re-
sult is a consequence of parity conservation. "
Notice that if the additional quantum numbers z
are not needed, or if T» is independent of ~,
we can define a spectroscopic factor

2

oBA ~BC I«& I S» Z TBA
SV A

In the cases where Eq. (17) is appropriate, the

spectroscopic factor S~J can be omitted from the
calculation and determined empirically by normal-
ization to experiment. On the other hand, the use
of Eqs. (13) or (14) necessitates prior knowledge
of the spectroscopic amplitudes S„»' ', which
must be taken from some theoretical calculation.
In order to clarify the use of such amplitudes and

the comparison of empirical spectroscopic factors
with theory, we here restate the definitions im-
plicitly contained in Eqs. (8) and (10).

Inverting Eq. (8), we find

CS»'~'=(A!/B!5!)'t' Q (I AsbgbIJM)(gMJaMe IJ'~M„)

X &+~,u, r,~, (It) bubba, b,a, (5)egA(rbe) I +~„~„r„~„(A)&. (18)

Comparison with Eq. (III.56) of Ref. 11 shows
that when 5 is a nucleon (S„»'t')' is simply the
usual stripping or pickup spectroscopic factor.
Similarly, for z particle knockout Eq. (18) reduces
to Eq. (5.11) of Ichimura et al. ,

" so that S»'~' is
identical to the quantity A„,(A, A') of that paper.
From the discussion of Ref. 12 it is straightfor-

ward to obtain the expression given for the spec-
troscopic factor S by Kurath" in his tabulation of

~ structure amplitudes for the 1P shell. The re-
sult is S = IA»(A, A')I' so that Kurath's spectro-
scopic factor is our quantity SLJ defined in Eq.
(16). Finally we note that, apart from a possible
phase difference, our amplitude S LJ' ' is identi-
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cal to the generalized A -nucleon spectroscopic
amplitude e(LS»T»J) defined in Eq. (5.5) of the pa-
per by Anyas Weiss et al."

The potentials V,~ and V» are taken to be the
optical potentials which describe the a + B and b

+B scattering at the relative energies e,~ and E'bg,

respectively. These relative energies, as well as
e,A in Eq. (21), are defined by

B. Evaluation of the amplitude Tzz

Following closely the discussion of Ref. 4, we
write the Hamiltonian for the system as

H =H, +H„+T, +T„+V,„(entrance channel), (19)

Ha + IIb + IIB + ~a + 7 b + ~B + Vab + VbB + VaB

(exit channel), (20)

&aB PAB /2i aB &

E»B =P»B /2 i"bB I

e,A =P,A '/2P, ,A,

where

A
pa

A. +a

(27)

(TaA + V»A V»b +~»A)OA»
(+)— (21)

where e,& is the relative kinetic energy and T,&
=(—h'V, A')/2p, ,A, where p, ,~ is the reduced mass
of particles i and j. In the calculations which fol-
low we take V,A —V, b

—V,B(r,„), the optical poten-
tial for a+B scattering averaged in some sense
over the target nucleus A. This point is discussed
further in Ref. 4. %e hope that, in general, this
potential will differ little from the optical potential
for a+& scattering.

For the exit channel scattering solution we elim-
inate the c.m. kinetic energy and reexpress the
Hamiltonian in terms of the momentum operators
conjugate to r,~ and r». The result is

H —Vab —T Ha + EIb + Ha + Tag + Tba

aB + VbB + Tcoup & (22)

where T' 'is the c.m. kinetic energy term and

where H& and T; are, respectively, the internal
Hamiltonian and the kinetic energy operator for
particle i. As pointed out earlier, the initial and
final scattering states are generated using II' = EE

—V,b. As shown in Ref. 4, it is possible to re-
express the kinetic energy operators occurring in
Eq. (19) in terms of the overall c.m. kinetic energy
and a term T,& involving the square of the momen-
tum operator conjugate to r,„.

