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Analysis of four-body final states: Nonrelativistic*
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The constraints of unitarity and analyticity on four-body final state amplitudes are studied. It is shown that

unitarity alone forces the amplitudes to be coherent and have rapid (singular) behavior. The implementation of
unitarity yields a set of linear integral equations for the four-body amplitudes that are the minimal set

consistent with quantum mechanics, but are also equivalent to the full dynamical equation with separable

interactions.

NUCLEAR REACTIONS Four-body final state interaction theory; development
and implementation of unitarity end analyticity constraints.

I. INTRODUCTION

In three recent papers (referred to as Al, A2,
and A3) one of us (with Aaron)' ' showed that the
elementary constraints of quantum mechanics —un-
itarity and ana, lyticity —when applied to three-body
final states in the quasiparticle picture, force
singularity structure and interdependence of amp-
litudes usually taken as independent and constant
in phenomenological analysis. It was further
shown that implementation of these constraints
along with some simple ideas about total energy
analyticity leads to a set of integral equations for
the three-body amplitudes that are essentially iden-
tica, l to the usual separable potential equations.

In this paper we turn to a corresponding analysis
of the four-body problem. We formulate the four-
body fina, l state amplitudes in the language of the
sequential decay or quasiparticle picture and apply
unitarity to them, focusing particularly on two-
body unitarity. We find that unitarity alone forces
the amplitudes to vary over the phase space, be
singular on its edge, and be interrelated. The
unitarity relation itself can be used to determine
the numerical importance of these effects in any
problem. If they are important, they must be
implemented by considering analyticity as well.
Since we take only two-body unita, rity contributions
into account, the full implementation of unitarity is
ambiguous. We choose among these ambiguities in
such a way as to preserve the total energy analy-
ticity of the amplitude as well. In this way we are
led to an integral equation for the four-body amp-
litudes. We show that that equation is in fact a
full dynamical scheme. Hence, as in the three-
body case, the implementation of the minimal con-
straints of quantum mechanics leads all the way

back to a full dynamical equation. Unfortunately. ,
in the four-body case that equation i.s in two vari-
ables and is difficult to solve. It is important,
therefore, to use the unitarity relations to test the
numerical importance of the subenergy variation
in four-body applications.

From a, practical point of view this work permits
both a, study of when unitarity effects are important
in a particular case and also points the way to in-
corporating these effects —although the way is
difficult. In the three-body case we find situations
where the unitarity corrections are crucial, ' where
they are significant, and where they are negligi-
ble. ' No doubt a similar spectrum of four-body
examples exists and this paper is a first step
toward providing a framework to examine them.
As in the three-body problem, it is also probable
that systematic examination of four-body examples
will lead to useful approximation techniques.

In Sec. II we review our conventions for unitarity
and in Sec. III we derive the unitarity constraints
for the four-body ampbtudes. In Sec. IV we dis-
cuss their implementation and their relation to
dynamics, stressing the importance of the "arbi-
trary" choices that are made there. In Sec. V we
summarize our results and discuss possible appli-
cations.

II. UNITARITY

Before applying unitarity to the four-body system,
we review some of our conventions and definitions.
(For a more complete review, see Ref. 1.) We
define the 5 ma, trix and T ma, trix by

S=1-2~f&(E)r,

so that
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(2)

as long as E =E~. For the two-body t matrix we
write (neglecting spin, isospin, etc. )

&P1 ~ P2 I
7

I P1 P2)

= (»)'6(P, + p. —Pl —pl)&q» I
~

I ql. & (3)

where (m, + m2)q» =mp, —m,p, . Decomposing in
partial waves gives

W = 0 (&+ ( )(&+ ( 3C&

= D&+ DW+& C

+ DC)=+&W +& C: „

&ql ~lq'& = g I'.(q)~, (q'/'2~)I'* (q'),
l2m

where q is a unit vector and p, (m, + 111,) =221,~, .
Unitarity (2) gives

lm~, (z) =, q I~, (z) I'.

(4) +z Q
FIG. 1. Schematic representation of the unitarity re-

lation of Eq. (2). The second line shows the amplitudes
decomposed into fully connected (represented by a &)
and disconnected parts.

