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Moshinsky brackets for light nuclei
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A new formula for calculation of the Moshinsky brackets is derived. As its consequence, simple formulas for
the angle-averaged Pauli projector matrix elements and for the transformed two-particle oscillator wave

functions are given,

NUCLEAR STRUCTURE New formulas for Moshinsky brackets, Pauli projector
and Moshinsky transformed states.

I. INTRODUCTION

The well-known two-particle oscillator wave functions

(r, r, ln, l, n, l, kp& =R„, (&,)R„,, (&,) g &, „...„,I",,„,(&» g,)I",,„,(~» 0,)
mgm2

(see Ref. 1) constitute the basis in the two-nucleon space. In practice'' the eigenket ln, l, n, l, Xp, & is fre-
quently expressed in the relative and center-of-mass coordinates (RCM)

(r r) H=2 (r +r).

The well-known Moshinsky transformation' leads to the expansion

(rHln, l, n2l2kp& =g g, (s, R) pC, ~~~'Y, (3, p)Y'~~(e, C), i =—(n, l, n, I2/Lkj,
l mN

where the partial waves the Pauli projector'

g;(r, R) =P(nI, NL; A. ln, l„n, l;, x),

xR„,(~)R„(R)

may easily be calculated, once the 5 shinsky
brackets (MB) (nl, IVL; X ln, f„n,l„X),are known. "

In the present paper, we shall suppose the re-
striction

2n, +l, ~F

and investigate the possibilities of optimal calcula-
tion of MB. The main motivation issues from the
Brueckner theory' where the condition Eq. (4) de-
fines the occupied (hole) state and where hole-
hole (lhh')) and hole-particle (lhp)) oscillator
functions of the type Eq. (2) are needed to define

q=l-P=q', Plhh'&=Ihh'&,

plpp'& =o.

The oscillator approximation (1) for
l
hh') and

!hp) functions is well founded in light nuclei only:
The value F should be 0 in 'He, 1 ("0), 2 ("Ca)
etc. , so that the formula for MB, optimal for low
F, is very desirable. Such a formula is derived
in Sec. II. It is employed to obtain the formula for
the angle-averaged Pauli projector (Sec. III) and
the expression for the functions of the type (3)
(uncorrelated oscillator wave functions, Sec. IV).

II. NEW FORMULA FOR MOSHINSKY BRACKETS

Our starting point will be the formula derived by
Trlifaj4
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(nf, NL; X ~n, f„n,f;, ~),=(- 1)"~'"""'2 '~"'(1+D ')-"'(1+D) "'
n!n, !n,!1"(n, +l, +3/2)1" (n, +l, +3/2) '/'

P»P2 I-
»/2

( 1 )Xg+1tlg+Nl 2+ Vlg+P2+I / D (X2 Xy) /4(1 +D ) the kg/ 2
X» A2 It

P.m X 2x»

p299t2X2 l» l, X

(2p, +1)(2p, +1)Ck'k Ck,'k Ck k 5(X,+X„l)
(1+D)"&' 2 'in,!I'(p, +m, + 3/2)m, !I'(p, +m, +3/2)

[2 (p, + p, —L) + m, +m, ]!I'[-,' (p, + p, +L) + m, +m, + 3/2]
[n —2 (X,+ p, —&,) —m, ] ' [n, —2 (&, + p, —l,) —m, ]![k (p, + p, —L) + m, +m, —N ]!'

(6)

which expresses MB for any mass ratio D =M, /M,
in the form of the sum over five independent vari-
ables. The summation is restricted by the exis-
tence of factorials, Clebsch-Gordan coefficients'

l3 lgo
C l, l, =-C l,o, l,o

and a 9-j symbol"'

With this intention, we introduce the auxiliary
function WzkD(N, m) by the prescription

( 1)kDu+8-m
W~(~Nm) =

X
r(N+0+ 1) r( N+k +L+ 3/2)

r(N n+/+1)r(N P+/+L+3/2)

I et us suppose that one of the energy quantum
numbers E,. =2n,.+l,. is small. Using the sym-

of MB 9 we p t E» = Emi noma» and intr oduce
new (non-negative) summation variables p, , p, and
v instead of p„P» and X„respectively, following
the prescription

2~+~ ~19 ~» 2V+E» ~»

The triangular inequalities for the triads (p, X,f,)
and (p, p, L ) and the existence of the factorial con-
taining the variable v imply

0 —JU, E„
Om Vmg

Ow Pw P+V

0~ Vl »
~ tg» —V.