Thus g~',~ satisfies

g
paa= pa- g+b+

b
p, =p, — p,

(28)

(T»B+Vgg SBb)piA-(rbB) =0 . (29)

Substituting for rltA+l and gg,ib in Eq. (11) and inte-
grating over r,„we obtain

and Pa ~ Pa ~ Pb~ and P~ are the laboratory mo-
menta for the incident particle and the three emit-
ted particles. These momenta are generated rel-
ativistically in our calculations. Notice that our
choices for e,~ and e» correspond to replacing the
operator T,,„„by P,B ~ P»/mB, its contribution to
the overall energy eigenvalue, and lead to correct
asymptotic momenta. Thus Eq (27) i.s equivalent
to Koshel's nonstatic approximation" and, in addi-
tion, yields the correct plane-wave limit.

In order to evaluate Eq. (11) for TB„"it remains
to generate the function /~A(rbB) Strict. ly, this
results from projecting the many-body wave func-
tion for A onto the residual nuclei 8 and b. Such
a procedure is beyond the scope of the present
work. Bather, we simply introduce a phenomeno-
logical real (Woods-Saxon) potential V|»B which is
adjusted to reproduce the empirical g-B +b sep-
aration energy S~b'.

@2 +aB +bB
Coll/

B
(28)

1
TBA (2I, 1)'y X, B(ko ~rB) XbB*(k»B, r)

Clearly this term should have little effect, pro-
vided mB«p, B and/or mB«p». If it is neglected,
the exit channel scattering state factorizes

X A(k A yr)AT, A(r)dr

where we have made use of the relationships

rag rab + rbg &

1 B»b Xad(k»B~ a )Xr(BB(k r»bBB) ~

where

(T»B + V»B eaB) XaB'$aB~ raB)

and

(T»B + V»B —&»B) X[)(k»B ~ r»B) =0 .

(24)

(25)

(26)

raA rab +~rbB

y = B/(B +5) .

To proceed further we make partial wave ex-
pansions
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X,'„(k,„,yr) = g u,,(k,„,yr)i'~ Y, ~ (r) Y,*„(k,„),

X,p(k, B, r) =
k

Z u~ (k,»r}i '& Y, q (r) Y,*~ (k,B),
0 a 0

a ag y + t2
a &

Z Z N
a

&&8*(&5B r}=
k Z u~, (k6B &}i "Yl„x.,(&}Yi*,x, (kbB)

bB+ l X.
b b

and write the "bound state" cluster wave function

y,"~(r) = &.,(~)i'Y, ~(~) .
After carrying out various angular integrations and choosing the z axis along k,„and y axis along k~
xk,~, we obtain finally

(32)

(33)

(35)

v 4ir ~ ...~,i, (2l, +1)(2l,'+1)(2l, +1}
BA

ykggkgBksB lzlzt~& y&lh& (2k+ 1)

&& (i,ibIA( kq)(l, OLO[ k0)(1,01,'q(kq)(1, 0l,'0~ k0) I~»~, d,'to(8, )df&, (8,)e '~&~& (36)

where the particles are detected at c.m. angles (8„0) and (8„$~), respectively. The quantity d„'„(8) is a
reduced rotation matrix element and

I) g&)
=

Qg k'gA PrQ) A'g &Q) kbg rA
0

Finally, we introduce fully relativistic expressions for the phase space and incident flux terms in Eq. (1).
The result is

dQ, dA~dE, B~ (2v)'(hc)' P, 1+(E~/EB)[1 —(P,/P~) cos8,~+(P,'/P~) cos8, i~] )

(38}

where c is the velocity of light, E; is the relativ-
istic total energy of particle i, and the c.m. angles
are obtained using Eq. (28). It is this expression
(with C'~(t) ~'Sz~ set equal to unity) which is evalu-
ated in the computer code wAvE used in the cal-
culations which follow.

C. Summary of approximations

Before proceeding to a discussion of the numer-
ical calculations it is convenient to summarize
certain major approximations which we have em-
ployed in order to obtain the comparatively simple
result given in Eq. (38).

