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Shapes of heavy transition nuclei in a self-consistent anisotropic oscillator model
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The second- and fourth-order mass moments of the even-neutron transition nuclei '" '"W, '" ' 'Os, '" ' 'Ir," '"Pt, ' ' ' 'Au, and '"
Hg have been calculated using a self-consistent version of the anisotropic oscillator

model. A structural basis is found for possible asymmetric intrinsic nuclear shapes in the transition region,
particularly in some of the Os and Pt nuclei and the Ir and Au nuclei nearest to even neighbors with large
deformations. The calculations predict large negative fourth-order moments for this region.

PACS numbers: 21.60.Ev, 27.70.+q, 27.80.+w

NUCLEAR STRUCTURE Calculated Q pp Q22 Q4p Q42 +44 P2 p and P4 in
anisotropic oscillator model for heavy transition nuclei.

I. INTRODUCTION

Several groupsl~2 have recently shown
that semiquantitative fits may be obtained
to the energy levels of nuclei in the
transition (W to Pb) region by using an
asymmetric rotor model of the even-A nu-
clei. Neighboring odd nuclei are treated
as a particle or hole coupled to the even
core by a potential with second order de-
formation'.

V2 -k2~2$ (c«Y)Y20+(»ny/~)

The inclusion of fourth-order terms in the
potential

V4 = -k [g Y

42( 42 4

+a44(Y +Y )]44 44 4 -4 (2)

(at least the axial term) has been found
to be at least as important as axial asym-
metry for good fits to the energy levels3.

One of the unresolved questions regard-
ing these nuclei is the structural origin
of non-axial deformationsl. Microscopic
calculations using a model interaction4
show no deep minima corresponding to the
stable non-axial deformation inferred for
an asymmetric rotor. Similar results
have been found using a non-axial Nilsson5
model , the Nilsson model with pairing7,
and with a modification of the Strutinsky
shell-correction technique applied to a
deformed Woods-Saxon well potentials. The
current method of determining g combines
the empirical relation between g2 and the
moment of inertia and the experimental
0+-2+ spacing with the ysgmmetric rotor
formula for the spacing ~ , so that it has
no structural basis. There is thus a gap
between the empirical and the structural
descriptions of these nuclei.

The most accurate means of determining
the intrinsic shapes of nuclei is probably

an unrestricted deformed Hartree-Pock (HF)
calculation using a "realistic" interac-
tion. It is clear that this would be a
formidable undertaking, particularly if
many spherical shells are taken into ac-
count. Hartree-Fock calculations using a
deformed oscillator basis restricted to
symmetric shapes have been performed for
certain rare-earth and transition nuclei
and are themselves impressive in terms of
effort and computer requirements, even
with the relatively simple Skyrme III
interaction employe'd. These calculations
obviously can tell us nothing about the
origin of asymmetric shapes and give
limited insight into the structural
origins of even axially symmetric shapes.

The present calculations are based on a
more modest model, the self-consistent
anisotropic oscillator (SCAO) model. The
SCAO model gives substantially the same
relative deformations as the HF method for
light nuclei&& and the relation between
the predicted nuclear shape and which
basis states are occupied is direct. The
calculations are relatively easy to per-
form and require little computer time,
since no iterative procedures are in-
volved. This method is thus well adapted
to mapping the trends in nuclear intrinsic
shapes throughout the transition region to
see if and where asymmetric shapes occur.

II. DESCRIPTION OF THE MODEL

The usual means of employing the aniso-
tropic oscillator (AO) model is as a
source of zero-order potential and basis
states5s6~7. One diagonalizes a Hamil-
tonian that includes spin-orbit (cI.s) and
orbit-orbit (DX2) corrections in addition
to the three oscillator Hamiltonians cor-
responding to the coordinate directions.
The deformed single particle states are
then labeled by the total oscillator
number N of a given shell, the orbital
angular momentum g, , the spin (1/2), the
total angular momentum j and its projec-
tion Q on the body-fixed 3 axis. Instead

15 2226



SHAPES OF HEAVY TRANSITION NUCLEI IN. . . 2227

of true angular momenta, pseudo angular
momenta &t, jt and projection ~t are
usually used, which are more easily con-
structed from pseudospace coordinates
measured in units of the length para-
meters, e.g.

2 x z2 = z2/b2
2 z

The eigenvectors of the deformed Hamilton-
ian are 1inear comb inat ions of these

)Nay g& states, involving sums over j and,
for axially asymmetric states, A.

