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The Kouri-Levin K-matrix formalism for multiparticle scattering is examined in the particular case of three-

particle scattering. It is shown that in order for this method to generate transition amplitudes satisfying

unitarity, much more stringent constraints must be imposed upon the K operators in addition to the zero
discontinuity condition. The imposition of these constraints seriously limits the usefulness of this formalism as

a unitarization technique; this conclusion holds for multiparticle scattering as well. The relationship of the
Kouri-Levin method to other realizations of the K-matrix idea is studied. In the three-particle case it is found

that the Kouri-Levin method is not preferable on grounds of simplicity to any of the extant techniques even

ignoring the constraints required in addition to the zero discontinuity condition.

NUCLEAR REACTIONS Channel coupling array theory, K operators,
unitary~approximations.

I. INTRODUCTION

Approximation methods for multiparticle scat-
tering processes abound although most of these
have been formulated and justified mainly upon
intuitive grounds. The availability in recent years
of several sets of well-defined integral equations
for nonrelativistic N-particle scattering' presents
the opportunity of developing approximation pro-
cedures in more systematic ways than had been
possible pr eviously.

Among this new generation of relatively well-
founded techniques is the K-matrix formalism
developed by Kouri and Levin (KL) in connection
with their interesting and unified method for gen-
erating connected-kernel multiparticle scattering
integral equations. ' The essential features of the
KL approach are independent of particle number.
Therefore, the three-particle realization, which
was recently developed in detail by Kouri, Levin,
and Sandhas (KLS),' serves as an instructive ex-
ample of the suitability of this K-matrix approach
to arbitrary scattering processes.

The work of Befs. 2 and 3 reveals that the use
of the channel coupling array trick for formulating
scattering integral equations leads to a K-matrix
formalism which is quite distinct in several re-
spects from those based upon a Faddeev-type
approach. ' ' The primary difference, however,
is that the latter are completely well-defined uni-
tarization techniques while the former, as origin-
ally proposed, is not.

It is stated in Refs. 2 and 3 that the introduction
of K operators with zero discontinuities across
the unitary cut(s) will, by means of an appropriate
set of Heitler (damping) equations, generate a set

of scattering amplitudes satisfying the correct
multiparticle discontinuity relations and, pre-
sumably, thereby multiparticle unitarity. We find
that without the imposition of further and nontrivial
constraints upon these K operators both of these
statements are false. The reason for this in the
three-particle case is the fact that above the
breakup threshold those scattering amplitudes
which correspond to processes with three-free
particles in the initial and/or final states do not
have direct identifications with the T operators
generated by the KL Heitler equations. Similar
difficulties evidently realize in the general multi-
particle case S,s well.

Apart from the preceding, we also establish
that the apparent simplicity' of the KLK-matrix
approach relative to other methods' ' is illusory.
Moreover, the imposition of the required con-
straints upon the K operator will, in general, in-
crease the complexity even further.

In Sec. II we develop the coupled channel array
formalism in a somewhat different manner than
in Refs. 2 and 3. This is done to facilitate the
detailed discussion of the KL unitary program in
Sec. III. Finally, in Sec. IV we compare the di-
verse K-matrix approaches which have been pro-
posed for multiparticle scattering.

II. COUPLED CHANNEL ARRAY EQUATIONS

Of a,ll the various formulations of three-particle
scattering the one proposed by Alt, Grassberger,
and Sandhas (AGS)" possesses the most symmet-
rical structure. This attribute is singularly use-
ful for discussions involving unitarity and to this
end it is convenient to rederive the work of KL' ' "
42
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in AGS form.
The AGS scattering operators U8„(z) are defined

in terms of the full Green function,

Uoo=f ~ U),o-5~oGo '

=Uo~f~-5~oGo '.
(2.4a)

(2.4b)

and the channel Green functions,

G„(z) =(z -ff„)-',
by

G(z) = G, (z) 5, „+G, (z) U, „(z)G„(z) (2.1)

The G, ' terms in Eqs. (2.3) and (2.4) will make
no contributions to the relevant on shell scatter-
ing amplitudes.