If wewrite (suppressing') T=N/D, Eq. (5) becomes

ImD(E) =,N(E) . (6)

III. FOUR-BODY UNITARITY

To derive the constraints on a four-particle
amplitude required by two-body subenergy unitar-
ity, consider an amplitude T, , for going from a
stable state of toro particles to a four-body state.
Assuming only two-, three-, and four-body inter-
mediate states are energetically allowed, unitarity
for T, 4 can be written

ImT2 4 m T2 22 5 E E2 T2 4
2'

3I
T23, ~E —E3, T3+ 4

-m T24 6E-E,, T,*, (7)

Contributions to the pair subenergy discontinuity
of T, 4 will come from the disconnected parts of
unitarity and hence we decompose the amplitudes
in Eq. (7) into disconnected and totally connected
parts. Equation (7) and this decomposition are
shown schematically in Fig. 1. The last term in
Fig. 1 clearly gives the discontinuity across the
pair subenergy branch cut since it has the appro-
priate threshold. The next to last term in the
figure also appears to give a pair discontinuity,
but it is easy to see that in this term a given pair
threshold depends on the energy of the other pair
and hence this term does not contribute to the pair
subenergy cut. We shall see later how, by im-
plementing the unitarity constraint with analyticity,
we arrive at an amplitude that satisfies all of

unitarity and in particular the constraint implied
by this next to last term. It is clear from a con-
sideration of thresholds that no other term in
Fig. 1 contributes to the pair discontinuity.

If we keep only the last term on the right in Fig.
1 we no longer have the imaginary part of T, „
but only its discontinuity across the pair subenergy
cut. We call this DiscT~ 4, and write schematic-
ally

DiscT2 4
= —n T, 4, E —E' T2, (8)

where T, , is the two-body amplitude and the ~'s
represent the two "fly-by" particles. To proceed
further we postulate a simple form for T, 4 based
on a similar form used in the three-body case.
This form is suggested by the sequential decay or
quasiparticle models of nuclear physics and the
isobar model of particle physics. We assume the
four-body final state is dominated by pair interac-
tions and that these are in turn each dominated by
a particular important partial wave or quasiparticle
state. The four-body state is then due to a sum of
terms in which first a pair quasiparticle is pro-
duced (along with two other particles) and it subse-
quently propagates and decays. This propagation
is given by the appropriate pair D function while
the decay is proportional to the pair vertex func-
tion, the square of which is the two-body N func-
tion. All this is as in the three-body case. We
then have for a reaction of two particles of relative
momentum k going (in the center of mass) to four
particles of momentum pi at total energy E,
&I I7'. ..(E) lp„p. , p. , p, )

1 f2 i2 6~~ + ~ + ~ ~ 1~~ & IEN( ) I )Pi/)P5 (211q)2
41 / apl P2 P3 P4/~ D ( 2) (4 )1 /2

i jkl
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where we have assumed that all pair interactions
are in s waves and that the particles do not carry
spin, isospin, etc. , in order to reduce the com-
plexity of the equation. Following the form for the
three-body case given in A1, it is easy to remove
those restrictions if need be. v» is the vertex or
penetrability factor for the kl pair related to N of
Eq. (6) by N= v'. D is the D function or propagator
of the pair defined in Eq. (6). F is defined by Eq.
(9) but is clearly the quasi-three-body amplitude
for going from the initial state to a state of the
correlated pair kl and particles i and j with mo-

mentum j5, and p~. The factor of —,
' in front ac-

counts for the fact that D» =D», vga v»
&k IF2) lpl Pl) =("IF2) Ipl pl& ""e (4ll) ""is simply
Ppp and is there to ag ree with the conventions of
A1. Other forms for the quasiparticle amplitude
involving the full two-body t matrix or the N func-
tion rather than v/D as used here have been con-
sidered in the three-body case.' The various
problems they cause, primarily with total energy
analyticity when implementing unitarity, lead us to
consider only this form here. We now substitute
Eq. (9) into Eq. (8) to obtain