Thus the number M(n„f,) of terms in the sum over
p»9 p29 ~» &» and m» is limited by the condition

M(n„ I,) ~ —,', (I, + l)(n, + l)(n, +2)(2n, + Sl, + 6)

and we have M(0, 0)~ 1, M(0, 1)~ 3, M(1, 0)~4,
M(0, 2) —6, . . . . No similar condition, limiting
the number of terms, can be found for the sum
over the remaining index m, . It would be very
desirable to perform this summation in an ex-
plicit way.

and suppose that N + 1 —n 0 0, —1, . . . . It is clear
that for n =P = 0, Eq. ('I) is the familiar binomial
expansion, i.e. ,

W,",(N, m)=1, m O,

W,-,(N, m)=O, m&0. (8)

—m W/~~(N+ 1,m —1),

that enable us to write down the explicit forms of
the polynomials W, e.g. ,

W~~~(N, m) =DN —m,

W~"~ (N, m) = W/'o/, (N +L + g, m),

Wzo~(N, m) =D'N(N —1) —2DNm + m(m —1),

Wg k~(N, m) = W~~~~(N + L + ~k, m),
(10)

Wi~(N, m) =D'N(N+L+ k) -Dm(2N +L+ 2)

+ m(m —1),

etc. (see Appendix). We use this function W in-
stead of the sum over m, in Eq. (6) and after some
elementary algebraic manipulations we obtain the
general formula for MB in the form of the sum

For o. co or P Oo we have the recurrence relations

Wg~"8(N, m) =D(N —n)wg ~~(N, m)

—mwg~~(N+1, m —1),

Wg~k"(N, m) =D(N —P +L + 1/2)w~~~(N, m)
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&1 1 //+v

(nl, NL; X~n, /„n, /2,
.X)D=Q~(N, n) gg X, X, l (-1)~a(v, p. , p)Bn(p, v, , p, N, n),

//=0 P-0

l, l, x

(1+D)")" " I'(3/2)b~(m„N, n)~, m, !(n, —v —m, ) I I"(p, +m, + 3/2)
'

Here, the quantity (t) denotes the normalization factor

P~(N, n) = (- 1) ' 'a ' ') ' '6 (2n + l + 2N +L, 2n, + l, y 2n, +l,)

B"""'"~ ')' ' n, !n !I'(n, +/, +3/2)1'(n, +/, +3/2) ' '
(I +B)(2ng+ll+2 le)i 2 n!N!I'(n+l + 3/2)1 (N +L + 3/2)

the Clebsch-Gordan coefficients are contained in

»(», )», P) =(-()"(2(+))(2(,»()(2P, »()(2„
1

and the factor b~(m, ) is given in terms of the auxiliary function W

nt
(tl —s~+ v+ Pl ~+@~)1

(/, = min(N —p —m„0).

The same factor bn(m„N, n) will be obtained with (/, =0: This property follows directly from Eq. (9),
when we define the sum (7) for integer o. &N by restriction k o) —

¹ Thus, with respect to N, n, the func-
tion b~(m„N, n) is a polynomial. Since the degree of this polynomial is equal to

o)+P+n) —v —mq =nq+m) + p ~ 2nq+lq =Eq,

the short table of W [e.g. , Eq. (10) for E,~ 2, i.e., for nuclei up to "Ca] is entirely sufficient for its evalu-
ation when E, is bounded. In computer code, the further summations are hidden also in the calculation of
9-j and a(v, p, p) coefficients. We should employ all possibilities of their reduction (c.f. / =0 in Ref. 4).
Since a significant simplification always takes place for the lowest E„we now add the reduced forms of
Eq. (11)with E, = 0 and 1.

