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Within the framework of nonrelativistic potential scattering theory, an off-energy-shell generalization of the

various solutions and the potential matrix elements is carried out, Some relations between these solutions and

between the matrix elements are derived. The off-energy-shell generalization of the Jost-Pais theorem is

proved for a general nonlocal interaction. A constraint on the t matrix elements of a local potential is

obtained. For given t matrix elements, the value of a certain expression gives a measure of the nonlocality of
the underlying interaction.
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I. INTRODUCTION

An understanding of off-energy-shell' potential
scattering is quite basic to the study of any system
involving more than two interacting particles.
But, to our knowledge, no systematic attempt
has been made to obtain formal relations similar
to those existing in the on-shell case. In nuclear
physics, for example, the emphasis has been on

exploring the arbitrariness in the off-shell t
matrix starting from given on-shell data, and on

the development of numerical techniques to handle
various types of potentials. ' Recently Fuda' has
developed an off-shell generalization of the Jost
function and expressed off-shell t matrix elements
in terms of them. He also related the off-shell
outgoing scattering solution to the off-shell ir-
regular solutions. Our aim in this paper is to ob-
tain (i) an off-shell version of the various solutions
and potential matrix elements and their mutual
relationships, and (ii) the off-shell generalization
of Jost-Pais theorem. A constraint on off-shell
t matrix elements corresponding to a local po-
tential is also obtained.

We shall consider in Sec. II an inhomogeneous
form of the Schrodinger equation. This equation
contains two momenta, k and q, where k is an
on-shell momentum related to the energy, and q
is an off-shell momentum. When q=k the equa-
tion reduces to the usual Schrodinger equation.
We shall obtain regular, irregular, outgoing,
and standing wave scattering solutions of the in-
homogeneous equation corresponding to the various
possible choices of the boundary conditions. A
comparison of these solutions yields relations be-
tween potential matrix elements involving these
solutions. All the matrix elements are expressible
in terms of the functions Y,(P, q; k2) introduced by

Fuda. '
Section III is devoted to generalizing the well

known result' ' expressing the Jost function as a
ratio of the Fredholm determinants of the integral
equations corresponding to outgoing wave scatter-
ing solution and regular solution respectively. We
prove that the off-shell Jost function is the ratio
of a generalized Fredholm determinant of the in-
tegral equation for the off-shell outgoing scattering
solution to that of the on-shell regular solution.
For a local potential, the determinant in the de-
nominator is unity. As an illustration the results
of this section are applied to the case of a one-
term separable potential.

All the formal results of Secs. II and III go over
into corresponding results of the usual (on-shell)
potential scattering theory.

In Sec. IV we address a different aspect of off-
shell scattering. It is known from inverse scat-
tering analysis that, for any given set of on-shell
t matrix elements, the extrapolation to off-shell
matrix elements is rather arbitrary and depends
on infinitely many types of possible nonlocalities
of the underlying interaction. In case the potential
is local, this extrapolation is unique. We shall
obtain a constraint on off-shell t matrix elements
in such a situation.

Throughout this paper we work in units in which
k'/2m is unity.

II. OFF-ENERGY-SHELL SOLUTIONS, MATRIX ELEMENTS,

AND THEIR RELATIONS

The outgoing scattering wave function for the on-
shell two-particle scattering in the center of mass
system is given by the solution of the Lippmann-
Schwinger equation

~

4 '(k, k')) =
~

k) + 6"(k') V
~

e"(k, k')) (1)
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where !k& represents a plane wave and satisfies
the free particle equation

H, )lk& =0,

for Jost solutions, where r, indicates the smaller of
x and x' and x& the larger. The partial wave index
l on G has been suppressed and"

and

G'"'(k') = (k'- ff, + f&)-'

x "'/(2l + 1)!!, x - 0;
u, (x) =xj,(x)-

sin(x —2l»), x - ~; (14)

is the appropriate free particle Green's function.
Other solutions (regular, irregular, and standing
wave) correspond to different choices for the
Green's function and the free solution, depending
on the imposed boundary conditions. In order to
discuss its off-shell continuation, we consider the
integral equation

I
&(k' q)& =

I ((q) & + G(k') v
I

& (k' q)&

or its equivalent

(4)

(k' If. V) -&r l&—(k' q)& =(k'-q') &r l&(q)& (5)

with appropriate boundary conditions.
I g& is a

solution of the free equation. Assuming that the
potential is spherically syiametric and the parti-
cles have no intrinsic angular momentum, the
partial wave decomposition can be easily carried
through to give

-x '(2l 1)!!, x-0;
v, (x) =xn, (x)-

—cos(x —,'l»), x -~;
8.&(x) = le*"xk"&(x)

e+ix+i lffI 2

w (x) = —2xk (x)

(15)

(16)

The corresponding natural choices for the free
wave functions are

!