Firstly, we have made the impulse approxima-
tion in replacing the exact t operator t» by the
operator for the free scattering process t&'. It is
possible to write down an expression for the error
in the impulse approximation due to changes in the
potentials during the two-body collision as well as
an additional term largely representing multiple
scattering effects. " Unfortunately, even in a sim-
ple three-body model, formal theoretical tests of
the DULIA are rather involved. " However, for
nucleon knockout on 'He it appears that the DWIA
tends to overestimate the exact cross section and
that this problem becomes progressively less

serious as the projectile energy is increased. "
Secondly, we have assumed factorization so that

the matrix elements of t&~'~ may be taken outside
the integration in T» and evaluated for the as-
ymptotic particle momenta. Evidently this approx-
imation requires that t&~+ vary little with momen-
tum and/or the momentum spreading arising from
the distorting potentials is small, at least for the
regions of configuration space which contribute
strongly to the cross section.

Thirdly, the entrance channel distorting poten-
tial V,~ is, strictly, the optical potential for scat-
tering from the core B averaged over the target

Clearly such a potential cannot be obtained
directly by fitting data from any real scattering ex-
periment. In the following calculations we used
potentials which reproduced g +g scattering with
both real and imaginary well depths reduced by a
factor B/A.

Fourthly, we have omitted the term recoup in Eq.
(22) in order to obtain a simple product form for
the three-body final state wave function. Other
approaches are possible. " However, this so-
called "kinetic energy approximation" does become
exact in the limit as m~ tends to infinity. In addi-
tion, as pointed out by Jain et ak. ,

' the approxima-
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tion becomes exact in the plane-wave limit. In the
present work the effect of 7„„,on the asymptotic
relative energies is correctly handled although any
other effects it may have on the scattering wave
functions are omitted. It is arguable that since
T«» involves a scalar product of momentum oper-
ators its effect will be greatly reduced with the
c.m. opening angle between particles a' and b is
close to 90'.

Our fifth major approximation is to project the
target wave function not only onto the residual
state B but also onto the emitted cluster ground
state wave function. This corresponds to the as-
sumption that it is only that part of the target wave
function which looks like a "preformed" cluster b

which contributes appreciably to the cross section.
Since such clusters tend to be formed more readily
in the nuclear surface region the validity of this
approximation may well be correlated with the de-
gree of surface localization of the reaction.

An additional approximation made in all of the
following calculations is to replace the wave func-
tion of A projected onto 8 +5 by Pzz(r~s), a wave
function generated in a Woods-Saxon well. This
procedure does correctly reproduce the appropri-
ate A -B +b separation energy but may not fully
take into account effects due to antisymmetriza-
tion between the groups B and b. To the extent
that the oscillator shell model correctly repro-
duces the wave functions of A, B, and b the error
may not be too serious, however. Thus N, the
principle quantum number for PzA(r»), is chosen
by counting the available shell model oscillator
quanta and assigning zero to b (usually a nucleus
in the 19 shell) and the remainder to the relative
motion of B and b.

Finally, it should be noted that in evaluating the
spin-summed and averaged two-body t matrix
~(t) ~' we have neglected the fact that the struck
cluster b is, in fact, off the mass shell. Instead,
we have evaluated ~(t) ~' at a nearby on-shell point
using an interpolation of available differential
cross sections for free a+5 elastic scattering.
This point is discussed further in Hefs. 19 and 20.

III. RESULTS FOR (p,pn} REACTIONS

We next present systematic features which have
emerged from our calculations and discuss the
implications of these results for the (p, po, ) anal-
yses of Ref. 20 (which is referred to hereafter as
II). It is, of course, no surprise that our results
have much in common with earlier calculations for
(p, 2p) reactions.

Firstly, we find that distortion effects are gen-
erally large. In Fig. 1 are shown typical results
for 100 Me V "C(P,P a) 'Be(g.s.) data taken from II.