The limits of any operator, 8(z), which is a
function of z, on either side of the real z axis
are denoted by

for ~ =0, 1, 2, and 3, where the channel index no-
tatjon is standarde, s, m, x2 and g is a complex param-
eter. The complete HamiltonianH can be decom-
posed in terms of the channel Hamiltonians &„
and the residual interactions V, such that

which holds for all n. For the sake of simplicity
we confine ourselves only to pairwise interactions
V~ with V, =O. Then

&m=ap+ Vn

where Bp is the kinetic energy operator,

where Z is a real energy; the discontinuity across
this axis is, therefore,

&8 =-8(+) -6(-) .
Since G(z*) =G(z)t, we see from (2.1) that

U, „(z)' = U, (z +),

which means that the U's satisfy the Hermitian
analyticity conditions

(2.5)

The on shell'4 discontinuity relations for the U's
follow immediately from Eqs. (2.2):

and 5n8 =1 —$„8
Equations (2.1)for all o. , p imply that the Uz „(z)

satisfy the AGS integral equations:

b, Us„= —2fw QUsy(+)DyUy„(+),
y=o

where

(2.6)

Us„(z) =5z„G (z) + Q 5zy VyGy(z) U„„(z) (2.2a)

=5,„G,(z)-'+ g U&, (z) G, (z) &„5„. (2.2b)

It is clear that the zero-indexed operators" Up+

and U6o, n, Pg0, can be regarded either as depen-
dent quantities derived from the Uz „with n, P &0
or as autonomous objects defined by integral equa-
tions. Both options are useful. Note, however,
that Upp is def ined entirely in terms of the other
U's. The following identities are useful in this
connection:

the channel states
~ y„(q„,Z~)) are eigenstates of

H„and q„refers to any other labels needed to
specify the asymptotic configuration including the
enumeration of the various bound states of the
relevant pair of particles. Equations (2.5) in con-
junction with Eqs. (2.6) imply the constraints im-
posed by unitarity on the scattering amplitudes.
The fact that the discontinuity relations (2.6) alone
do not suffice to ensure unitarity is highly pertin-
ent to our subsequent discussion.

Next, let us introduce the coupled channel ar-
ray' ~'" of real numbers Wzy which satisfy

Uon=(5ou-5~n)Go '+f), U~n

Uso =(5zo —5zg) Go '+ Usaf g

which hold for all n, P, and X, where

f~=(1+l'K~»

In particular, we note that

(2.3a)

(2.3b)

Two distinct types of W arrays have been employed
in the three-particle case.2" In the first in-
stance A. and y are allowed to range over only 1 to
3 while in the second case this restriction is not
imposed. Until indicated explicitly we do not dis-
tinguish between these two cases.

The c, , P degeneracy in definition (2.1) can be
exploited to derive integral equations for the U's
distinct from (2.2). We find, depending upon the
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use of the index A. on W&»
"» that then Eqs. (2.7b) can be rewritten in the compact

form
UB„= 5BuGu '++5ByVyWyu++5B V W G, U,„

y&a
U=5G '+ VW+ VWGU (2.7b')

or

(2.7a) Corresponding to (2.7b') we define T, as the solu-
tion of

UB„= 5B„G„'+V W)u+ V Q WqyGyUyu. (2.7b)
T2= VW+ VWGT2

= VW+T~GVW.

(2.12a)

(2. 12b)

We assume, henceforth, that the arrays are such
that Eqs. (2.7) are well-defined integral equations.
The properties of such arrays have been studied
in detail by Kouri, Levin, and Tobocman. '"

In the case of (2.7a) the only acceptable choice
for W& is found to be '

(2.8)Wx) =&~y

Using (2.8) Eqs. (2.7a) reduce to the AGS equa-
tions (2.2). For (2.7b) several choices of W are
possible. ""However, whatever the choice of the
W array, provided Eqs. (2.7) are well-defined in-
tegral equations, the U's determined by the latter
are precisely the same operators appearing in
Eqs. (2.1) and (2.2). This is in contrast to the
pperators T~~ introduced by KLS' and KL" and
defined below. The latter operators are different
for each choice of a W array.