In the case of n, =l, =0, the sum (11) reduces to one term. We get

(n/, NL) ~ IOO, n, /, ; X)n= Q~(N, n)
2/ I (- I)'6„, C,', .(2l pl)(2L+ I) "'

(12)
2+

It is interesting to note that (nl, NL; X ~n, l„00;X)D~ 0.
The next energy shell has the quantum numbers n, =0, l, = 1 and the number of terms in Eq. (11) is equal

to three. We get

Ll A, lI z lI
(n/, NL„. ~~01,n, /, ;X),=y, (N, n)[-.'(2/+I)]"' a +b +c

1 l, l —1 1/, I —1 1l, I +1
(13)

where

a=(-1) C~2, ,((2L+1)(2/y1)/(2/ I)}'~', b = (- 1)'2C~' „(4L(2L —1)j'~'[D(N+L + g) —n],

c = (- 1) C~„,(4(L + 1)(2L + 3)]'I' [n -BN],

and(. ::Jdenotes the 6-j symbol. Similar formulas may be written also for E, =2; the use of the algebra-
ic tables makes possible the evaluation of angular coefficients (for E, 2) in a square root form.

III. PAULI PROJECTOR

In order to avoid the coupling of equations for the reaction matrix in the Brueckner theory, ' the Pauli
projector (5) is often approximated by its angle-averaged form, ' defined as
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Q = 1 —g inl, NL) g w„...„...PP~,'z(n, l, n, l,) (n'l, N'I ~,
nn'l —n1/1n2l2
NN'L

where

Pg,'z(n, l„n, l,) =
2L 1 2l 1 (nl, NL; Kin, l„n, l„'X),(n'l, N'L; Kin, l„n, l„' X),

(2x+ 1)
NNL 1 It 2 2 2L+1

(14)

(15)

and ~„,„, corresponds to occupation probability. In this section we suggest, in the evaluation of Eq. (15),n1 1n2
the use of the explicit formulas based on Eq. (11).

The first argument in favor of such an approach is valid for all nuclei: The summation over X may be
performed in an analytic way. From Eq. (11) we get

PP~li(n, l, n, l, ) = @,(N, n)@,(N', n') Q a(~, p, p)&, (v, p, p, N, n) Q a(~', p, ', p')B, (v', p', p', N', n')
Vi? P VgP

~l ~l 2 ~2

x (2l+1) '(2L+1) ' p, y, p,' Z,', (16)

Ll, l, l
+ ~ ~ ~ ~

where, .'..". denotes the 12-j symbol of the second kind. The 12-j symbol introduces nontrivial restric-
tions (e.g. , triangular and quadrangular inequalities) into sum (16).

As the second argument, let us demonstrate the efficiency of this approach in more detail for nuclei up
to "O. For n, =o, l, = 1 we get the special form of Eq. (16) from Eqs. (13) and (15)

Q, (N, n) Q, (N', n') Ll ~ Il
PÃN'L(0 n. l2)= '

3 2
'

1
' -p (2&+I) a' +a(&+&') + ~

l, 1l-1 1l, l-1 l, 1L —1

The sum over X may be evaluated in terms of 6-j symbols again. Using the formulas of Ref. 5 we finally
get

Pg"„", (ol, n, l, ) = ' ' ' ' + + -( [(l, +L)' —l'][(l, + 1)' —(l —L)' J)'i'

x C 2, ,C~'»[D(N+N'+2L+1) -n -n']

—([(1+L + 1) —l2 J[(l +L + 1)' —(l2+ 1)']J'i CI, ,Cz„» [D(N+N') —n —n']

where the symbols a, b, c are given in Eq. (1.3).
An even more elementary formula is obtained in

the case of n, =l, =0, namely

P„""„",,(OO, n, l,) =y, (N, n)y, (N', n )(C,',)', (18)

because the Kronecker 5 entirely eliminates the
angle averaging.

