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Mxing of doorway states via fine-structure states and possible application
to the study of fission isomers
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The coupling of two doorway states via common fine-structure states is calculated numerically in a
multichannel model using the K matrix. As an example of application the population of isomeric fission states
via isobaric analog resonances is discussed.

NUCLEAR REACTIONS Numerical multichannel model study, discussion of
application.

I. INTRODUCTION

Some nuclear states are populated in nuclear
reactions with very low cross sections because
the overlap of these states with the target ground
state is very low. An example is the isomeric
fission states' where the cause of the small over-
lap is the big difference in deformation of the
target ground state and the isomeric fission states.
This fact makes quantitative spectroscopic work
concerning these states very difficult. To outline
that this difficulty can possibly be overcome by the
use of analog states is the purpose of the present
note. To be definite we will take isomeric fission
states in the actinide region as an example.

Consider (Fig. I) a target nucleus with isospin
T„atomic number A, and charge S and having
a double humped barrier. The states of low and
strong deformation are denoted by T, and T„re-
spectively. A (d, P) reaction will populate strongly
a state. P, in the first well of the final nucleus,
whereas the transition to the state P, in the second
well will be strongly inhibited. The analogs of the
parent states P, and P, are denoted by A, and A.„
respectively. The partial proton widths will nor-
mally obey the same rules as the (d, P) reaction.
This means, the state A, will be strongly popu-
lated by the entrance channel but the state A., will
have a very small partial width (for simplicity we
will put it equal to zero in the following discussion)
for the deexcitation to the state T,. The inverse
holds for the state A, . Therefore, the (P,P')
reaction cross section leading to the state I'2 should
be zero.

The states in the second well are at 2-3 MeV '
above ground state, and the width of analog states
is expected to be 300 keg. ' Therefore, it will be
a quite common situation that there are some
states A, and A., having the same spin and parity
and at a distance less than the total width. Then
these two can possibly mix forming a compound

nucleus state having some part of both components
and the reaction cross section leading to the state
T, could attain appreciable values. An experi-
mental example of such a mixing has been found
in '~l.a(P, P').' lf one uses a, two level, two chan-
nel formula4 to calculate the cross section the re-
sult is zero; that means that there is no mixing
in this approximation. If there are more open
channels (e.g. , neutron channels) in the formula
of Ref. 4 a mixing arises from a coupling of two
states by common open channels. But this term
involves a coherent sum over products of square
roots of partial widths which will have fluctuating
signs; therefore, the total is expected to be very
small. Thus from these considerations one ex-
pects the mixing of the two states to be very small
even if the two states are largely overlapping.
But these considerations neglect an important fea-
ture of analog states.

II. MODEL

Analog states are intermediate structures'; they
couple to the great number of T& states which they
are imbedded in. The total width I"~ of the analog
states can be split into two parts'

r, =r'+r', (I)
where I' is the sum over all proton partial widths
and I' is the spreading width of the analog state
over the T& states. We assume here weak absorp-
tion in all proton channels. If absorption is not
weak, the proton partial widths in (I) must be
corrected for absorption. ' To see the influence
of the fine structure states on the problem of two
overlapping states we made a model calculation
using the methods of Ref. 6.

Consider an unperturbed Hamiltonian H, with

H, (A,. & =Z, ~A, &,

e)s, n) =z„)3,~), ~=3,x,
825
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FIG. l. Illustration of the relation of target, parent, and compound nucleus for nuclei having a double humped bar-
rier. A& and A2 are the analogs of the parent states P, and P2, respectively. Normal transitions are indicated by con-
tinuous lines, strongly inhibited transitions by broken lines.

where
~ A, & and

~ A, ) are the analog states and

~3, n& are the T& states of the fine structure. Then
we introduce a perturbation b V which couples the
states

~ A, ) and ~A, ) to the T& states with the only
nonzero matrix elements

(A, ~bV~3, n&, =M, ,(n), n=3, . . . , X; i =1,2,

(3)

Then the N eigenvalues and eigenvectors of the
Hamiltonian H =H, +b, V are denoted by S„and [g„&
where

plied by the spectroscopic amplitude of the analog
state A, ,, with respect to the channel T, ,, For
simplicity we put y, =y, in most of the calculations.