Let T, be the solution of

T»= 5V+5VGT»

= 5V+T G 5V,

(2.9a)

(2.9b)

where we have introduced a matrix notation with
respect to the channel indices:

(Ti)su=Ti" (V)Bu=VB5Bu

(G)B u =GB 5&Bu(5)Bu 1 5Bu.
In this notation the AGS equations become, e.g. ,

U= 5 Go + 5VGU,

so we see immediately that

UGO V. (2.10)

A somewhat more useful expression for U in terms
of T» is

U=T»G OG,-'+~G,-'. (2.11)

From either (2.10) or (2.11) it is clear that U and

T, are half-off-shell equivalent for those reactions
initiating from ~0 channels. We note that all of
the T," for o, WO correspond to scattering ampli-
tudes and that T, ' vanishes for all P.

If we let

(V)B =V 5Bu

(W)Bu =W~u

Comparing Eqs. (2.7b') and (2.12) we see that

U=T2G(1+5)G '+5G (2.13)

or, in component form,

UBu=g T2~G, Gu '+5BuGu ' (2.13')

It is obvious from Eqs. (2.13) that for all reactions
initiating from a channel zg0, U8 and T," are
half-off -shell equivalent.

The operators T» satisfy the discontinuity re-
lations

n. T, ,= —2zm T, ,(+) DT, ,(+),
where

D =Du5uo+f u(+)Dof'(+) ~

(2.14)

Unlike the discontinuity relations (2.6) for the U's,
above the threshold for breakup (2.14) always in-
volves off-shell matrix elements of the T's. Also,
except on shell, the T»(+) do not satisfy a Hermi-
tian analyticity relation. These two circumstances
are distinctive features of the KL unitary pro-
gl am.

III. KOURI-LEVIN UNITARY PROGRAM

Kouri and Levin' have proposed a unitary pro-
gram for multiparticle scattering based upon the
introduction of a K-matrix formalism; the de-
tailed realization of this program in the case of
three particles is considered in Ref. 3. However,
the essential aspects of any unitary program which
is based upon a set of generally approximate in-
tegral equations for the KL T operators consist of
the following:
(1) There must exist definitive connections be-
tween the T's and the various scattering opera-
tors, i.e. , those operators which on shell are to
be identified with the appropriate scattering amp-
litudes;
(2) if (1) is assumed, then the off-shell discontin-
uity relations (2.14) must imply the satisfaction of
the on-shell equations (2.6) for the scattering op-
erators;
(3) the definitions of the scattering operators in
terms of the T's must be such that the constraints
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(2.5) are satisfied on shell.
Given the connections (2.11) and (2.13) between

the U's and the T's and the stipulation that these
operators satisfy their relevant (exact) integral
equations, it is straightforward to show that con-
ditions (1)-(3) are satisfied. o However, this is
not the situation of interest relative to a unitary
program. Rather, one is concerned with the cir-
cumstance where the T's are, in general, approxi-
mate. In this case the arguments of KLS' are
inapplicable and the entire unitarity question must
be reconsidered. It is convenient to do this sepa-
rately for the two cases of the three- and four-
coupled-channel arrays.

Case (i): Three channels

In this case the indices on T " and 5'z run only
from 1 to 3. Also it is unnecessary for us to dif-
ferentiate between T, and T,.

%e identify

&@el Us (~) I y.&
= &yol T'"(')

I y.& (3.1)

on shell for n, PgO. We also assume that the T(+)'s
satisfy the discontinuity relations (2.14). There
remains the question of defining the various zero-
index scattering operators in terms of the T's.