The results may then be inserted into the defini-
tion (14) of P, where the factor zo„, „, should ben1 1n2
calculated in a self-consistent way. For a magic
nucleus, occupation probability may be assumed
to be fixed. ' The choice

zv =6 6 +6 5 —5 6 6n1l&n2l2 n10 l1 0 n2 0 l2 0 n1 0 l& 0 n20 l2 0

(19)

corresponds to 'He. Let us use this nucleus as an
example: For convenience, we put ¹

=N and l
«L, l —L =q and get

(nl, NL
i

1 —Q in'l, NL)

(2 6„,5„,5, ,5, ,)I'(3/2) 2 '
""4"'"' I'(n+l+3/2)I'(N+L+3/2)

l OO)=6„„,6„, (21)

x g (n+ N+L —m)! I'(n+ N+l +m + 3/2)(C2i~")'.
?n=o

(2o)
The other cases (N'4N, l (L) are quite analogous.

Even from the physical point of view, the ap-
proximation of Q by its diagonal part is considered
to be reasonable since it leads to further decou-
pling of the Bethe-Goldstone equation (see Ref. 1).
In the first order calculation of 4He, it is then
necessary to consider just N=L =0. Since formula
(20) in this case reduces to the elementary ex-
pression
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there is no trouble with MB at all. The situation
in the next shells may be treated in a similar way.

IV. UNCORRELATED WAVE FUNCTIONS

A. Moshinsky transformation

In Ref. 7, the method of calculation of the
Brueckner correlated function

~
() with exact treat-

ment of Pauli projector Q [Eq. (5)] was suggested
and described. The method is based on the know-
ledge of the uncorrelated oscillator wave functions
of the hole-hole ~hh'} and hole-particle hp) type
in RCM variables. Since these functions may be
of more general interest, we shall now show their
compact form that may be derived from formula
(11). Referring to the angular momentum coupling,
as discussed in Ref. 7, we confine ourselves to
radial parts, functions (3).

Our present aim is to show how the summation
over oscillator quantum numbers n and N may be
performed. According to Eq. (11), the explicit n,
N dependence of MB is of the type
(nl, NL; X n, l„n, l, ; X)D =polynomial (n, N)
x (t)~(N)n) =p;(n, N)QD(N n) )where the composite
index i ={n,f,n, I, ILK) determines the form of the
polynomial

P, (n, N ) = (nl, NL, X
~
n, I„n, I,; X)~/Q D(N, n)

p, P, L

=Q( I)'a(v, p, p) &, &, &

&0 P

l, l, x

The second important observation is that the re-
lations

a„„(r) a„„(r) a„(r) a„,(r)
(n+ 1)! (n + 1)! n! (n —1)! (2'I)

enable us to lower the degree of the polynomial P,
in Eq. (26). In general, the summation (24) over n,
N may thus be reduced by Eqs. (25) and (27) to
four basic types of sums:

q( )
2)+n(, (+n)+2Q 2l)()g( 2)

(2l + o. )!(2Q —2l + p )!'

g=1, 2, 3, 4,
c/, c/, P, —P4 —I) —n, —-o', —P, —P, =p.

(28)

Application of the addition theorem for Hermite
polynomials' —the last important step —leads to
the evaluation of functions (28). For physical rea-
sons (equal masses of nucleons) we put D = 1 and
have

that follow from the properties of the Laguerre
polynomials. ' Then it is sufficient to investigate '

the l =I =0 case only. Employing the relation be-
tween the Laguerre polynomial with l = 0 and Her-
mite polynomial' we obtain

0)0(r' R')= Q z"p, (n-a, N-b)1 )/

wrR

„a,„„(r)a,„.,(R)
(2n+1)!(2N+1)! '

(26)

x8~(|), !/, , p, N, n) (22)
2~ x+x

of degree E,=2n, +I,. Inserting this into Eq. (3),
we get

g, (r, R) = const x r 'R ~ exp [- 2 (r '+ R')](/),'0)~ (r ', R'),

where the functions

p.',"(x,y)= P P, (n-a, N-b)
n+N=M

L )))/ 2(z)L 1+1/ 2 (y) z )()

X n (24)I'(n+ I + 3/2) I'(N+L + 3/2) '

z =D, M=n, +n, +2(l, +I, —I -L)
are to be simplified here and L„(x) denotes the
Laguerre polynomial. '

The first important property of sum (24) is the
validity of the relations

+(—))"))„,(
' '), (29)

M, =2@+o.,+ p, .