The T& states ~3, n& will deexcite in general to a
great number of neutron and fission channels. For
simplicity of language we will not make a distinc-
tion between neutron and fission channels and the
expression neutron channels will include possible
fission and other reaction channels other than
proton channels. Denoting these channels by (c, ~

and neglecting direct coupling to the analog states
one can write the partial widths in these channels

I („&= o.,"[A,&+~,"IA,&++ o.„"I3,n&.

The K matrix is a real matrix defined by
N

Q r".r".l(E &„)-
277

p =1

(4) r.", =&c; &X.., (E„)lV.l q„&
N

=g o.."(c;X„(E, )IV,I3, ~&
n=3

N

&nyc].n ~

n=3

We take the overlap of the channels T„T, with the
T& states to be zero, as of T, with A, and of T,
with A. , and the widths are

r," = &T, 3'x&(E, )lv. l e„& = ~,"r,'&T, I A, & =n,"y, ,

(6a)

r,' = &T,3 X,(E,)l V.I 0„&= n,"r,'&T.IA, &
= ot,"r, ,

(6b)

where X~(E) is the scattering wave function of the
proton, V, the interaction which couples the analog
state to the continuum, and y,', and y, , the single
particle width and the single particle width multi-

The partial widths y, . „will in general fluctuate
in magnitude and sign. In the context here it is
sufficient to retain the fluctuating sign and thus
y,, „=sgn(c, , n)y, where sgn(c&, n) is a computer
generated random number. Because of the fluc-
tuating sign one can write

.N

y,".= n„"sgn c, , ~ y,
n=3

= (1 —a,"'—o.," )~' sgn(c„g)y, . (6)

Up to 10 neutron channels were included in the
calculation. The S matrix is obtained by the rela-
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tion

S=(1—i')(1 +i~K) '-. (9)

Omitting the direct part of the cross section and
well known geometrical factors, 4 the cross section
is given by

o...=[I -S['. (10)

R„= o„E dE

because this integral is less than v„(E) subject
to fluctuations introduced by the use of random
numbers (see IPig. 2}. Therefore, the resonance
integral more easily permits study of the model.

In numerical calculation one can integrate only
over a limited domain and one has to correct for
this effect. This has been estimated in the follow-
ing way. We suppose that the behavior of (&r„)
can be approximated by a Breit-Wigner form with
a width I"~. Then one can write

+OQ @tl

C cr„dE o„dE
I

= w /farctan[2(E"- E„)/I'r]
—arctan[2(E'- E„)/I'r]) . (12)

Because of the complicated analytical structure
of the S matrix (9) no analytical evaluation of (10)
seemed possible whereas a numerical calculation
is quite straightforward. A FORTRAN program has
been written for the IBM 360/44 of the Instituto
de Fisica, Sao Paulo. It was useful to calculate the
resonance integral defined by

For the total cross section in a channel c one
has4' using (10) and the unitarity of the S matrix

c, ,„„,= g o'„, =2[1 -Re(S„}],
c'

(o. ..„,) =2[1 —(Re(S„))].

(14a)

Therefore, if (S„)has a Breit-Wigner form as
has been obtained" for channels coupled directly
to a single doorway state one has

independent of the form of (S„)with c'oc and the
fluctuating part of S„. The resonance integral of
the total cross section is then

R, „„,, =2 1 — Re S„dE=2nI; .
We can separate S in a smooth part and a fluc-

tuating part

s„,=(s„.) + s,",,

and therefore

(17)

very different from one, to keep the correction
low. In the results presented the correction used
was less than 10/p.

For the discussion of the results of the model
we need some formulas related to the resonance
integral that we will derive here. If the cross
section has a Breit-Wigner form one gets

r, I;, dE =2mI; I I'~.