(2)l)'6(&pl) g D;sc &k ~F2l(E) ~p;, Pl&v2l(e2l)

~/ ~/ /2"' '. " "v (e') 6(p, -p'. )6(p -P')6(5 P -O'-P')«-g p'
abed cd ~af m f

1 —
~ d3 ) vt)l (g2))

(2m)3 ."I ~' 4~D" (q ') ' (10)

where the extra factor of & on the right comes from the symmetry under interchange of the pair ij and kl
as well as ab and cd. Using Disc(F/D) =FDisc(1/D)+(1/D*)DiscF as in the three-body case, ' noting that
Disc(1/D) =Im(1/D), and using two-body unitarity for Im(1/D), Eq. (6), we find the Im(1/D) terms on the
left just cancel the terms with (at)) = (ij) and (cd) = (kl) on the right. Equating the appropriate coefficients,
taking account of symmetries, and canceling common factors, then gives

»s~(2l+„(3) l()i, li) =-,f „, tt(p, +), -r '.—tt )tt

(k IFll(E) I p2, p', )v;;(ql~) (k IF»(E) I p;, p2)v;, (qj, ) (k IF»(E) lP;, g)vz„(q'„)D;J(~;J),l(~il) J2(~l2)

(k IF;l(E) I pl) p2)vi)(q')l) (k IF;2(E)

lpga,

pl)v(2(q'„)
D;2(&l2)

This equation is represented graphically in Fig. 2. For the special case of identical particles with 2m =1,
this simplifies to

d' //

»~~(k l&(3) l3, 2') =--, J „'(3-('-)"-("'-(3+3"3")')

„t2 &k ~F(E) ~p F'&v(t)'+-'(5+K'))vlF'+-'(P+P'))
D(E P2 P/2 &

(1(JP P)))2)

+(kt("(3)t()', (t )v(()+ (iV+3"))U(3" +'—,-''(3+3')))
P)2 P(t2 L(ltil +I)1AI)2)

&k~F(E) ~p", -(p+P'+P")&v(V+2(P+F))v(~2(P-F))~
D(E —'f "'- -'(0+ P'+ P')'-+ p" (P" +F+P))

(12)

As in the three-body case, these unitarity rela-
tions show that the constraints of quantum mech-
anics introduce interrelations and variation on
amplitudes usually taken as independent and con-
stant in phenomenological analysis. In particular

these amplitudes have a branch point at the edge
of phase space. It is easy to see that, just as we
expect from a two-body cut, and just as occurs in
the three-body case, ' this is a square root branch
point. The position of the branch point makes it
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FIG. 2. Schematic representation of Eq. (11), the
vertical lines represent propagators replaced by & func-
tions.

particularly important for threshold enhancement.
A test of the importance of the unitarity constraint
in a particular problem is easily made using Eq.
(11). If the F's are assumed constant, the right-
hand side of Eq. (11) or Eq. (12) is calculated. If
it generates a small discontinuity for F (measured
against the assumed scale of F itself) the assump-
tion of constant E is a good approximation. If
DiscE is large by the scale of E and by the degree
of accuracy required for the phenomenology, the
constraints of unitarity cannot be ignored. We
turn now to their implementation.

F(E) = R(E) + , —DiscF(E'),
dE'

E'-E (13)

where R(E) is a term that does not have the dis-
continuity. Schematically, let us a,ssume that

DiscF(E') = nf(E') &(E' —E ) .
Hence we have from Eq. (13) that

(14)

(k IF(E) I p, q) for the identical particle case. It
has a simple square root branch cut in two-particle
pair subenergy 0 =E —&P' —2q' —p q in the inter-
val 0 (0 (~. In general, it also has left-hand cuts
corresponding to the vertex functions. It also has
more complicated branch cuts in the three-particle
subenergies (these three branch cuts are in three
different variables), and of course it has total
energy singularities corresponding to the four-body
thresholds, and other lower thresholds. The best
way to implement Eq. (12) in order that it gives us
information about the discontinuity across the
O=E —&P —&q' —p q cut for fixedp', q', and

p q is to disperse in E as in A2 and A3. Because
the essential features of the discontinuity of Eq.
(12) are two simple & functions in E, it is trivial
to disperse in E.