IO

I

AJ
I

E
IO

LIJ

N
Cy

b
IO

O

-4
IO

I

C(p, pa) Be (0+)

Ep

8p

8~

x O. I

40 60
PROTON ENERGY (MeV)

DWIA

PWIA

80

FIG. 1. Energy sharing results for the C-
(p, pn) Be(g.s.) reaction at Ep=100 MeV, 0& =90.0', and
8~= —35.65 . The data are from Ref. 20. The solid
curve is a DWIA calculation, and the dashed curve is a
PWIA calculation. Both calculations are normalized to
the data.

This is an I. =0 transition in which the a cluster
is ejected from a 3S orbit. Optical potentials used
in this calculation (and all others we shall con-
sider) are listed in Table I. In the figure two
curves are shown. The broken curve is a PWIA
calculation which seriously underestimates the
width of the distribution and also predicts a pro-
nounced minimum which is not observed experi-
mentally. These deficiencies are eliminated very
nicely in the DWIA calculation which agrees very
well with the data, apart from the region of high
proton energy where sequential processes contri-
bute significantly. We recall that, in the spirit of
the PWIA, the distribution shown is essentially the
square of the momentum wave function of the bound
z cluster. Thus, had we neglected distortion ef-
fects, we would have erroneously concluded that
the chosen n cluster wave function had insufficient
high momentum components.

In Fig. 1 both curves were arbitrarily normal-
ized to experiment. We note from Eq. (17) that
the corresponding normalization factor is the clus-
ter spectroscopic factor S~z defined in Eq. (16).
In general, if distortion effects are omitted the
(P, Po) cross section is overestimated and hence
the extracted value of S~~ is too small. For the
data of Fig. 1 the PWIA result for Slz is roughly
10 times smaller than the DWIA result. Similar
behavior is found for other targets. In Fig. 2 is
shown the energy variation of the ratio of the cross
section for reaction 24Mg(p, po)2ONe (g.s.) calcu-
lated in DWIA to the same quantity calculated in
PWIA. The detected proton angle is 60' and the
detected z particle angle and energy are chosen
so that the residual nucleus is at rest. One sees
that at 50 MeV a plane-wave calculation would be
in error by more than 3 orders of magnitude,
while even at 250 MeV the error is roughly a fac-
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TABLE I. Optical potential parameters used. The optical potential is defined to be:

V (r) = —Vf (r,r, a) —i 8' —4Nyz' —xf(r r' a')+Vopt 09 A' Coulonlb

where

f (r, rp, a) = 1+exp

A is the target mass and Vc,„&, b is the Coulomb potential of a uniform sphere of charge of radius rcA

Reaction System rp rc rp a' Ref.

~2C(p,pn)sBe (g.s.)

E0=100 MeV
p +12C

p +sBe
~ +sBe
Bound state

21.2
32.3
88.9
89.9

1.33 0.65
1.26 0.63
0.99 0.81
1.24 0.78

1.33
1.30
1.20
1.24

6.5
0
4 g

0.0 1.46 0.44
2.3 1.31 0.96
0.0 3.01 0.58

20
20
20

24Mg(P PG, ) Ne(g. s.)
E0=50-350 MeV

p + 24Mg

p+20Ne
e+2oN
Bound state

38.0-0.0'
43.0-2.3

92.0
125.5

1.43 0.62 1.30 12.0-17.0 0.0 1.15 0.63 21
1.43 0.62 1.30 10.0-16.0 0.0 1.15 0.63 21
1.40 0.709 1.40 47.g 0.0 1.40 0.709 24
1.24 0.78 1.24

Ne (o, 2n) O(g.s.)
So=78 MeV
[Set (a)]

,~ + 2oNe

0. + "O
Bound state

92.0
92.0

125.5

1.40 0.709 1.40
1.40 0.709 1.40
1.24 0.78 1.24

47.9
47.9

0.0 1.40 0.709
0.0 1.40 0.709

24
24

2PNe(c, 20. )~sO(g. s.)
Ep ——78 MeV
t set (b)l

~60(0. , 2o )~2C(g.s.)
Ep=90 MeV

o +2PNe

o. + "O
Bound state

0. + "O
o + "C
Bo~.;:nd state

151.6
151.6
125.5

120.0
120.0
72.48

1.39 0.62 1.40
1.39 0.62 1.40
1.24 0.78 1.24

1.29 0.754 1.30
1.29 0.754 . 1.30
1.24 0.78 1.24

33.9
33.9

47.9
47.9

0.0 1.39
0.0 1.39

0.0 1.40
0.0 1.40

0.62
0.62

0.709
0.709

24
24

24
24

' Range of well depths used for the minimum to maximum energies.

