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Model calculation of relativistic corrections to the triton binding energy
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We compute relativistic corrections to the triton binding energy (B ) using an effective s -wave potential whichT
yields, in the nonrelativistic case, B = 7.6 + 0.2 MeV. In the framework of Vinogradov's formulation of the
three-body problem in Lobachevsky space, we find B = 8.3 ~ 0.15 MeV. We use two-body t matrices that giveT
the same two-body phase shifts and binding as the nonrelativistic t matrices. Our results for relativistic
corrections are substantially larger than those previously reported,

NUCLEAR STRUCTURE 3H; binding energy calculated with nonrelativistic and
relativistic three-body theories; average s-wave potential.

Recent work' on the calculation of the triton
binding energy (Br) suggests that nonrelativistic
three-body calculations with phenomenological
potentials might be closer to experimental data
than previously thought. This fact makes it very
important to have an estimate of relativistic cor-
rections to B~, in order to determine how they
modify the nonrelativistic results. Previous com-
putations' ' have yielded relativistic corrections
of approximately+ 0.25 MeV, '+ 0.5 MeV, ' and
-0.25 MeV.4 It is, however, difficult to compare
the results obtained by Jackson and Tjon' in the
framework of relativistic Faddeev-like equations'
on the one hand, and by Mitra and coworkers" on
the other hand. The latter work' indeed does not
readjust the parameters of the relativistic two-
body problem so as to leave two-body phase shifts
unchanged and expands the energy parameter in
powers of vlc. It is therefore of interest to ex-
amine how other approaches to the relativistic
three-body problem will affect the above results.

We wish to report here an exploratory calcula-
tion of the triton binding energy. It is based upon
a formulation of the relativistic three-body prob-
lem in Lobachevsky space,"which extends to the
three-body problem the work by Kadyshevsky and
coworkers' on the relativistic two-body problem.
This approach is unrelated to the Bethe-Salpeter
equation. Although the interaction is not intro-
duced via field theory, the formulation of the two-
body problem in Lobachevsky space allows for
a natural generalization of the nonrelativistic
(Euclidean) interaction. ' Thus, this approach
avoids the main defect of non-field-theoretic ap-
proaches, i.e. , the arbitrariness of the interac-
tion term. We discuss the assumptions we make,

the equations we use, and the binding energies
we find for our model triton.

A complete relativistic three-body problem is
much more complicated than the corresponding
nonrelativistic problem. The first difficulties are
due to the use of relativistic variables" and we
discuss these below. In addition, care is needed
in obtaining the required two-body scattering
amplitudes. By this we mean the scattering ampli-
tudes may be required for energies outside of
physical regions or in regions not reached by
straightforward analytic continuation. " However,
when spinless particles interact, all the required
two-body t matrices are found from the integral
equation associated with the two-body Kadyshevsky
equation. Since our intent is to provide an illus-
trative estimate of relativistic effects with the
Vinogradov-Kadyshevsky three-body formulation,
we use spinless nucleons. The appropriate rela-
tivistic two-body equation is discussed in Ref. 12.

We further simplify the problem by using an
average s-wave potential. Such potentials have
been used in various three-body calculations. '""
Our potential in coordinate space is

V(r) = y[ —14.947 exp(- 0.7r)

—2358.0 exp(- 2.8r)

+ 9283.1 exp(-4. 9r)J/r

and the parameters are those of the 'So nucleon-
nucleon Reid potential. " Here y'= 1.22535 for the
nonrelativistic case. We find the same phase
shifts and binding energy when y= 1.18145 and the
parameters of Eq. (1) are used in the two-body
Kadyshevsky equation. We expect that this as-
sumption of an average s-wave interaction is ade-
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S„=(k, +k() . (4)

Now, the invariant integration measure is given
by

d3k

(1+~ 2 jm2)1/2

whereas the analog of 5(p -k) is

k2 y/2jl+, 6(p —k).m'

(5)

(6)

The integral equation for the relativistic three-
body problem is written in terms of K„and KJ,
which play the role that p~ and q~ of Eq. (4) of Ref.
13 do in the nonrelativistic theory. When we carry
out an angular-momentum decomposition we need
to change basis and so we must determine the co-
efficients for

Kgr =EKrr+gK& K&=EKt&+gK

quate for our present purposes.
The nonrelativistic three-body integral equation

we solve is given by Eqs. (6) and (7) of Ref. 13.
We solve these equations by the methods discussed
there. For the potential of Eq. (1) we find

Br(nonrel) = 7.6+ 0.2 MeV.

In order to get the relativistic counterpart of Eq.
(6) of Ref. 13, we follow the work of Ref. 7 where
all the variables we use are carefully defined. We
introduce relativistic Jacobi variables K„and K, ,
where K, &

is the relativistic relative momentum
of particles l and i, while K& is the relative mo-
mentum of particle j relative to the pair (l, i),
In the nonrelativistic limit, K„and Kz reduce to
the familiar Jacobi variables. ' In terms of these
variables, the total energy v S of the three equal
mass m particles is given by:

~S- ($ y K 2)& &+ (m2+ K 2)& &2

g(m2+ K 2)ll2y (m2+ K 2)i/a]2+ K 2PI2

+ (m'+ K ')' @ (3)

In terms of the momenta of the individual parti-
cles, we have

able, we find the coefficients and then evaluate
them for the case that all the three-momenta are
zero (i.e. , we take their nonrelativistic limit).
We proceed with the reduction to two variables
of integration for the integral equation and find
the analogs of the quantities of Eq. (7) of Ref. 13.
In particular, the energy argument of the two-
body scattering amplitude is

WS —(m'+ E ')'~'

We remark that with the variables of Vinogradov, '
the two-body Kadyshevsky integral equation may
be cast so it depends on variables which are in-
variants. This removes the need for a Lorentz
transform of the two-body t matrices.

We have solved the analog of Eq. (6) of Ref. 13
to determine the three-body binding energy. Our
two-body t matrices have the same binding energy
and the same phase shifts from zero to over 300
MeV lab energy. Our result is

Br(rel) = 8.3 s 0.15 MeV,

so that our relativistic correction is 0.7~0.1 MeV.
This is considerably larger than the result of
Jackson and Tjon who, however, use a more real-
istic two-nucleon interaction that acts in the 'S,
and 'S, -'D, channels. We also note substantial
differences with the results of Mitra and cowork-
ers. '~

Our use of an effective s-wave interaction pre-
vents us from drawing any definite conclusions on
the cause of the discrepancy between the experi-
mental Br (8.48 MeV) and theory. We believe our
result does suggest that the importance of relati-
vistic corrections strongly depends on the under-
lying relativistic formalism used to describe two-
and three-body problems. Recently varicus rela-
tivistic models of the two-nucleon interaction that
include the important tensor force have appeared. "
We hope that calculations of the triton binding en-
ergy are made with these models and a compatible
three-body relativistic theory. This should clarify
the role of relativistic corrections.
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