Instead of fallowing this approach, we
evaluate the expectation value of the
Hamiltonian between products of AO basis
states (nzi, nyi, nzi) such that
N nxi+nyi+nz~. Since pure (asymptotic)
asymmetric states are used, the nonaxial
deformation will be larger than if the
total Hamiltonian (which contains spin-
orbit terms tending to favor a more
spherical shape) were diagonalized. The
nonaxial deformation should thus be as
large as could reasonably be expected, and
the overall deformation will be determined
by which basis states (nzi, nyi, nzi) are
occupied. The requirement that an isopo-
tential surface be an isodensity surface
leads to the familiar resultl2 that

~z x y y
= z z = ~o A

(3)

so &H& QQ)xE x + i') y y
+ AtQzZ z 384)oE A

where 3
0) 4l yQ) ld

ZxZyEz = E)
(4)

and Zx = Zi-O (nxi + 1/2), with simi-Nmax

lar sums relating nyi to Zy and nzi to
Ez These results may also be obtained by
minimizing &H& with respect to ~x/4)y ar
~z with ~aZA as a Lagrange multiPlier.
The remaining requirement is then that the
sets of basis states or "orbits" (nzi,
nyi nzi) included in the ground state
many particle wave function shauld be
filled in such order as to minimize ZA.
The scheme is then completely self-con-
sistent. The energy 5+o is found from the
binding energies of Os and Pt nuclei and a
fit to their cha „e radii. The mean
square neutron and proton radii were taken
to be the same, but the ~o's were differ-
ent for neutrons than protons. The por-
tions of the %'s and a2 terms diagonal in
the Hamiltonian constitute corrections to
the binding energy insufficient to change
the level ordering wit/ the parameters

sed here, which were 5. ~~n ~ 7.50 MeV,
+op ~ 6.65 MeV, C = 0 ~ 2 5~o and

D ~ 0.00458a (following the values recom-
mended by Newton13).

If the total valence quanta are denoted
by n» ny, and nz with nx+ny+nz = kN, ex-

pansion of E) shows that mi. nimizing H is
equivalent to f inding

min [nzny z 2(Nc+ ) (nz+ny+nz)11 k 2 2 2
z y z 2 c 2

(5)

Here N is the number of quanta in a par-eticular rectangular coordinate direction
summed over states in the care and k is
the number of valence nucleons outside the
closed core. The order of filling and
emptying the N~4 and N=5 orbits according
to this criterion is shown in Table I.
Note that the symmetry axis shifts from
the z to the y direction as the deforma-
tion goes from prolate to oblate. In
practice the z axis is retained as the
symmetry axis and the nzi and n i values
for the hole (unfilled) orbits are inter-
changed. The order of filling also re-
quires nz-ny (except where noted below),
in order that the second order nonaxial
moment @@2 be positive or zero.

Many oF the structural features of the
transition region are due to the fact that
one has bath N~4 and N 5 (h ll/2) parti-
ally filled proton subshells an% N=5 and
N=6 (i 13/2) partially filled neutron sub-
shells. The present calculations use a
particular set of orbits for the N~5 pro-
tons, permutations of {0,1,4). The arbits
used for the N~6 neutrons are permutations
of (0,2, 4) and the (2, 2, 2) orbit. This
choice gives the minimum values for the
fourth order moments for 2o8Pb; these mo-
ments cannot be made zero in the AO model.
The second arder moments of 2 8Pb are all
zero, however.

A portion of the calculations that is
nat completely self-consistent concerns
the choice of the order in which the
differing oscillator shells are emptied;
because the expectation value of the spin-
orbit term is taken for good AO states,
rather than diagonalizing the entire
Hamiltonian, the relative positions of the
N 4 and N~5 proton and N=S and N=6 neutron
subshells are not fixed by the model. The
choice of which subshell the next "orbital"
is taken from is made to agree with the
Nilsson orbitals5. The order of emptying
the subshells is indicated in Table I.
The order of emptying orbits within a
given oscillator shell is self-consistent
and follows the minimization procedure
described abave.

In the pure SCAO model, the region of
oblate nuclei would extend thraugh almost
half the major oscillator shell being
filled (N=4, protons; N 5, neutrons, see
Table I) which is obviously contrary to
experiment. In order to have the prolate-
oblate transition occur in approximately
the correct region, we minimize within
each subshell such that for the prolate
cases considered here, the protons and N 6
neutrons have n &ny and the N=5 neutrons
nz-ny. The oblate cases have nz-n for
both protons and neutrons, with ale sub-
shells similarly aligned.