, u, (qr),

!! u, (qr),
5, (q, r)=

&

!

I
u, (qr)(2l+ 1)!!q' '

e i&w/ 2-w(k & (qr)

(17)

(18)

(19)

(20)

A. Jost solutions

We are now in a position to consider the various
off- shell solutions.

Z, (k)f, (k', q, r) = (k' —q') $,(q, r),
where

(6) The off-shell Jost solutions satisfy the differ-
ential equation

*,„(r)(r I $(q)& dO= (2/m)'/'(qr) 'g, (q, r), (8)

Z, (k)f I"(k, q, r) = (k —q')e '" 'w', "(qr)

with the asymptotic boundary conditions

f ~&"(k, q, r) ~ e~'~".

(21)

(22)

Yf„(r)(r I
f(k', q)) dQ= (2/m)'/'(qr) 'P, (k', q, r) .

(9)

Note that if k =q, Eq. (6) reduces to the usual
Schrodinger equation. It is well known' that the
free Green's functions appropriate to the various
types of solution are the following:

The integral equation incorporating this boundary
condition is

f',"(k,q, r) =e '" 'w', "(qr)

dr'G~~(r, r') V(r')f,"'(k, q, r') .

(23)

etiam' l
G„"'(r,r') = u, (kr&)w,'"(kr)), (10)

for the outgoing/incoming wave scattering solution;

G~~(r, r') = u, (kr&)v, (kr—)),
1

Since

w", (-x) =e'" w+'*( )x=wI-'(x),

it immediately follows from Eq. (21) that

f ' (k, —q, r) =f", "(k,q, r) =f ', '(k, q, r)

(24)

for the regular solution;

e-i lg

G~~(r, r') = G~"(r, r')+ u, (kr')w", (kr),

= Ga(r, r'), (13)

for the standing wave scattering solution;

e-i le'

Ga(r, r') = G"(r, r') y u, (kr)wI'&(kr '), (12)

~ i ln'/2 l

. r-o
(26)

for real k, q, and x.
In general, for small x, the centrifugal term

in Eq. (21) dominates over the potential; the Jost
solutions f',"(k,q, r) are expected to behave a,s
r ' as r -0 [see Eq. (23) also]. Let us define,
following Fuda, ' an off-shell Jost function, anal-
ogous to the on-shell case, by
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From Eq. (25) it follows that

f I'(k, -q) =f &'*(k, q) =f', '(k, q) (27)
f, (k, q) = l+

k
(q/k) 'e '""(u,(k)

~

&~f, (k) q)) . (28)

for real k and q. Using the definition (26) in Eq.
(23), one obtains an integral representation for
the off-shell Jost function"

The Jost function f, (k, q) can also be expressed in
terms of the on-shell Jost functions by taking the
limit (26) in the solution

f (k, q, r) f(qr=)+ (k*, —q') f dr'q[(r, r')[q '"~'w[" (qr') —f (qr')],
r

where the interacting Green's function 8 is given by'

(29)

P lef lft'/2

[f,(k, r)P, (k, r') f, (k, r—')P, (k, r)], r&r';

O, , r&~';
(30)

and the on-shell regular function (t), by

Q, (k, r) = .
'

[e '"~ 2f(-k)f, ( kr) e'"~'f, (k)f, ( k, r)]. - (31)

We get

k' q' q'
f,(k, q) =f,(q) + dr'Q, (k, r') [u)I')(qr') e' "~'f,(q, r')],

0

which is similar to the relation"'

(32)

p k'- p'
(,(k, k;k)=(— t, ( k;kk)+ dr q, (P )[qt''(kr, 'r') —q[" (k, r')]

0

expressing the half-shell K matrix element in terms of the on-shell quantities.