IO

tor of 10. Of interest is the fact that, contrary to
a popular argument, the calculated cross section
does not approach the plane-wave limit at higher
energies. Indeed, from the point of view of min-
imizing distortion effects, there appears to be no
significant advantage in incident energies in excess
of 150 MeV. Thus, since a proper treatment of
distortion effects cannot be avoided, our chosen
incident energy of 100 MeV appears to be quite
suitable, particularly in view of the greater ex-
perimental difficulty of the higher energy experi-
ments.

In the calculations shown in Fig. 2 proton optical
potentials used were based upon the analysis of
155 MeV proton scattering by Comparat et al."
The strength of the real well depth V was assumed
to vary with incident energy E according to V
= V», —n(E —155), where o. = 0.25 for E & 155 MeV
and n = 0.1 for E & 155 MeV. For the imaginary
well depth we assumed TV= W„,+ 0.02(E —155).
These expressions lead to results quite similar
to the energy dependence found by van Oers" as
well as results reported by Igo." For the emitted
a particle we used the potential obtained by Singh
et al . 4 for elastic a particle scattering from ' Mg
at 80 MeV. No energy variation of the param-
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FIG. 2. Ratio of the cross section for 24Mg-

(p, po. )2 Ne(g. s.) calculated in DWIA to that calculated in
PWIA as a function of proton bombarding energy. The
proton is detected at 60' (lab). The e particle angle and
both detected energies are chosen so that the residual
nucleus is left at rest.
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eters was included. Using the results of Ref. 23,
we estimate that, over the range of n particle
energies involved, both real and imaginary well
depths are likely to be constant to within a 5'.
Such a variation would not qualitatively change
the results of Fig. 2.

A second systematic feature of our calcula-
tions is the fact that the quasifree (P, Po.) reaction
is usually quite strongly surface localized. This
is a consequence not only of the pronounced
distortion effects but also of the choice of experi-
mental geometry which permits exact momentum
and angular momentum matching. As discussed in

II, the degree of surface localization directly in-
fluences the validity of the factorization approxi-
mation. In addition, as is well known, it is in the
nuclear surface that our decision to retain only the
n-particlelike component of the target wave func-
tion has greatest validity.

In Fig. 3 surface localization effects are shown
for the ' Mg(P, Pn) Ne(g s )r.ea. ction at incident
proton energies between 50 and 350 MeV. The
kinematic conditions and optical potentials were
chosen to be identical to those chosen for the cal-
culations of Fig. 2. Thus the residual nucleus has
zero recoil momentum. Plotted are histograms of
contributions to the DWIA cross section obtained
by taking differences between calculations with dif-
ferent lower radial cutoffs. Also shown is the 5S
bound a cluster radial wave function used in the
calculation, the proton density distribution" for
"Mg, and a histrogram of contributions to a PWIA
calculation at 100 MeV. It should be noted that
PWIA calculations for the other energies differ
only in absolute magnitude. As expected, the
PWIA result is quite similar in shape to the 5S
bound state wave function. In contrast, for the
DWIA calculations the reaction is more strongly
surface localized. For the higher energies the
main contributions to the (P, Po) cross section
result from roughly the 3/o density region. At
50 MeV (where the overall absolute cross section
is much reduced) a significant contribution from
smaller radii is apparent. That this contribution
interferes destructively with the surface contribu-
tion is a consequence of phasing difficulties re-
sulting from the optical potentials rather than sign
changes in the radial wave function. This effect
is much reduced at 100 MeV and disappears en-
tirely at 155 MeV and above. Results of analogous
calculations for "C(P,Po.)'Be(g s )are qua. li.tatively
the same. Finally, it is worth noting that DWIA