The generalization for 041 is straightforward.
We do not intend to overload this paper with

formulas that follow immediately from the de-
scribed method. Let us give only the simplest re-
sult (F =n, =l, =l =L =X=0)

q„(r,R)

, ( (2n,)!!

x{L-»'[-,'(r -R)'] -L "'[-,(r+ R)']] (30)

Using differentiation (25) we get from Eq. (30) the
whole set of uncorrelated functions needed in 4He.

(25)

8. Transition to the momentum variables

During all the preceding text we have supposed
that the variables r„r, denote coordinates of the
nucleons. Then the interpretation of RCM vari-
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ables r, R (for D = 1) is evident. Nevertheless,
other choices of RCM variables are very desirable.
Since the Fourier-Bessel transformation changes
only the phase factor of the oscillator wave func-
tion we may as well consider r„r„r,8 in Eqs. (1)
and (3) to be particle and HCM momenta. , without
any changes in formulas (up to the overall phase
factor).

A different situation arises when we perform only

one transition from the coordinate into momentum
space; single Fourier-Bessel transformation of
Eq. (24) provides a new uncorrelated function of r
(relative coordinate) and K (total momentum). The
change of phase factor and R =K variable in Eqs.
(23)—(27) results in equivalent formulas with the
different choice of z, z = -D = —j.. The addition
theorem provides the analog of Eqs. (28) and (29)
in even more simple form:

g / Q- ( 2l+0!' ( 1)+2Q-2 j+p ( 2)

(21 ) t(2q 21 p )t t

Be(P"~) —
q Im(p "~)

2t+1( 1t 2) (~ 4 ) t S2t+2( Itx2) /~gj ~ g/ ~

(31)

where P =2(x, +ix, )
Since the differentiation reproduces the set of functions (31), the results for E,&0, l &0, L &0 may be

derived readily using Eqs. (25) and (26).
As an example the uncorrelated function of the 'He nucleus for / =I =0 is given here in final form

$„(r,K) = Q (nO, NO; 0 ~00, n,0; 0),R„,(x)R~,(K)(- 1)"= 2 exp [- (r '+K')/2] lm[(K+i~)'"2" ]
n+ N=n xK 2n, +1 '. m

' 'n, +l"' -n2
(32)

which is a remarkably simple analog of function
(30).

C. Numerical aspects

The use of Eqs. (11)—(13) in numerical calcula-
tions should shorten the calculation time and in-
crease precision, especially for n2»n, . The last
point may be demonstrated for D = 1, ny l y 0 by
comparing both sides of Eq. (7) when c/=P =0, m
=n. For n =20, eight significant digits are lost
in Eq. (6) since 2 "=10 ' and max(~)2 ' =6 x 10' for
k =0, =[-', (n+ I)] =7.

Let us finally touch on numerical questions con-
nected with evaluation of the functions S~@(x„x,)
=—p„(x„x,) in Eq. (31). The simple recurrence
relation

(33)

may be used; it defines the functions S, = p2Q„,
S, =&2Q for initial values

y, (x„x,) =1, p,(x„x,) =2x,

and the functions

Q Q
02Q+2V ~4 +2Q+1

for the initialization

9 p(xg) x2) = 0~ 9 ] (xy) x2) = 2x2.

The proof makes use of the recurrence relations
valid for Chebyshev polynomials, ' since

2
SQ(x x ) — (x 2+ x 2)&g/2 T [x (x 2+ x 2)-&/2] g 2f + I t 0 I

g ~

(34)

where T„(x) and U„(x) denote the Chebyshev poly-
nomial of the first and second kind, respectively.

The numerical stability of relations (33) may be
discussed in a standard way (cf. , Ref. 9) and
proves to be entirely satisfactory. The absolute
error ~ of the function calculated for large n di-
minishes as I/n. For low n it is bounded by
exp[n, + 1 —1/(2n, + 2)] where p = (x,'+ x,') '/'
= 2[n, (n, + 1)]'/'exp[1 —1j(2n, + 2)]. For large p,
the relative error h jp is estimated by 1/1 (p) and

is negligible. The comparison of numerical results
of the recurrent and direct calculation of the 4He

function (32) is given in Table I. The zero values
(for n, odd) are well reproduced (12 digit arithme-
tic is used) by the recurrence relation, which
confirms its stability.