B. Outgoing wave scattering solution Pf~'~(k, q, r)

It satisfies the integral equation

q["(k, q, r)=q, (qr)+ f dr'G~" (r, r')'V(r')q, "(k,q, r'),
0

or equivalently the differential equation

(34)

-fd(( (k)2, (k)g", (k, q, r) = (k' —q')u, (qr) = . [e '" I"u)(q )r- u)', '(qr)] (35)

with the asymptotic boundary condition

g", (k, q, r) sin(qr ——,'l v) —qt, (k, q; k') e"~" " " (36)

The half-shell t matrix element t, (k, q; k') derived from Eq. (34) is given by

t, (k, q; k') =—(u, (k)
~
&

~

q(d' (k, q)) . (37)

From Eqs. (35)-(37) it follows that

PI ( qqk, r) =—.[e '")2f, (k, q, r)- e'"I2f, (k, q, r)] —qt, (k, q;k')e '"l f1
(38)

Prom expression (38) follows a relation between the fully off-shell t matrix elements and the matrix ele-
ments involving f,(k, aq, r):
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t,(P, q;k') =—(u, (P) Ivl~i (k q))

1 k r

= t, (k, q; k') [1 Y,(p, k; k') ]+ . — [Y,(p, q; k') —Y,(p, -q; k') ], (39)

where

Y,(p, q; k') = 1+—— e '"~ '(u, (p) I
V

If, (k, q)) .1 q
'

-&i~/2 (40)

Equation (40) is really a generalization of Eq. (28) for f,(k, q) and can also be written as'

Y,(P, q;k') =f, (k, q)+ — e '"t' dru, (Pr)[f, (k, q, r) —e '"~'
u,"k( qr)].

0

For p=k, the relation (39) reduces to a relation expressing half-shell t-matrix elements in terms of

f,(k, + q),

k ' f, (k, q) f,(k, —q—)

(41)

(42)

The relation (42) can also be obtained by using the boundary conditions f', '-0 as r-0, and Eq. (26).

It satisfies the integral equation

C. Standing wave solution P, (k, q, r)

k, (k, q, r) =u, (qr)+ f dr G, (r, x')V('r')k, (k, q, r ), '
0

and the same differential equation as satisfied by g,"(k,q, r) but with the boundary condition

g, (k, q, r) ~„sin(qr ——,
'

lw) —qK, (k, q;k') cos(kr —,'l w).

From Eqs. (43) and (44), half-shell K-matrix element K,(k, q;k') is given by

K, (k, q; k') = —(u, (k) I
V

I p, (k, q)) .

(43)

(44)

(45)

It immediately follows that

$P(k, q, r) = —.[e '"t'f, (k, q, r) —e'"~'f, (k, -q, )] r——K,(k, q; k') [e '"t'f, (k, r)+ e'"t'f, ( k,r)]- (46)

and

K(p q k')= (ur(p) I
vis'i"—(k q)&

2- 1

1 k
=K, (k, q;k')[2 —Y,(P, k;k') —Y,(P, —k;k')]+ . — [Y,(P, q;k') —Y,(P, —q;k')] .

2zg Q'

For P=k, Eq. (47) reduces to(, 1 k ' f,(k, q)- f, (k, —q)
iq q f, (k)+f, (- k)

which leads to the well-known result'

(47)

(48)

2fi (k) 2K, (k, q;k ) =f (k) f ( k)
t, (k, q;k )

t, (k, q; k')
1 —ikt, (k, k; k') (49)
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D. Regular solution Q, (k,q, r)

It satisfies the integral equation

p, (k, q, r)=, ' '
u, (qr)+ dr'Ga(r, r')V(r')Q, (k, q, r'),(2l + 1)!!

0

which corresponds to the differential equation

Z, (k) P, (k, q, r) = (k'- q') ' '
u, (qr)

(2l + 1)!!

(50)

(51)

with the boundary condtion

lim r ' 'P, (k, q, r) = 1.
r~0

From Eq. (50), the asymptotic form of Q, is given by

(52)

2l+1 !!
P, (k, q, )r' '

sin(qr —2!w) ——[(u, (k) I
V

I Q, (k, q)& cos(kr —,'ln—)+(v, (k)
I
V

I Q, (k, q)) sin(kr 2 lw2)].

It follows from Eqs. (51) and (53) that

2l+ 1 !!
Q, (k, q, r)=,+,

'
[e ' "~'f,(k, q, r) —e' "~f,(k, —q, r) ]

'L Q'

+ . [e'"~'(w,"(k)
I
V IQ, ( k, q) f&(k, r) —e '"~'( "

w, (k) I
V

I Q, (k, q)&f (- k, r)].