Because the description by a Breit-Wigner form
of (o'„) is only approximative, C should not be

(a)

and

c„.=(6„.—(S„.)['+~S„('=c... +vn,

~cc' +CC' ~
se (19)

I
i.I -~ ] ~ r,' ] " .. '- L

Here v,", and 0,",. are the shape elastic and fluc-
tuating part of the cross section, respectively.
For channels that are directly coupled to the door-
way state (proton channels) (S„)has a Breit-
Wigner form' and

mJ. 8,", = (v„i —g,", )dE = 2ni; I;i/I"r . (20)

ENERGY (a.u. }

FIG. 2. Calculation of the cross section as a function
of energy (arbitrary units) for Ef= —2, E& ——2, and N
= 52, spacing of the T& states d= 2, M = 2.5, y f p2 3,
and y3 —-0. The continuous line corresponds to zz fp f,
the broken line to 0. zfz2. For clarity the cross section
0 &2T2 which is very similar to 0' rfrf is not shown. (a)
and (b) correspond to the statistical assumptions of
Eqs. (24a) and (24b), respectively.

a~r. P r
) r, = awr. r 'yr„=

Cp Cp

(21)

The mean branching ratio B„to channels that
are not directly coupled to the doorway state de-
noted by c„can be obtained by

Using I = pl, where the sum is over all chan-
nels directly coupled to the doorway denoted by c~
one gets
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B„=Q R„QR„.
c c

= &C.tots)- RCC,
Cp

C&total ~ (22)

Using (16), (19), (21), and rr =I' +I'" the follow-
ing inequality is obtained

r, —I, I '/r, r'
(23)&w-

c T

M„(n)=M, n=3, . . . , N; i =1,2,
M, ,(n) =sgn(n, i)M, sgn(n, i) =al random, (24b)

M&, (n) =X(n, i)M, -2 ~ X ~2 random. (24c)

The spreading width of Eq. (1) is related'to the
matrix element M by the equation

r'=2m~M('/d, (as)

where d is the distance between the fine structure
states.

We did not take into account the absorptive part
of the off-resonance scattering. In the model here
this is represented by neglecting direct coupling
of the T& states to the proton channels. We think
that at least moderate absorption will change only
quantitatively the results obtained here. The most

The equality will arrive when a,", =0; the fluc-
tuating part of the cross section is zero. A more
detailed discussion of these formulas will be pub-
lished elsewhere.

The numerical evaluation of (2)-(12) is quite
straightforward. However, one must pay attention
to construct the model in such a way that it con-
tains all important physical features. We sup-
posed the T& states to be equally spaced. This
should not be a critical point.

The spreading of the states A., and A, over the
T& states is governed by the matrix elements
M»(n) and M»(n). Thus the mixing of A, and A, is
determined by these matrix elements and these
have therefore to be considered with care.

Isomeric fission states in the actinide region are
at 2-3 MeV above ground state. ' Tgis situates
the analog states at around 20-25 MeV excitation
energy in the compound nucleus. At this excitation
energy the density of T& states belonging to the
first and second well will be about the same and
the two configurations should be completely mixed,
as shown by the presence of intermediate struc-
tures in subthreshold (n f) reactions. ' Thus one
can expect that ~M,J = (M»~ where the bar indicates
the mean value. Because of the complicated nature
of the T& states one expects that there is no corre-
],ation between M» and M» and thus ~M„M»~
=~M„~ ~M»]. We made use of different statistical
assumptions

important effect will be that one has to correct the
partial widths and the sum rule (1) for absorption
in a way similar to Ref. 5.

Numerical calculations were made for the sta-
tistical assumptions (24) and for various values
for the spacing d of the T& states, the matrix ele-
ment M, and the widths y,„. The ratio y, /d was
varied between 0 and 50, the last value corre-
sponding to largely overlapping fine structure
states. Up to 100 fine structure states were taken
into account.

III. RESULTS

First we want to discuss the case when no neu-
tron channels are open. A typical result for the
cross sections is shown in Fig. 2. With no neutron
channels open, it was found that the different sta-
tistical assumptions (24a)-(24c) gave the same re-
sult for the resonance integrals within the preci-
sion of the calculation (precision limited due to the
fluctuation introduced by the use of random num-
bers). The result for different cases could be
well parametrized by the formula for the reso-
nance integral of the cross section leading from
Tj to T2

with

I;I; m

I, +I2 1+m (26a)

I" ' r.~
=-;(r, ,r,),r' (E, E,),r~ ~

where ri is given by (25). The value of m expres-
ses the mixing between the two analog states. The
energy averaged cross section was found to have
to a good approximation a Breit-Wigner form, and
we can therefore write

(E —E„)2+(—'rr) —'(I' +I') 1 ym

where rr =I +-', (r, +I;) and E~ = , (E, +E,). For-
analog states one has typically r /rr =-,' (see dis-
cussion). Therefore, in the case when no neutron
channels are open and ~E, —E,~& I', the mixing
probability is very strong, and the cross section
leading from T, to T, will be very strong too.