This adjustment to the model produces
the same variational energies as with the
orbits not interchanged; the contributions
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TABLE I. Order of neutron and proton
orbit filling or emptying major shells.
Note that rearrangement is required in the
optimal configuration changes at the

2 2 2
(nxi, nyi, nzi) (nx, ny, nz) nxnynz nx+ny+nz Z

N ~ 4 PROTONS

eleventh position (denoted by *). The
number of protons or neutrons present at
which a given orbit is filled is given for
the cases studied.

(n i fn iynzi) (nxf n 0 nz) nxn nz
2 2 2

xi' yi' zi x' y' z x y z x y z

N ~ 5 NEUTlRNS

(o04)

(1O3)

(013)
(2O2)

(112)

(022)

(301)

(211)

(004)

(107)

(1,1,10)

(3,1,12)

(4 ' 2ol4)

(4 ' 4, 16)

(7 4 17)

(9,5,18)

10

36

112

256

476

810

16

50

102

154

216

288

354

430

(203)

(113)

(O23)

(3O2)

(212)

(122)

(032)
* (401)

(3,1~ 16) 48

(4, 2, 19) 152

(4 ' 4 ' 22) 352

(7,4, 24) 672

(9' 5 ' 26) 1170

(10,7,28) 1960

(10,10,30) 3000

(14,10,31) 4340

266

381

516

631

782

933

1100

1257

(400)

(310)

(121)

(220)

(031)

(13o)

(04o)

(104)

(014)

(13,5,18) 1170

(16,6,18) 1728

(17' 8 ' 19) 2584

(19' loyl9) 3610

(19,13' 20) 4940

(20,16' 20) 6400

(20, 20 ' 20) 8000

N ~ 5 PROTONS

(104)

(118)

518

616 68

714 70

822 72

930 76

1056 80

1200 82

17

66

* (311)
(410)

(122)

(221)

(320)

(032)

(230)

(041)

(140)

(0SO)

(21,6,28)

(25 7 ' 28)

3528

4900

(26,9,30) 7020

(28 F 11,31) 9548

(31' 13,31) 12493

(31' 16,33) 16368

(32,19,34) 20672

(34 ' 22 ' 34) 25432

(34,26, 35) 30940

(35' 30,35) 36750

(35,35 ' 35) 42875

1261

1458

1657 104

1866 106

2091 108

2306 116

2541 118

2796 120

3059 122

3350 124

3675 126

(401) (519) 45 107
N ~ 6 NEUTRONS

(410)

(041)

(140)

(929)

(9' 6 ' 10)

162

540

(10,10~ 10) 1000

166 66

217 74

300 78

(2o4)

(024)

(204)

(228) 32

20

(oos)

(104)

(014)

N ~ 5 NEUTRONS

(oos)

(109)

(1,1,13) 13

25

82

171

(402)

(222)

(042)

(420)

(240)

(6,2, 1O)

(8,4,12)

(8,8,14)

120

384

896

(12,10~14) 1680

(14' 14,14) 2744

140

224

324 110

440 112

588 114

to the energy from the neutron and proton
shape terms are the same, and the spin-
orbit contribution is symmetric with re-
spect to the interchange of x and y. In
nature, the interaction between neutrons
and protons would cause their densities
to be more similar in shape than allowed
by our model, which only correlates the
two types of nucleons through the choice
of a common reference frame. This applies
to both oblate and prolate densities,
since the two types of nucleons fill dif-
ferent single-particle states. The
orientation adjustment for the prolate
case corrects the overall particle density

for neglect of the rounding effects pro-
duced by the n-p correlations and the
pairing correlations between like nucle-
ons. Filling the oscillator configuration
pairwise (except for the unpaired proton
in Ir and Au) also accounts for some of
the pairing tendency.

III. RESULTS OF THE CALCULATION

As measures of deformation we take the
second and fourth order mass multipole
moments of the nuclei:
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Q ~ &z2 - x /2 — y2/2&2
20

Q22 (3/2) &x - y
1/2 (6)

940 &z4 + -(x4 + y4) — 3(x2z2 + y2z2)
8

Q (5/8) &y4 - x4 + 6z (x2 - y2)&1/2
42

(35/32) &x + y4 - Gx2y2&1/2

(2L+1) (4v) QLM
1/2

2 L/2
3A&r

mean

from evaluating Q for a sharp cuta ff
density distrihutPon. Approximations in
both the structure model and experimental
analysis render fruitless the attempt to
provide a connection between these two
descriptions of deformation beyond first
order. The prescription (7) gives x'eason-
able estimates of

y - tan- [(2)'/'022/120]

g2 (2.64222@20)/ (A&r2&Measly }

B4 ~ (3.54491+0)/(A&r2&2)
M

These quantities are also given in
Table II. The values of g range from 0 to
m/6; g2 is positive for predominantly pro-
late nuclei, and negative fox' predominant-
ly oblate nuclei.