calculations for nonzero values of the residual
nucleus recoil momentum are stiB dominated by
the surface region, although the results do indicate
somewhat greater contributions from the nuclear
interior.
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FIG. 3. Radial distributions of contributions Ao to the
DULIA cross section for Mg(p, pe) Ne(g. s.} for the re-
sults presented in Fig. 2. Also presented are the radial
contributions to the PWIA cross section (identical shape
at all energies), the 5S a single-particle @rave function,
and the nuclear charge distribution p(r)/pI, '0) taken from
electron scattering results.

IV. RESULTS FOR (0.,2n) REACTIONS

n particle clustering may also be studied by
(n, 2n) reactions. At energies close to 100 MeV
this is an attractive alternative to (P, Pn) studies
since certain experimental difficulties are allevi-
ated. In addition, DWIA calculations suggest that
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the (o.', 2n) reaction will exhibit even more pro
nounced surface localization than (P, Po.). For
example, in Fig. 4 contributions to the DWIA
cross section for 'Ne(e, 2o.)"O(g.s.) are plotted
as a function of radius. The incident energy is
78 MeV and the e particles are detected at equal
angles and energies so that the residual nucleus
recoil momentum is zero. Also shown is the bound
n cluster wave function. One observes the es-
sentially all the yield comes from the asymptotic
portion of the wave function. Comparing these
results with the "Mg(P, jo) "Ne(g. s.) calculations
shown in Fig. 3, we see that the yield curve is
pushed out by about 2 fm, indicating much stronger
absorption. Clearly the (n, 2o.) reaction takes
place in regions of very low nuclear density. Thus
the factorization approximation should be more
reliable than for (P,Pn), and the correct treatment
of the bound n cluster wave function will be a
critical ingredient in any analysis of (e, 2n) data.

Unfortunately, difficulties are encountered in
DWIA analyses for (n, 2o.) reactions at these en-
ergies which are not apparent in our (p, Po.)
studies. For example, in Fig. 5 we show a DWIA
calculation for the 78 MeV "Ne(o. , 2o.')"O(g.s.)
data of Epstein et al." The optica, l potentials used
for the calculations of Figs. 4 and 5 were taken
from the analysis by Singh et al. ' of 40 and 80
MeV n elastic scattering on "Mg and are listed
as Set (a) in Table I. The n particle bound state
wave function was obtained by binding an o. par-
ticle in a 5S orbit in a Woods-Saxon well with the
parameters listed in Table I. In Fig. 5 it is
seen that agreement between the DWIA calcula-

tion and experiment is quite disappointing. This
is in marked contrast to all (P, Pn) calculations
we have carried out to date. ' '" Calculations
using a deeper family optical potential'4 in both
entrance and exit channels [Set (b) in Table I]
predicted an energy sharing distribution essentially
identical in shape to the curve shown in Fig. 5.
and differed by only 10/p in magnitude. That the
predictions are even less sensitive to the choice
of optical potentials than calculations for (P, Pn)
reactions is presumably a consequence of the ex-
treme surface localization in (o., 2n) which results
in dominance of high partial waves. It is the
surface and higher partial. waves which are es-
sentially the same for different optical potential
families.

Qn normalizing the DWIA curve of Fig. 5 to ex-
periment an a cluster spectroscopic factor of
about 12 is obtained. This value seems unreason-
ably large and cannot be reduced significantly by
reasonable optical parameter and bound state
parameter variation. It is to be compared with
an experimental value of S -0.3 obtained in
studies'"" of "Mg(p, pn)"Ne(g. s.) and theo-
retical values" "of 0.08 and 0.23 for ground state
to ground state n cluster removal from '4Mg and' Ne, respectively. A more reasonable result
can be obtained using a PWIA calculation with a
Hulthen bound state wave function and a lower
radial cutoff. " We feel that this has no great
theoretical significance.