%hen the U's and the T's are the exact solutions
of their defining integral equations Eqs. (2.2) and
Eqs. (2.9) and (2.12), respectively, it follows that

3

a

(3.5c)

&P, I U„I @,& = g&y, I U„(~)f", I y,&. (3.5d)

Uo (')-=Ts'(~), P, »n,

Uo„(~)—= T~ „(+), n eO,

(3.7a)

(3.7b)

U„(~)=-QTs8, (~), p~o, (3.7c)

It is evident that Uo„(X) can be regarded as inde-
pendent of X when it appears in on shell matrix
elements of the form (3.5a) and (3.5b) and there-
fore in (3.5d).

Our subsequent work is simplified by the
introduction of the operators:

(3.6a)

(3.6b)

(3.6c)

(3.6d)

Then in accord with KLS' and Eqs. (3.1) and (3.5)
we identify for the purposes of the unitary pro-
gram:

Uon=Uou(~)+fz 5~a+QT"G~5)a Gn '
y=Z

(3.7d)

U„=G,-'+ g T'&f"„p~O,
y=l

U„= QU„(X)f", -G, ',

where

n, x go, (3.2a)

(3.2b)

(3.2c)

where t is the two-particle transition operator

t =V +V G&V

We see that the disconnected parts of Uoo(+) are
correctly reproduced. A crucial part of the pre-
ceding identification prescription is the supposition
that, as it appears in Eqs. (3.5), Uo„(X) is indepen-
dent of X. Thus, in writing Eqs. (3.7) we have
simply set A. =n in which case

Uo„(&)-=Gq„Go '+ f~), T~, A. , gnO.

Equations (3.2) and (3.3) imply that

fe Uso=Uoo+5aoGo '

(3.3)

(3.4)

Pa

Uo„=fo T„„+G o

The presumed A. independence of 0'o„(X) implies,
however, the following constraints upon the T's:

which holds for all p; the validity of (3.4) is in-
dependent of whether or not the U's satisfy the
AGS equations.

On shell we have

T~ (')=5&.G.(&) '& +T'. (+), (3.8a)

~~ „(&)= 5 )„„[G (+) ' + t„(~)]+ T „„(~). (3.8b)

Then it is easily deduced using Eqs. (3.7) and (3.8)
that if Eqs. (2.14) are valid then so are Eqs. (2.6)
for the on-shell matrix elements of the scattering
operators defined by Eqs. (3.7). We remark that
the G, ' terms in (3.8b) and (3.8c) are not essen-
tial to this proof since these terms vanish on shell.

&y, l U,.ly„& =&@,I U,.(~) I y„&, n, ~+6, (3 5a)

&y, l U. f" I @,& =&@,I U, (&)f'I y, &,

(3.5b)
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The Hermitian analyticity requirements (2.5)
impose the additional constraints on the various
matrix elements of the T's:

(3.9a)

and

T =V + VG Ty~l y yy=1

(3.9b)

(3.9c)

The final step in the KL unitary program con-
sists in the introduction of a K-matrix formalism
for the operators defined by Eqs. (3.6). One of the
appealing features of the KL formalism is the
relative ease by which this can be done for the
operators T». The latter satisfy Eqs. (2.9) and

(2.12) both of which can be written in the generic
forms

T = Z+VGT

= 'U+ TG'U.

(3.10a)

(3.10b)

The Green function G(+) can be decomposed mto
its principal value, G, and 5 function, D, parts:

6(+) =G +i~D.

If we define K as the solution of Eqs. (3.10) with

G replaced by G we see that AK = 0 and in addition

T(+) =K+ imKDT(+)

=K + in T (+) DK .
(3.1 la)

(3.11b)

Case (ii): Four channels

We now l.et the indices on the T's and W's run
from 0 to 3. There are a few minor differences
in detail. but the major conclusions concerning
the unitary program are the same as in three-
channel cas e.

The case of T, is entirely trivial since

T,"=0

Obviously for any operators Ke„such that
&KB =0, Eqs. (3.11) generate T operators sa-
tisfying Eqs. (2.14). Unfortunately, that is not
quite good enough since Eqs. (2.14) do not, by
themselves, ensure unitarity.