Since the neutx'on and proton moments
differ moxe widely in this model than is
expected ta be the case in nature, we
recommend that the overall moments multi-
plied by Z/A be used to represent the
charge moments of these nuclei. This is
one of the reasons for not'listing the
neutron and proton moments separately.

Referring to Table II, it can be seen

whex'e the pointed brackets indicate expec-
tation values taken with respect to the
ground state. The values of the second
order moments (in fm2) and the fourth
order moments (in fm4) are given in
Table II for the following nuclei @tugied:
178-188', 182-194Os 187-l95Ir 18&-1&8Pt
191-199Au and 194-006Hg

It is customaxy to analyze experimental
reaction information in terms of a nuclear
radius proportional ta V2+V4 of (1) and
(2}. This may be a sharp cutoff radius
fox' a constant-density volume distribution
or just an isodensity contour. To first
order, one has the coefficients of YLO or
YLM + YL M (excluding k2) are

that the predicted axial deformations (82 and
g4) are in reasonably good accord with
both experiment&& and other predictions4i8.
W, Os, and Ir nuclei display a prolate-
oblate transition between N~112 and N 114
and all Pt, Au, and Hg nuclei are px'e-
dicted to be oblate (52&0}. The trend of
decreasing (B2( with increasing neutron
number is also reproduced. All nuclei
studied (except 1~6Pt) have rather large
negative g4 deformations. Ve have also
established that in our model the transi-
tion to positive hexadecapole moments oc-
curs near 168Er. Differences between pre-
dicted magnitudes of 52 and g4 and
measured deformations are probably due as
much to the approximation made in extract-
ing these quantities from the mass moments
(eq. (7)) as to deficiencies in oux' model.

A comparison of the model )B2[ values
with experiment is shown in FIG. 1. The
experimental values are from the compila-
tion of Grodzins and Stelson15. The
trends and even the magnitudes of )B2(
are reasonably well reproduced. The
systematic tendency of the model results
to be slightly too small for the pxolate
case and somewhat too large for the oblate
case probably stems fx'om the fact that the
ox'ientation adjustment used in the model
partially compensates for the neglect of
short range correlation effects in the
pxolate case and not in the oblate case.

Examination of the asymmetry angle 7 of
Table II reveals that the largest asym-
metries occur mainly for N 110, 112 an the
px'olate side of the tx'ansition and for
N~116, 118 on the oblate side. It is note-
worthy that the oblate nuclei just after
transition (188' 190Os 191Ir
188~190y192pt) have small predicted asym-
metries g. Kith the exception of the
N=114 isotones, the Os and Ir isotopes are
all predicted to have relatively large
asymmetries. Contributians to asymmetric
shapes from the fourth-order moments @~2
and Q4 are quite large; with very few
exceptions, at least one of these moments
is predicted to be large for all nuclei
studied. Such large I =4 asymmetries can
be expected to have non-negligible effects
on both the energy spectra and the transi-
tion rates for nuclei in this mass region.

IV ~ D ISCUSS ION

The model used here was chosen such as
to allow for possible triaxial distortion,
a reasonable fit to the prolate-oblate
transition, and some measure of self-
consistency. On the positive side, its
main parameters used here were found by
straightforward procedures in common
use5y13, and yield moments comparable to
the best available Hartree-Pock calcula-
tionsl0.

Such a simple model as ours must in-
corporate approximations that would be
considered excessive in moxe refined
models. In oxder of x'oughly decreasing
importance, these are: (a) the treat-
ment of neutrons and protons sepaxately,
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TABLE II. Quadrupole and hexadecapole
axial and nonaxial moments for the
transition nuclei. The sharp cut-off

distortions g2 and g4 are first-order ap-
proximations (see text). The asymmetry
parameter g is given to the same order.