(53)

(54)

The matrix element (w," (k)
I
V

I p, (k, q)& can be
easily related to the Jost functions by condition

$,(k, q, r=0) =0 and comparison to the on-shell
solution (31). We get

=fi(k)+ Ifi(k q) -f &(k)]ff&(- k) (55)

The relation (55) can also be used to express t
and K matrix elements in terms of
(w", (k) I

V
I P, (k

In general, we have

(y, (k, q) I
v Iw", (p)&

„, ' &(1- G."v) + (q) I
v I""(p)&

(u, (q) I
V(1- G,' V) Iw,"(P)&

Using Eq. (56) for P = k in Eq. (55) gives a simple
relation between Y,(q, k;k') and Y,(k, q;k'):

Y) q~kik —1 — Yi k, k;k —1

f,(k, q) = 1+ e ' "(Q, (k) I
V

I w,"(q)& .

Recently we noticed a derivation of the off-shell
Jost function expression Eq. (58) by Fuda. '~ He

arrived at the result using a rather different
method. After inserting a complete set of func-
tions u, (Pr) between V and w" in Eq. (58) and
using the definition of t matrix elements, one can
easily obtain his second result, the momentum
representation of f,(k, q).

III. OFF-ENERGY-SHELL GENERALIZATION OF
JOST-PAIS THEOREM

In this section we attempt to generalize the on-
shell result" expressing the Jost function as the
ratio of the Fredholm determinants of the
I ippmann- Schwinger equations corresponding to
the outgoing scattering solution and the regular
solution, respectively.

Consider the propagator

(1 —G ~ V- F~,V) ',
where

= [Y,(k, q; k') —Y,(k, k; k')] /Yg(k, —k; k') . (57) E, ,(r, r') = C(k, q)u, (kr)w,"(qr') . (59)

The case q=k in Eq. (56) leads to an alternative
integral representation for f,(k, q):

The normalization constant C will be chosen later.
This propagator can be expanded as
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(1-«-FU) '=(1-«) '+C(1- «) ' lu&(w"*IU(1- «) '+C'(1- «) '
lu& (w"* IU(1- «) '

lu&

( '+'*
l
V(1 —GV) & + ~ ~ —(1—GV) i C

(1 —G ) ' lu&(w" I V(1 —GV) '
1 —C(w&+&*! V(1 —G V)-'!u&

The indices R, q, k, and l have been dropped for clarity. If C is taken as

c&k, e) = ——
C

— e '",
the denominator in the second term of Eq. (60) reduces to

l~-i if!

1+—— e '"(w"
l
V(1 —GV) 'l u& =1+ (w"* lV

l
P&k k (2l + 1)!!

= 1 +
I , , ( &t&(k)

l
V

l
w "(q))=f, (k, q) .

The last step in the above equation follows from Eq. (58). Let us consider now

(60)

(61)

(62)

Tr(GV+FV) (1 —GV- FV) '- TrGV(l —GV) '

= TrFU(1 —GU) '+ Tr(GV+FV) (1-GV) 'FV(1 —GV) '/[1 —C( w"
l
V(1 —GV) 'lu&]

= Tr(1 —GV) FV(1 —GV) /f i(k, q)
l e'" zv," q V1 —GV ' u, k, k, q (63)

Replacing V-yV where y is the strength of the interaction, Eq. (63) yields

Tr(G» V+F», V)(1 —yG» V —yF» V) —TrG V(1 —yG„U ~

e i ™(w,"*(q)
l
V(1 —yG» V)

' lu, (k)) /f, (k, q) . (64)i

Consider Eq. (58) for the Jost function f,(k, q). For the interaction yV it can be written as

qle-i &r

f,(k, q, y)=1+y
21 1, (4,(k, y) lUlwi"(q))

l

=1+—— p '" zo,'*q V1 —yG~V u, k (65)

Differentiating Eq. (65) with respect to y and comparing the result with Eq. (63), one arrives at the fol-
lowing relation:

—f, (k, q, y) = Tr G„V(1—yG» V) —Tr (G» V+ F», V) (1 —yG» V —yF», V)
' .

, k, q, y) dy
(66)

Integrating this, one obtains on putting y= 1

ln f,(k, q) = Tr ln(1 —G»sV- F»„V)—Tr ln(1 G„"V),
f &,&(k)

det(1 —G„"V)
det(1 —Gs» V)

(70)

leading to the following determinantal equation
for the Jost function:

det(1 Gsv F„,U)

det(1 —G" V)

(67)

(68)

the expression derived by Warke and Bhaduri. '
Example: We illustrate the results of this sec-

tion by calculating f(k, q) in the case of a one-term
separable potential with Yamaguchi form factor
in the l = 0 state. " In configuration space, this
potential is given by

If q=k (on-shell case),
~"i lg

G»s(r, r') +F, ,(r, r') = G»s(r, r')- u, (kr)w,"(kr')

U(r, r') = M(r)g(r'),

where X is a constant and

(71)

= G'"'(r, r'),
and Eq. (68) reduces to

(69) g(r)=e- ".