Similar problems are encountered in the
"O(o.', 2o.)"C experiment using 90 MeV incident
a particles. " In Ref. 30 Sherman and Hendrie are
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FIG. 5. Energy sharing results for the Ne-
(e, 2n) O(g.s.) reaction at E~ =78 MeV, 9~& =42.9, and

0~& =43.1'. The data are from Ref. 26. The solid curve
is a DWIA calculation.
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able to reproduce their data quite well using a
DWIA calculation employing a parametrized ap-
proximation to the distorted waves. Unfortunately,
their result may be misleading since an exact
treatment of distortion effects does not reproduce
the approximate results. In Fig. 6 we show our
DWIA predictions for "O(n, 2n)"C at 90 MeV
together with data from Ref. 30. Optical param-
eters used are taken from the analysis of Singh
et al. ' of elastic n particle scattering from "Mg.
For the gound state transition the n cluster was
removed from a 3$ orbit with the parameters
listed in Table I. For the excited state a 2D con-
figuration was assumed. For the ground state
transition the width of the experimental distribu-
tion is underestimated and, for the excited state
transition, the data is again poorly described by
the calculation. It is interesting to note for the
excited state transition, that the minimum at
zero recoil momentum expected in PWIA for an
L =2 transition, is totally obscured as a result
of the large distortion effects.

As we have pointed out elsewhere, if the poor
agreement in shape between theory and experiment
is ignored the normalization factors for the two
curves may be used to estimate spectroscopic

factors. As a result" the value of S,J'S... the
spectroscopic factor for the excited state relative
to the ground state, rises from 0.24, the PWIA
estimate obtained in Ref. 30, to - 8 in our DWIA
analysis. This is to be compared with a shell
model prediction' of 5,7. Thus, provided dis-
tortion effects are considered, the observed
strength of the 2+ state in the (n, 2n) experiment
is more than sufficient to establish this level
as the principal parent of the "O ground state in
agreement with theory" and transfer experi-
ments. "

Unfortunately, to ignore the poor agreement in
shape between theory and experiment has little
merit. For the ground state transition the dis-
crepancy is quite similar to that found in our
"Ne(n, 2n)"O(g. s.) calculations shown in Fig. 5.
Furthermore, for the "O(n, 2n)"C(g s )c.as. e we
obtain $„-15, a value quite similar to that ob-
tained for "Ne(n, 2n)"O(g s ) .W.e.emphasize
again that we have not encountered corresponding
problems in our (p, pn) analyses.

Values of S„for "O(n, 2n)"C are listed in
Table II for the 90 MeV experiment together with
the shell model prediction" and experimental
values extracted from our DWIA analyses" of the
data' at 52.5 MeV and the data' at 850 MeV. The
extracted value for S„of- 15 obtained at 90 MeV
is to be compared with the theoretical value of
0.23. Thus, taking the shell model calculation as
a reasonable estimate of the correct spectro-
scopic factor, the DWIA underestimates the 90
MeV cross section by -65. From Table II we see
that at 52.5 MeV the problem is roughly 10 times
worse. On the other hand, at 850 MeV our DWIA
analysis of data including all final states below
30 MeV excitation yields an upper limit of -1.8
which, we argue, represents quite satisfactory
agreement with theory. Thus, at 850 MeV the
DWIA appears to be successful in predicting the
"O(n, 2n)"C absolute cross section.

In an attempt to understand this phenomenon we
also include in Table II the ratio of the PWIA and
DWIA predictions at the zero recoil momentum
point of each energy sharing distribution. Only
for the 850 MeV calculation is the value (of 5.4)
similar to ratios encountered in our (p, pn)
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FIG. 6. Energy sharing results for the ~~O(e, 2e) C
ground state (0+) and 4.43 MeV state (2+) reactions at
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Ref. 30. The solid curves are DWIA calculations nor-
malized to the data.