We write the dispersion relation for F(E) in
schematic partial wave form. If we assume F(E)
goes to zero sufficiently rapidly as E —~ we can
write a dispersion relation for partial wave F(E)
as

IV. IMPLEMENTATION

f(E,)+ S(E,E,)

Eo —E (15)

In the last section we saw that unitarity alone
forces the quasi-three-body amplitude E to have
important (singular) dependence in two-particle
pair subenergy. This is not surprising if we look
back into the corresponding analysis of three-body
final states. The next question is then how to
implement unita, rity in any four-particle final state
phenomenology.

In order to be able to implement the conditions
of unitarity let us examine the analytic structure of

where P(EO, E2) =0, and hence does not contribute
to the discontinuity of F(E). 5: is arbitrary except
for this condition, and could be included in the
definition of R, but it is more convenient (as was
discussed in Refs. 2 and 3) to keep it explicitly.
The dispersion integral essentially puts the argu-
ment of the 5 function in the denominator and the
numerator becomes as shown in Eq. (15).

From this it is clear that if we disperse the dis-
continuity in Eq. (12) in E, we get

(k IF(E) IP, p') =(k IR(E) lg, p')

d'p" v(2(p" +-,' (p+p')) (k IF(E) lp, p")ve+-'(p" + j5))
(»)' E —P' -P"—P"' —(p+ p'+ p")' - D(E —'P' —'P"' —P' F')--

(k iF(E) i

«I «ll) (p«+ L(«l + «II))

g)(E 2 pll2 2 pl2 p«l p«ll).
2(k IF(E) Ip", —p+ F +p"))v(2(t)- p'))

D(E —2 p"' - 2(|I+p'+ F)'+p" (p" +p'+ p) )-
(16)
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In the first term in Eq. (16) we chose

6'(&~&0) = s 2 3 F2 ii s 2 3 Ia - -y 'U(p + z(p+P )) U(p +2(P +P)) ~

(kl &(&)Ip, p") (kl F(&.)l p, p "&

apart from factors of rr and the phase space inte-
gral. Here

&.= f '+P" +P"'+ ( p+ p'+ p") (18)

This choice is motivated by the fact that in the
final integral equation we wish to get D and E as
functions of E, while the v's should not depend on
E. We write v's as functions of momentum and
not as functions of E because then the left-hand
cuts corresponding to v do not get involved in the
p' integration of Eq. (16) when E is kept fixed.
These choices are of course all equivalent at the
pole so that the discontinuity is independent of
this choice. This ambiguity and our form for re-
solving it is discussed in much greater detail in
the three-body case (A2 and A3). 5 is chosen
similarly in the other three terms. This is
straightforward and we do not give expressions
for 7; we stress that any choice of 5 subject to
the condition F(E„E,) = 0 will lead to an F that
satisfies two-body subenergy unitarity [Eq. (8)j
and analyticity [Eq. (13)J, but our particular
choice also satisfies total energy analyticity. An-
other reason for this particular choice is that we
then get a set of dynamical equations for E and
not just an integral representation for E.

Equation (16) is the "minimal" implementation
of subenergy unitarity and analyticity, provides
a useful phenomenology, and does not contain any
spurious singularities in E. The equation is arbi-
trary to the extent of choice of F. But the simple
choice of P gives a set of equations which is the
full dynamical set for the four-particle system. 4

It has been shown in the three-particle case that
by a prescription similar to this we get the full
dynamical equation for the three-particle system.
We have obtained this set of equations with two-
body subenergy unitarity and analyticity and the
assumption of separable interaction in disguise.
The assumption of separable interaction comes
through the introduction of v's. This assumption
gives a set of equations in F free from spurious
E singularities.