74wlP4

74M106

74W108

74W110

74W112

74W114

76Os106

76 108

760sllp

76Os112

589.3

565.6

506.5

503.8

435.9

-656.1

555.7

496 ' 6

426 ' 0

426 ' 0

76Osl14 632'7

76Os116

760s118

77 ~rllp

77«112

-590.5

431.1

431.1

77?r114 590

77zr116 -548.7

77Irll8 -506 ' 1

78Pt108 674 ' 7

78P tllp

78Ptu. 2

78P tll
78Pt116

8Pt118

78 120

79 112

79 114

79 116

79 118

79 120

80"~u.4

80 ~116

80 ~118

-674.6

-612.0

-548.7

-506 ' 5

-463 ' 9

-421 ' 0

-581' 7

-518.4

-476.2

-433.6

-390.7

-487.9

-445 ' 7

-403.1

20.3 -2700.6 -1375.4 2485 ' 9

19.0 -3391F 7 -1258.1 1418' 2

0;263

0.250

2.8o

70

509.7 -3248.0

114' 3 -4197.3

65.8 -3828.2

0.0 -4344. 6

68.9 -4099.1

97 ' 62 -3955.4

153.7 -4531.8

153' 8 -4535.6

64.8 -2482.0

121.3 -3393.6

121.0 -4276. 9

109' 6 -4192.7

789.6 134.89 0.221

0.228 17.83042.9 1936.1

12,0o-204. 7 0 ' 190

-0.276

2833.6

0.0 -13044.8

2354.5 1154.6 0.247 10.0

0.223 15.5-128.8

-459.5

-468.3

1886.0

3942.1

3930.0

27.00, 202

0.202 27.0

8.2'2056 ' 8 -4121.4

3407 ' 3 -3811.3

3458 ' 2 -4149 ' 4

-0.266

-0.253

-0.234

0 ' 194

0.193

-0.246

-0.233

-0.214

16.2

17 3o

19' 8

19.8

3417.8 -382.0

-390.8109~ 7 -4196.5 3405 ~ 7

6.6o48.0 -2728.5 1527.6 -4188.9

104.6 -3640.1 2878.1 -3878.8

104.3 -4523 ' 4 2929 ' 0 -4216.9

15.1

16.2o

17.2

3.8o

148.1 -271' 8 1465,5 -6193.4 -0.301

945 ' 7 -4953.6

824.8 -4571' 2

-0.285

-0.255

31' 7 -572.2

25.8 -1794' 7

31' 7 -2871F 1

88.2 -3782.7

87 ' 9 -4666.1

31.7 -5473.4

41.8 -1986.2

15.7 -3062.6

72.3 -3974.2

71.9 -4857.6

15.7 -5664 ' 9

0.0 -3212.2

56.6 -4123 ' 8

56 ' 2 -5007.1

945 ~ 7 -4247, 0 -0, 227

2296. 3 -3936,9 -0 ' 213 13.8

2347.2 -4275.0 -0.194 15.0

6.1o945.7 -4012 ~ 7 -0.169

1281~ 8 -4609 ~ 4 -0.242

488.6 -4285. 1 -0.213

5.8o

2.5o

1839.2 -3975.0 -0.198 12.1

1890.1 -4313.1 -0.179 13.2

3.3o488.6 -4050.8 -0.156

-0.199

-0.183

-0.164

P.0 -4316.8

1350.5 -4006. 7

1401.4 -4344.8

10.2o

11.lo

2 2 4 4 4
Nucleus Q2p (fm) Q22 (fm) Q40 (fm) Q42 (&m) Q44 (fm) 84(10 2)

-4.868

-6.044

-5.727

-7.261

-6.545

-7.334

-7.250

-6.923

-7.651

-7.699

-4.150

-5.617

-7.008

-7.139

-7.184

-4 ' 538

-5 ' 994

-7.374

0.467

-0.968

-3.003

-4.748

-6.194

-7.565

-8.784

-3.309

-5.043

-6 ' 479

-7.840

-9.052

-5.264

-6.692

-8.045
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Table II. (continued)

2281

2 2 4 4
Nucleus Q20(fm) Q22(fm) Q40(fm) Q42(fm)

HR -360 ~ 2 0.0 -5814.4 0.0

4
Q44 (fm)

-4082.5

B2

-0.143
r
0

B4(10-2)
-9 ' 248

80HR124

80"R126

82Pb126

-208 7

-98.8

0.0

80 R122 '8

0.0 -5949 ~ 1

0 ~ 0 -4373 ~ 3

0.0 -3173' 4

0.0

0.0

0.0

27.7 -5960.1 1116.8 -3961' 6

-3854 ' 8

-3708 ' 4

-3792 ' 9

-0.113

-0.081

-0.038

0.0

7 ~ 80 -9.389

-9.278

-6, 748

-4.$51

~ Exp

4 Thep

02

O.I-

', wg
1

lio I20

FIG. l. Absolute values of Bp as a
function of neutron number N. Theoretical
values (open circles) from the SCAO model
are compared with experimental values
(solid circles) from the compilation of
Stelson and Grodzinsl5. The lines are
drawn merely to guide the eye.