Before discussing the influence of the neutron
channels on the mixing of two analog states, we
want to consider a single analog state A, . In Fig.
3, the resonance integrals Rr r, Q,„Rr, ,„, and
B~ „„,, are shown as a function of the number of
open neutron channels (I;/d» 1). The result for
Rr „„,is in agreement with (16) and independent
of the number N„of open neutron channels. For
N„=O one has R~, ~, =2n'I, and for a big number of
open channels one has the asymptotic value R»
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FIG. 3. Resonance integrals for a single doorway
state as a function of the number of open neutron chan-
nels. The following parameters were used: E& ———2,
N=51, d=4, M=4.3, y&=y3-—5. Shown are the results
for the resonance integral of the total and partial
cross section in the channel that is directly coupled to
the doorway state, R& tot~~ and R && &&, respectively,
and of the cross section leading from the channel T, to
the channels that are not directly coupled to the door-
way state (neutron channels) R&& „. The errors shown
are uncertainties due to fluctuations in the numerical
results introduced by the use of random numbers.
Statistical assumption (24b) was used.

-2ml /I'r which is identical to (20) where the fluc-
tuating part of the S matrix has been neglected.
This means that the fluctuating part of the cross
section o~, ~, goes to zero as the number of neutron
channels increases. The branching ratio to neu-
tron channels reaches asymptotically the value
I'"/I'r in agreement with (23). This can be stated
in the following way: The fluctuating part of

o~, ,...&
disappears in the neutron channels when the

number of open neutron channels is big (I'3/d»1).
In Fig. 4 the results for the resonance integrals

for two analog states are shown, as a function of
the number of open neutron channels. Statistical
assumption (24b) was used for this calculation.
Assumptions (24b) and (24c) were found to give the
same results, whereas assumption (24a), . corre-
sponding to constant matrix elements, gave dif-
ferent results. For (24a) the ratio Rr, r, /Rr, r,
was found to be independent of the number of open
neutron channels. This is quite evident, because

0 I I I I I I I I I I

0 1 2 3 4 5 6 7 8 9 1Q

neutron channels

FIG. 4. Resonance integrals of 0&& tot~, 0 ~& z&,
4

M=4.3, and y&-—y2 ——y3= 5. The smooth curve drawn
through R & &

„was used for the calculation of the branch-
ing ratio B„ in order to obtain from Eq. (28) the curve
that is shown together with R z &

z, 2. Statistical assump-
tion (24b) was used.

1,I; m(1+b) 2

I' +I'(a —}} }am(}+b}') (2s)

[with a =B„I' /I' and b =0 if (24a) is valid; with
a =b =B„I'r/I' if (24b) or (24c) is valid] where I'r
=1 +-,'(1",+I;) and I' =2}}'I'/d and m is given by
(2sb).

As can be seen in Fig. 4, the branching ratio
B„reaches asymptotically the same value as for a
single analog state (Fig. 3) as N„ increases even
if this occurs more slowly than in Fig. 3. There-
fore (23) seems to be valid here too, even if jt
has been derived for a single analog state. Then
inequality (23}ensures that a& 1. A significant
increase of the number of open channels was not
possible because it implies the inversion of a ma-

then the product n,"o.," has no longer a fluctuating
sign and there is no longer a principal difference
between o„and o„. But it seems quite implausible
that the matrix elements of (24} will have constant
sign because of the complicated nature of the T&

states. The results for the resonance integral
R~, ~ could be parametrized by the formula
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trix of a too big dimension at every energy step
[see Eq. (9)j which becomes too time consuming.
However, the branching ratio to neutron channels
has already nearly reached the limit of Eq. (23)
for 10 open neutron channels. In the example shown
in Fig. 4, B„has a value corresponding to 91/o
of the limit I' /I'r; for other test cases it reached
up to 96%. Therefore, even further increase of
the number of open neutron channels should not
modify Eq. (28).

In the '"I.a(P,P') experiment, ' the isobaric ana-
log resonances are at 8 MeV above neutron thresh-
old; thus a large number of neutron channels are
open. The experimental results of Ref. 3 are in
good agreement with Eq. (28), using a =b =1 and
transforming the resonance integral (28) to a cross
section in the same way as passing from (26) to
(27). Unfortunately the experimental situation is
not as clear as one would like to verify Eq. (28)
because of the presence of other nearby reso-
nances.