For a one-term separable potential
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det (1 —G~ V) = exp[Tr ln(1 —G„"V)]

=1—TrG~ V.

Therefore, from Eq. (68),

(73)

f (k, q) = (1 —Tr G~sV —Tr F„,V)/(I —Tr G~sV) .

(74)

Now

1 —Tr GATV=1 —X dr' [u, (kr')v0(kr) u, (kr)v (kr') ]e

r
=1—X Cr dr' sink(r —r')e "'"'"'= 1 — » —=D(k) .2n n'+ k' (75)

Similarly, ishes for a local potential. ' In momentum space
it leads to

r' sinkage""'e ~"e ~"'

X(n+ iq)
(n'+ k') (n'+ q') ' (76)

Tr E~, V= —— dr
V(k, q) —V(q, q)TrG V=2 ', k,

' q'dq
0 q—

where the potential matrix element

(78)

Using Eqs. (75) and (76) in Eq. (74), we get the
final result

1
V(P, q) =-

Pq
dr dr'u, (Pr) V(r, r')u, (qr')

f (k, q) = D(k) +, ,), ,
)

D(k)

2A, n
(n- iq)[2n(n'+ k') —X ]

(77)

can be expressed in terms of t matrix ele-
ments"" "

V(P, q) = t, (P, q;q')

(79)

IV. CONSTRAINT ON THE t MATRIX ELEMENTS OF
A LOCAL POTENTIAL

2 ", t,(p, k', k")t", (q, k', k") k„

This section is devoted to finding some con-
straint on t matrix elements in the case of a local
potential. By a local potential we mean locality in
the usual sense. For example, we admit spin-
orbit or /'-dependent interactions which are local
in any partial wave. Angular momentum indepen-
dence (same interaction in all partial waves) is
not enforced as it is uninteresting and leads to
rather too stringent restrictions. It is well known
that for a local potential, the Wronskian of
f, (+ k, r) and Q, (k, r) is independent of r and the
Fredholm determinant D(k) —= det(1 —G» V) of the
regular solution is unity. These conditions are
not very useful as they involve quantities which
are not physically observable. A relation in-
volving t matrices is expected to be more useful
as they are more closely related to observed
physical processes. Procedures based on the in-
verse scattering problem to calculate off-shell
t matrix elements directly from elastic scattering
data (scattering phase shifts) in the case of a
local potential have been given earlier, '""but
these are rather too complicated to be used as
a constraint on the t matrix. For a separable in-
teraction, t matrix elements are known to have a
simple structure.

Consider Tr G~ V. It is really the asymptotic
value" of 1 —D(k). One can easily see that it van-

= t, (p, q; k')

2 ", t, (P, k', k")t*, (q, k', k")

(80)

It is assumed, for simplicity, that the potential
does not support a, bound state. Using Eq. (80),
the optical theorem, and the principal value in-
tegrations, Eq. (78) yields

I(k) =—Tr G~sV

, 2 t) q, q;k' —t] k, q;k'
(q' —k') (k" —k'+ie) '

(81)

Expression (81) is the desired result. If the in-
teraction is local, the t matrix elements are con-
strained to make the right-hand side of Eq. (81)
vanish identically. The value of I can be taken as
a measure of nonlocality of the underlying inter-
action.

Equation (81) can be simplified by considering a
particular vat.ue of k, say k=0.

V. CONCLUSION

An off-shell generalization of the various solu-
tions in on-shell potential scattering is carried
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out. In analogy with the on-shell matrix elements,
off-shell potential matrix elements with respect
to these solutions are introduced. Some relations
between these matrix elements and between the
solutions are derived. All the matrix elements are
expressed in terms of the generalized off- shell
Jost function F,(P, q;k') introduced by Fuda. ' When
the off- shell and on- shell momenta are equal, all
these solutions, matrix elements, and their rela-
tions go over to the well-known results of scatter-
ing theory. The off- shell generalization of the
Jost-Pais theorem is proved. It states that the
off-shell Jost function is the ratio of a generalized
Fredholm determinant of the integral equation for

the off-shell outgoing wave scattering soIution to
that of the on-shell regular solution. It may be
a useful result to study its analytic properties.
An expression involving the t matrix elements is
obtained. It can be used, in principle, as a mea-
sure of nonlocality of the underlying interaction
for given t matrix elements.
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