The completion of the KL unitarity program
consists in the stipulation that the KB be such
that in addition to 4KB =0, the solutions of Eqs.
(3.11) satisfy the constraints embodied in Eqs.
(3.8) and (3.9). It is not at all obvious, however,
what constraints, in turn, must be imposed upon
the input Ks„ in order to guarantee this. At this
point, however, it is clear that the KL unitarity
program is far less simple than it initially appears
to be.

U „=U „(A)+f 5 + T &Qy5y„G„
y=o

(3.2a')

where

Uo„(")= (6g„—50„)GO '+f ~ T2 ".
In place of (3.2b) we have, for ail p,

3

U80-580GO '+ T2' "y
y=o

(3.3')

(3.2b')

For U,o we can use (3.2b') for P = 0 or, alternative-
ly, we find that

3

Uoo= Q Uoy(X) fy
y=o

(3.2c')

From (3.2b'), (3.2c'), and (3.3') one again ob-
tains Eq. (3.4).

The on-shell equations (3.5) remain valid with
minor modifications. Equations (3.5a) and (3.5b)
now hold for any A., the sums in Eqs. (3.5c) and
(3.5d) now run from 0 to 3, and (3.5c) is true for
all P. We infer that

,U„(~)= ,U„( )0= ,T"o, o. ~O,

when U«(A. ) appears in matrix elements of the
type (3.5a) and (3.5b). However, the generaliza-
tion of (3.5d) implies that (3.12) holds for all o. ,
so

(3.12)

fL T x. (x 5 G 1+fL T (xlx

= V + T,yGy5y V„
y=l

so that the T 8" for o. , P e 0 are uncoupled from
the zero index T~ operators and as a consequence
the former are precisely the same as in the three-
channel case. Thus, the extension to four chan-
nels in this instance is trivial. We remark, how-
ever, that

T,'" = 5g „V +fLy T, "
which for all purposes of the unitary program is
identical to Uo„(A.).

The extension to four channels does lead to
something new in the case of T,. Here all the
components T, are coupled and for ~, P40 these
operators are distinct from the corresponding
quantities in the three-channel case. Nonetheless,
Eq. (2.13') assures us that the identifications
(3.1) remain valid.

The counterpart of (3.2a) is, for all n and A. ,
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We retain the form of the identifications (3.6)
in the four-channel case. However, in view of
the fact that fo =f", =1, in order to avoid a re-
dundancy in the zero-index case we take the ma-
trix D to be

(D)s„=58„5,„D„. (3.13)

With this understood the identifications (3.7) hold
precisely as they stand except for the summations
in (3.7c) and (3.Vd) which now run from 0 to 3.

The constraints (3.8) take the same form as
before. Then the proof of Eqs. (2.6) for the op-
erators defined by (3.7) assuming the discontinuity
relations (2.14) follows just as before. The Her-
mitian analyticity constraints (3.9) and the K
matrix equations (3.11) retain the same forms.
All comments concerning the KL unitary program
made in connection with case (i) apply to the four-
channel case as well.

IV. E-MATRIX EQUATIONS

We now elaborate upon the K-matrix formalism
of Refs. 2 and 3 and compare it with other tech-
niques. ' ' We define, analogously to Eqs. (3.6),
the operators

K =- DKD,

Ki(+) =fi(+) KD,-
K«(~) = DKf"(+), -
«(~) =f (+)Kf (+)

and, in addition,

«(+) -=f'(+)Kf"(+).

(4.1a)

(4.1b)

(4.1c)

(4.ld)

(4.1e)

D is defined by Eq. (3.13) and therefore (3.6) and
(4.1) apply for both three and four channels. In
either case, the Heitler equations (3.11) become
in terms of the operators (3.6):

T (+)=K swimK "T "(s)+iwK"(+)D T (s)

(4.2a)

= K'&+ i~T'"(+)K'"+z~T"(+)D, K'(+),

(4.2b)

Ti(a) =Ki(a)+imK (a)T "(a)+in (+)«D, T (+)

(4.3a)

=Ki(a)+imTi(a)K "vim7'(+) D, Ki(w)