IV. DISCUSSION

The mixing of doorway states via common fine
structure states was calculated numerically in a
model, including up to 10 channels that are not
directly coupled to the doorways (neutron and fis-
sion channels). An inequality connecting the
branching ratio B„ofanalog states to neutron
channels and the spreading width was obtained and
used to interpret the results of the numerical cal-
culations. Formulas for the mixing and for the
cross sections were obtained. These formulas
must be considered to be approximate because they
were not deduced analytically which would be
preferable but very difficult because it was seen
that a correct evaluation of the fluctuating part of
the S matrix would be necessary. But even if
these formulas are only approximate, they are
surely good enough to make an estimation of cross
sections for the population of isomeric fission
states via analog resonances.

This cross section depends critically on the
ratio I' /I'r. To our knowledge no study of analog
resonances has been made apart from a Coulomb-
energy measurement' for '"U. However, total
widths as well as the ratio I' /I'r of analog reso-
nances show a quite smooth behavior for heavy
nuclei; thus one can confidently extrapolate from
the lead region to get an estimate for these values.
This results in I'r =300 keV and I' /I'r -—0.5, and
using Eq. (1) I'/I'r =0.5. For the case that the
statistical assumption (26a) is valid, one expects
for ~E, —E,~«I' cross sections leading to iso-
meric fission states of the same order of magni-

tude as for normal (P,P') scattering via isobaric
analog resonances, that is typically 100-1000
gb/sr for the on resonance cross section. In this
case the cross-section estimation depends only
within a factor of about 2 on the branching ratio
to neutron channels. Because of the complicated
nature of the T& states, probably the statistical
assumptions (24b) and (24c) are more realistic.
In this case the cross section o» depends more

1 2
critically on the branching ratio B„to neutron
channels. Actually neutron decay of analog reso-
nances has not been observed for nuclei more
heavy than samarium. This seems to indicate that
B„is small. Another experimental methods is the
determination of the branching ratio to proton
channels B~ and then obtain B„by the reaction
B„=1—B~. This can be measured by ('He, dP) or
(P, nP) experiments. By the analysis of (P,P') data
one gets B» = QI; /I'r =I' /I'r. B» is only neces-
sarily equal to B~ for an isolated single resonance.
An example is "Mo(P,P') which gives for the ana-
log of the ground state' B» =1.5/30. For this
resonance the neutron channels are not open and
therefore B~ should be equal to one and actually
a measurement of the ('He, dP) reaction gave"
B~ =1.01 +0.03. For more heavy nuclei the only
measurement by the study of the reaction (P, n, P)
or 20 Pb is not very precisezx and gives B,=1 ~0.3

which results in B„=O+0.3. For this nucleus"
B». =0.6 which gives I' /I'r =0.4. Measurements
of B„by (P, nP) reactions without observation of
the intermediate n are not precise enough due to
ambiguities in background substraction. "

With I' /I' =0.5, B„=O, and I&, —&,I& r'=150
keg one expects cross sections for the population
of isomeric fission states via isobaric analog
resonances (IAR) of the same order of magnitude
as for normal (P,P') reactions via IAR, that is of
the order of 100-1000 p.b/sr corresponding to
I; = I; =10-50 keV in Eq. (28). If the branching
ratio to neutron and fission channels has a value
near the limit I' /I"r, the cross section would be
reduced by about one order of magnitude, resulting
in 10-100 p.b/sr, which is still 3 orders of magni-
tude bigger than the cross sections obtained in non-
resonant reactions. This would permit experi-
mental studies of these states using standard high
resolution techniques. In an experiment looking
for these resonances, the energy step should not
be chosen too big. Following the numerical calcu-
lations, the width at half height of the resonance
is about the same as for a simple resonance but
the cross section goes much more rapidly to zero,
if the branching to neutron channels is strong, than
one would expect for a Breit-Wigner form. An
interesting feature is contained in the Coulomb dis-
placement energy ~E~. It depends on the deforma-
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tion of the analog state. '4 For the big deformations
predicted by theory" P =0.6, a change of 4Ec of
-700 keV is expected. This provides a means of
direct measurement of the deformation of these
states.
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