Theory
850 MeV
90 MeV
52.5 MeV

0.23
&1.8
15

150

5.4
1500

-3200



DISTORTED-%A VE IMPULSE-APPROXIMATION. . .

analyses which typically are between - 2 and -20.
For the 90 MeV calculation the ratio is 1500 while
the value at 52.5 MeV is 3200. Clearly, at the
lower energies, the first order diagram on which
our ideas are largely based is almost completely
cancelled by that class of higher order diagrams
which are approximated by the DWIA. In this
situation we argue that it is probably necessary to
introduce other classes of diagrams and hence the
failure of the DWIA is no surprise. Consistent
with this notion is the result that the corresponding
ratios for other reactions which are successfully
described by distorted-wave Born- approximation
theory are typically one to two orders of mag-
nitude smaller than the 52.5 and 90 MeV (n, 2n)
results. For example, for (d, P) and (P, d) re-
actions plane-wave/distorted-wave ratios at en-
ergies above the Coulomb barrier are typically"
-10 and may rise to -60 in some cases."

Finally, it is worth noting that agreement in
absolute cross section for the 90 MeV (o.', 2n)
experiment could be obtained by adjusting the
bound state well parameters so as to increase the
resultant wave function in the asymptotic region
by 8. (Reasonable variations in distorting param-
eters do not alleviate the problem significantly. )
We argue that the resulting parameters (r,
=2.85 fm, a=0.78 fm) are unphysical. In addition,
we point out that no improvement in the shapes of
the calculated curves would result and that the
corresponding decrease in So, for the 850 MeV
data would pose difficult problems of interpreta-
tion.

V. SUMMARY AND CONCLUSIONS

The formalism for a simple factorized distorted-
wave impulse- approximation calculation for quasi-
free cluster knockout has been outlined. Calcula-
tions for (p, pn) and (n, 2o.) reactions have been
presented.

For both reactions distortion effects are found
to be large and analysis of data. using the PWK.
must lead to serious error. Not only will spectro-
scopic factors extracted using PWIA be under-
estimated, but also the interpretation of energy
sharing data in terms of the struck-particle mo-
mentum distribution is potentially misleading. In
general, both reactions a,re quite strongly surface
localized and hence show sensitivity to the mag-
nitude of the cluster wave function in the nuclear

surface. This is much the same information which
is obtained in analyses of cluster transfer ex-perimentss.

A DWIA calculation for "C(p,Po)'Be(g. s.) at
100 MeV showed that, despite strong surface
localization, the introduction of distortion effects
increased the width of the energy sharing distribu-
tion. This effect is also found in the DWIA calcu-
lations for (P, Pn) reactions in II. It cannot be re-
produced in PWIA by using a lower radial cutoff.

A study of the energy dependence of distortion
effects for "Mg(P, Pn) "Ng(g s ).su. ggested that
100 MeV, the energy employed in II, is suitable
in order to avoid large distortion effects, and that
there is no significant gain beyond 200 MeV.

Analyses of (o.', 2o.) reactions on "0 and "Ne
targets at energies up to 90 MeV produced quite
poor agreement with experiment both in shape and
magnitude. This behavior, quite unlike (P, Po.')
analyses at 100 MeV, may be correlated with
much larger distortion effects encountered in the
(n, 2o.) calculations. Thus, other omitted diagrams
may contribute significantly to the (o. , 2n) cross
section. At 850 MeV, where distortion effects
are more similar to (P, Po.), there is no evidence
that the difficulties encountered in the lower energy
(n, 2o.) analyses persist.

In conclusion we argue that the (p, Po. ) reaction
in conjunction with the DWIA should prove to be a
useful spectroscopic tool most conveniently studied
at incident energies of 100-200 MeV. In the case
of (n, 2o.) reactionsspectroscopic studiesprobably
should employ significantly higher energies where,
unfortunately, technical difficulties are more
severe. On the other hand, interesting reaction
mechanism problems are posed by this reaction and
a careful study of energy dependence is called for
with (n, 2a) data at incident energies in excess of
90 MeV being most desirable.
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