In order to understand the content of Eq. (16) we
make some assumption about (k)R(E)(p, p') and
use the iteration scheme. We take the case of a
decay to four particles with a simple Born term
corresponding to B where one particle decays to
two free particles and a quasiparticle state of
two particles. We show the diagrammatic repre-
sentation of Eq. (16) in Fig. 3(a). Here the

——P
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p + i
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P
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FIG. 3. (a), Schematic representation of Eq. (16).
(b) Representation of the first iteration of Eq. (16).

crossed double line represents the quasiparticle
states of two particles and the circle the propa-
gator (D) of that line. Figure 3(b) shows the terms
we get after the first iteration of Eq. (16). It is
clear that if we make more iterations, we expect
three types of terms. First we have a totally con-
nected four-body amplitude. Secondly there will
be terms where we have a four-body amplitude
times a totally connected three-body amplitude,
and finally we have terms where we have a four-
body amplitude times the amplitude for two inde-
pendent pairs interacting. Typical diagrammatic
representations of these three terms are shown
in Figs. 4(a)-4(c). It is easy to see that all the
terms we get out of iterations of the equation in
Fig. 3 will fall into one of these classes. It is
also clear that this set is in fact a full dynamical
scheme corresponding to starting with separable
potentials in the Schr'odinger equation. We note
in particular that the sum of terms of the kind
shown in Fig. 4(c) is just what is needed to satisfy
the term in unitarity represented by the next to
last term in Fig. 1. It is important to stress that
starting from two-body subenergy discontinuity
and analyticity we derive this set of dynamical
equations for four particles.
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(a)

(c)
FIG. 4. Schematic representation of each of the types

of terms generated by iterations of Eq. (16): (a) con-
nected four-particle terms; (b) connected three-particle
terms; (c) independent pair interactions.

V. SUMMARY AND APPLICATION

We have considered the effects of unitarity, par-
ticularly two-body unitarity, on four-body final
states. We have seen that in the framework of a
sequential decay, quasiparticle, or isobar model,
where the four-body state is assumed to be formed
by decay of two-body correlated pairs or reso-
nances, the amplitudes for forming these pairs
though usually taken as constant (up to kinemati-
cal factors) in phenomenology in fact have square
root branch points, and the discontinuity assoc-
iated with the branch cut for a given pair is lin-
early related to the amplitudes for producing
other pairs. This is a manifestation for four par-
ticles of the "coherence" of the full final state am-
plitude. The unitarity relation permits a quantita-
tive measure of the importance of the singular
part of the amplitude and hence permits one to
determine in a particular case if neglect of the
unitarity effect is justified. If it is not, unitarity
can be implemented by writing a dispersion rela-

tion for the amplitude in terms of its discontinuity.
This gives a set of coupled linear integral equa-
tions for the pair amplitudes. These equations
form the minimal set required to satisfy unitarity
and analyticity. They are also, as are the cor-
responding three-body minimal set, equivalent to
the full dynamical equations with separable inter-
actions. Since they are equations in two vector
variables, even after partial wave decomposition,
they are very complicated to solve. (The variable

' complication cannot be simplified by solving first
the three-body parts unless the three-body solu-
tions are themselves separable. ') Hence the equa-
tions are hard to solve. It is certainly interesting
that the full dynamical scheme emerges from the
limited consideration of only unitarity and analytic-
ity, but it is also sobering that the only way to
implement these constraints fully is to solve the
very complicated dynamical equation that results.
It may be that as particular situations are consid-
ered and as simple cases are attacked, useful
approximation schemes will emerge as they have
to some extent in the three-body case, but for the
present the full dynamics is all we have if the uni-
tarity constraints are important.

We expect these effects to be important for two
classes of strongly overlapping final state inter-
actions, threshold enhancements as one encount-
ers in the nucleon-nucleon system, particularly
for 8 = 0 pairs, and resonance interactions. Thus
these effects could be important in reactions such
as d+d-2n+2P, and other similar reactions lead-
ing to four nucleons in the final state or in reac-
tions leading to a final state such as 2n+P + n
where the nucleon-n resonances play a role. In
nuclear physics one can construct hundreds of
examples, but it remains to test them in unitarity
through Eq. (11) to see if the full machinery of
unitarity and analyticlty is important. In medium
energy physics, and in particle physics, with
pions, the number of possibilities is even more
interesting. We plan to present results for the
relativistic problem separately. "
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