(4.3b)

T«(a) =K"(a) vinK "T"(a) +iwK" (+) D, v(x)

(4.4a)

= K"(a) +in Ti"(+)K"(+) +in T"(+)D, «(+),

(4.4b)

7(x) = «(a) + imK (x) T"(x) + iw«(+)D, v(x) (4.5a)

= «(+)+iwTi(+)K"(+)+iwr(+)D, «(v). (4.5b)

Equations (4.2)-(4.5) and the identifications (3.7)
constitute the K-matrix formalism of KL and KLS
for a given input defined by Eqs. (4.1). Often one
only needs to consider a subset of Eqs. (4.2)-(4.5).
For example, the nucleon-deuteron scattering
problem entails the consideration of only the cou-
pled integral equations (4.2a) and (4.3a) for the
operators T " and T which correspond to the
elastic rearrangement and breakup amplitudes,
respectively.

The actual complexity of Eqs. (4.2)-(4.5) is
about the same as one obtains in other unitary
formalisms. ' ' The latter are, however, super-
ficially more elaborate; for example, it is'shown
in Ref. 6 that the formalisms of Refs. 7 and 8 in-
volve a hierachy of two sets of equations such as
(4.3) for a given input. The reason for this is
elementary and if anything this doubling of equa-
tions simplifies the solution of the problem. Ref-
erences 7 and 8 both make use of the so-called
reduced K-matrix technique which has the effect
of decoupling, say, Eqs. (4.2a) and (4.3a)." The
latter, after a partial wave decomposition, reduce
to a set of one-dimensional integral equations; the
decoupling halves the number of these and the oth-
er equations become algebraic equations.

We remark also that the Heitler integral equa-
tions of Refs. 7-9 can be easily expressed in con-
nected-kernel forms. This is not the case for
Eqs. (4.5) although it is not evident whether con-
nectedness is a necessary or attractive attribute
of the kernels of Heitler or, in general, phase-
space types of integral equations.

With regard to the preceding points there is not
much reason to prefer one of the various unitary
formalisms over another. The primary difference
lies in the rather simple constraints (Hermiticity)
which need to be imposed upon the input operators
in the formalisms reviewed in Ref. 6 in order to
guarantee unitary scattering amplitudes compared
with the unknown and certainly complicated con-
straints on K which are required to guarantee Eqs.
(3.8) and (3.9). This is a major drawback of the
KL method and one which evidently obtains inde-
pendently of the number of particles involved.

Our final remarks concern the rather ambiguous
nomenclature attendant to the different usages of
K matrices and operators. We are only concerned
with the differences which appear in the definition
of these objects for multiparticle scattering beyond
the free three-particle thresholds; most extant
formalisms coincide in the elementary case of only
two-particle channels.

The only definition of a K operator which seems
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to be unequivocal and of universal applicability is
that which relates K to the scattering operator S in
the Heisenberg picture,

S =1 —2miT,

as the solution of the integral equations

K= T+inKT

= T +iud.

(4.6)

(4.7a)

(4.7b)

The necessary and sufficient condition for S to be
unitary is that K be Hermitian. The definition of
K encompassed in Eqs. (4.6) and (4.7) holds for
arbitrary systems, relativistic or not, involving

arbitrary numbers of particles.
A detailed realization of the preceding definition

in the case of the nonrelativistic scattering of three

particles was given in Ref. 8. The transformation
of Eqs. (4.6) and (4.7) to the interaction picture was
considered there as well. In that case the Heitler
equations (4.7) involve only the operators D~,
n =0-3, in the kernels in contrast to D which
appears in the Heitler-like equations (3.11) in the
KL formalism. The latter type of Heitler equa-
tion and corresponding K operator have wide usage
in nuclear scattering theory. " The relationship
of this sort of K-matrix theory, which is always
described by the replacement of all Qreen's func-
tions in the various scattering equations by their
principal values and relating the solutions of the
two types of equations, to the one derived from
the general definition (4.7) is, for multiparticle
scattering, somewhat remote.
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