(b ) the use of pure AO s ingle part icle
states, (e) prolate shapes are stabilized
by choosing Qgp to differ in sign for
neutrons and protons respectively, (d) the
choice of the N=5 proton and N=6 subshells
was made so as to make the second order
moments of &08Pb to be zero, and the
fourth order moments as small as possible
(subject to criteria (b) and (d), this
choice is unique), (e) the order of empty-
ing subshells (but not levels) conforms to
the Nilsson model,

As is customary, we argue that effects
on the moments due to neglecting the
neutron-proton interaction should be small
since we are filling different oscillator
shells in each case. We also think that
such effects (a) will be accounted for in
part by choices (c), (d), and (e).

The reason for not diagonalizing the
Hamiltonian (mixing the basis states (b))
is that this would prevent us from using

the self-consistency requirement to de-
termine the shapes. The neglect of the
effect of short-range correlations intro-
duces an error whose size is subject to
dispute. This type of correlation is
usually put in via the use of an explicit
pairing Hamiltonian to mock up the effect
of the short range part of the nuclear
interaction. It has been arguedl6 that
the true short range correlation should
have little effect on the equilibrium
shape determination, whereas use of the
pairing force definitely tends to produce
shapes that favor prolate distortions and
smaller nonaxial moments4. It has also
been shown that reasonable values of
moments of inertia for rare-earth nuclei
may be obtained without the use of the
pairing correction terml7. It seems that
short range correlations are also in-
cluded in the field-producing terms, so
that explicit use of the pairing force or
use of Hartree-Pock-Bogoliubov (HFB) in
place of Hartree-Pock (HP) methods in-
cludes some of the short range effects
twice. We think our calculations give a
practical lower limit on the effects of
short-range correlations. A practical
upper limit is probably given by explicit
use of the pairing force , It seems to us
that overall agreement of a model includ-
ing the effects of fourth order deforma-
tions with experimental transition rates
and spectra throughout the entire region
would be necessary to determine the opti-
mum mixture.

The effects of the choice of subshell
orbits to minimize fourth order moments in
Pb are compensated to a certain extent by
requirement (e) that the prolate-oblate
transition indeed take place in the
transition nuclei, As mentioned earlier,
an unknown amount of pairing effect is
also abso". bed in this fashion. As far as
the shapes are concerned, assumptions (a),
(c) and (d) tend to produce effects that
cancel each other. Assumption (e) is in-
herently reasonable and produces results
in agreement with other calculations6.

The stability of these shapes is essen-
tially given by the difference in energy
between two configurations that differ
only in which orbits are filled. This
ranges from 20 t~ 200 MeV, depending on N
and, Z. Orbits equivalent up to inter-
change of nx and ny are of course degen-
erate. Within the model, then, the shapes
are stable. However, for small 'Y (say,
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less than 10o) the shapes can be con-
sidered essentially axially symmetric,
s ince only smal 1 per turbat ions would be
necessary to produce symmetry. For small

there is negligible difference between
the asymmetric rotor spectra and an axial-
ly symmetric model employing y-vibrations6.

The agreement between our results for y
and its extraction from spectral informa-
tion is sometimes good, sometimes bad, de-
pending on the nucleus. For example, we
obtain around 27o for the value of y' for
1860s, whereas the value from spectral in-
formation is about 16o. In view of the
fact that fourth order deformations are
ignored in finding y from experimental
spectra it seems to us that the question
of how asymmetric the transition nuclei
are is still open.

In summary, we find a structural basis
exists for possible asymmetric shapes in
the transition region particularly for
the Os nuclei, for ~ ~9 ~195Ir,

Pt, and for ' Au. These

nuclei have sizeable fourth-order moments
that should not be neglected in extracting
the shape parameters from experimental in-
formation. For most of the transition
nuclei, the asymmetries found by our model
are small enough that dynamical models
other than the triaxial rotor18~6~19 would
provide equally adequate spectra and
transition rates. Thus, the degree to
which the triaxial rotor model provides a
uniquely good description of the transi-
tion nuclei has yet to be determined by
spectral calculations including fourth
order deformations.
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