We may conclude that the recurrence relation
(33) represents an adequate tool in the numerical
evaluation of the hole-hole and particle-hole un-
correlated wave function.
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P.l 20 1.929 x10 "
21 0
22 -3.725x10 6~

4x10 " 1.04x10 "
1.909 x10 '4 1

18 x 10-» 2.42 x 10-»

TABLE I. Numerical test of the recurrence relation
for uncorrelated function. For r =E, the recurrence re-
sult P„ is compared with the exact value P&, as given by
Eq. (32). The absolute and relative difference are de-
noted by ez= ( (!)„-4«Iand as= eJ~ g„i i!)«(, respective-
ly. Twelve digit precision is used.

(2) The dependence of MB on oscillator quantum
numbers n, N is such that analytic summation may
be easily performed. Details are given of the me-
thod for direct Moshinsky transformation, without
summation over MB and oscillator functions. In
this way a very useful basis is constructed, in-
stead of the harmonic oscillator one, that may be
used not only in the Brueckner theory, but also in
all shell model oriented calculations.

APPENDIX
1 0
2 —1.p11x10 '
4 4.410 x 10 3

20 7.167 x10 "
21 0
22 -1.384 X 10
40 9.247 x 10
41 0

-5.059 x10-'4

1 0
2 —2.384X10 '
4 6.504 x 10

20 2.461x1p 3

21 0
22 -2.970x10 '
40 2.888x10 '
41 0
42 -9.874x10 6

5.000x10 "
0

1 X1P 15

34x10 33

7.273x10 3'

6x1p '5

63x1p 63

8.570 x10 63

44x10 66

7.500 x 10
5 x 10-21

1 X 10
3X10 &5

4.773x10 '4

0
0

5.475 x 10-~6
11x10-«

1
0

1.13x10 "
2.37 x 10-~2

1
2.17x1p "
3.41X10 '2

1
4.34x10 ~2

1
1.05 x 10-"
7.69X10 '4

6.09x10 &3

1
0
0
1

5.57x10 ~3

I'(n+L+3/2)
I'(n —k+L+ 3/2) ' (Al)

with a restricted number of terms [~ a(n, +I,
+ 1)(3n, +I, + 2)]. It reduces to a simple sum for
one of the upper indices equal to zero:

The function W may be written also in the form
of a double sum

/ m)
W~sD(N) m) =Q (- 1)~ ' D'lD

( N )(P)
xP (y —k)!

k 0 S—

V. CONCLUSIONS
W~so(N, m) = W~D(N+L + k, m) (A3)

The new formula for Moshinsky brackets is to be
used in practice whenever one of the energies is
bounded by fixed value F. The summation in the
well known formula Eq. (6) given by Trlifaj is sub-
stituted by the tabulated polynomial, e.g. , for F =2
(i.e., in the 4'Ca nucleus), three polynomials of
first and second degree [Eq. (10)] are needed. A
few terms survive in the remaining sum (for "Ca,
maximum is six terms); the calculation should be
very quick. Moreover, loss of precision is re-
duced.

However, the main advantage of compact analytic
formulas for MB (special cases of the general
formula are given here for F =0 and 1) is to be
found in the clear parameter dependence.

(1) It is possible to perform X averaging in an
explicit way. This is done here for the Pauli pro-
jector.

The proof of Eqs. (Al)-(A3) may be performed em-
ploying Eq. (9) and mathematical induction. The
use of the consequence of Eq. (9),

W~oa" (N, m)

=D(n —P+L+ ,')W~~(N, m)+W—gD" (N& m),

(A4)

and relation (Al) in the form

' (p) k I(niLi3/2)
r(n —k iI. i 3/2)

xW ' '(N m)

simplifies the proof considerably when performed
for growing P and arbitrary n in (Al).
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