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Proton-neutron correlations and shell model for collective motions
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A new truncation method for shell-model spaces is proposed, based on the proton-neutron correlations. The
dominance of the quadrupole force in the p-n interactions is established by the investigation of empirical
matrix elements in the pf shell. A truncation scheme based on the quadrupole component of the p-n
interactions is applied to the N = 30 nuclei and compared with exact shell-model calculations. Satisfactory
agreement between the two results suggests the wide validity of the present truncation method when applied
to collective phenomena in nuclei. A relation between the shell model and the particle-vibration model is
discussed.

NUCLEAR STRUCTURE Cr, Mn, ~ Fe calculated levels J, m. Monopole and
quadrupole calculation.

I. INTRODUCTION

Many phenomenological facts suggest that col-
lective motions appear more clearly in a nucleus
which has active protons and neutrons in different
shells outside a doubly closed core (to be referred
to as a proton-neutron nucleus), than in a singly
closed nucleus. For example, excitation energies
of the first 2' state (2', ) in the Cd isotopes (proton-
neutron nuclei) are about half of those in the Sn
isotopes (singly closed nuclei). Another example
is the relative ratio between the excitation ener-
gies of the 2', and the 4', states. ' Almost all singly
closed nuclei have a value of less than 2.0 for this
ratio, while most proton-neutron nuclei have a value
larger than 2.0. It is also well known that ro-
tational spectra do not appear in singly closed
nuclei but in proton-neutron nuclei. ' The enhance-
ment of nuclear collective motions in the proton-
neutron nuclei points to strong correlation between
the protons and the neutrons in nuclei.

Recently the proton-neutron correlations have
been theoretically studied for nuclei in the lf-2p
shells. ' Nuclei with N=30, such as MFe, have
two neutrons and Z-20protons outside the "Ca core.
The configuration (1f7~,) "~, (2P,~„2P,~„ lf5~, )'„
can be assumed for them and the use of
empirical two body interactions for the shell-
model Hamiltonian leads to satisfactory agree-
ment between the calculated spectra and the ex-
perimental ones. The resulting wave functions
show strong coupling between the proton and the
neutron states. The breakdown of the pairing
scheme is obvious in the 0' ground states of even-
even nuclei. A large amount of the excited com-
ponent l J~ = 2', ,J„=2;;J= 0') is contained in the
ground state wave function besides the main com-

ponent l
J~=0', ,J„=O'„J=O'). The wave functions

of the excited levels suggest that collective mo-
tions are much more enhanced in the proton-neu-
tron nuclei than in the singly closed nuclei.

In this paper we reinvestigate the results of this
shell-model work for the N= 30 nuclei and try to
understand simply how the proton-neutron inter-
actions induce the nuclear collectivity. The pro-
ton-neutron interactions which are used in the
shell-model calculations are described by a sim-
ple force in Sec. 0 and a new truncation scheme
based on the proton-neutron interactions is pro-
posed in Sec. III. In Sec. IV, we mention the rela-
tion between the shell-model Hamiltonian and the
collective Hamiltonian. Our main conclusions are
summarized in Sec. V.

II. SIMPLE FORCES FOR THE PROTON-NEUTRON

INTERACTIONS

The proton-neutron interactions (the P -n inter-
actions) between the 1f,&, proton and the 2P,&„
2P,&„and lf,&, neutrons have been determined by
a least-square fit to the observed spectra of the
N=29 nuclei. ' These empirical matrix elements
hint at the character of the p-n interactions. The
values of the diagonal matrix elements
(lf &,2P,&, lV~„llf &,2P,&,)~ are -O.V8V MeV (J=2),
-0.444 (J= 3), -0.141 (J= 4)i and -1.026 (J= 5).
These values typically suggest the following two
points:

(i) the negative value ot the average energies
V(j~j „), which is defined by

v(, , ) g(2J 1)&j,j.lv, .lj,j.&, .
(2j~ 1)(+2j„1)+

(ii) the large negative matrix elements of the
states with the spin J=

lj~ j„l and J=j~+j-„.
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FIG. 1. values of the p-z matrix elements calculated from the monopole plus quadrupole force (MPQF) are com-
pared with matrix elements obtained empirically (see Ref. 4). The nlj values are specified by 7 for 1fv/&, 3 for 2p3/g,
1 for 2p&/&, and 5 for lf&/&.

These two points are also clear for the other di-
agonal matrix elements (lf &,lf,&, (V~„(lf,&~If,&,)g.
Furthermore, it should be noticed that such
tendencies are common to the diagonal matrix
elements of the P-n interactions in other shells.
For example, the matrix elements
(ld, &,lf,&, ~ V~„~ ld, &,lf,~,)z deduced from the "Cl
nuclei and (1g,~,2d,~, ~V~„~lg,&,2d,&,)~ from the. "Nb
nuclei have a behavior similar to these. '

Let us consider what kind of forces can simply
reproduce these properties of the effective p-n
interactions. The first property (i) suggests that
the monopole force contained in the P-n interac-
tions is strongly attractive. As far as the second
property (ii) is concerned, we know that the quad-
rupole force gives the same tendency to the P-n
interactions. Now we try to fit all empirical ma-
trix elements of the P-n interaction between the
lf,&, proton and the 2P,&„2P,&„and lf,&, neutron
by a monopole plus quadrupole force defined as

where k, and k, are strength of the monopole force
and the quadrupole force, respectively.

First we determine the value of kp. It is already
known that average energy V(j~ j„) depends on the
neutron orbit. Values of kp determined from the
empirical average energies are -0.62, -0.73, and
-1.01 MeV for j„=2P,&„2P,&„and 1f,&~.

Once the parameter kp is fixed, the remaining
part of the diagonal elements and the whole part of the
nondiagonal elements of the P-n interactions should

be explained by the quadrupole force. The strength
of the quadrupole force k, is treated as a free pa-
rameter and given its best-fitted value k, = -0.027
MeVfm '. In Fig. 1, the matrix elements calcu-
lated by the monopole plus quadrupole force with
the best-fitted parameters k, and k, are compared
with the empirical ones. It is remarkable to see
that not only does this simple force reproduce the
diagonal matrix elements but also the nondiagonal
ones. There remains a small discrepancy in the
matrix elements (if,~,lf,~,~V~„~lf,~, lf,&,)~. Dipole
and higher multipole forces such as hexadecapole
can probably improve the agreement between them.
However, we omit such higher multipoles in this
paper since we are interested in collective corre-
lations of quadrupole character.

H = Hp+ H„+Vp„, (2)

where H~(H„) is Hamiltonian of the proton (neu-
tron) system and V~„ is the P-n interactions. Ac-
cording to the previous discussion, the p-n inter-
actions can be approximated by the monopole plus
quadrupole force, i.e., V~„=kc+k, (Q~ ~ Q„). Since
the monopole part in the P-n interactions modifies

III. TRUNCATION METHOD BASED ON THE p-n

INTERACTIONS

The fact that the characteristic feature of the
P-n interactions can be described by the monopole
plus quadrupole force allows the following approxi-
mation. The shell-model Hamiltonian of the pro-
ton-neutron nucleus is generally written as
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single particle energies in H~ and H„, we can
write the Hamiltonian in the following form:

H = HJ, + H„'+ k~(Qq Q„), (3)

(aj, pj„lk~(Qp Qn)'lo'Jp O'J'n&~

= k~( I) &-' ii W(jq J„jqJ„';J~)

x&«p IIQ p II
o' jp& (pJ.IIQ. II O'J.'&, (4)

where «» and u'J~ (PJ„and P'J„') are proton (neu-
tron) wave functions and J is the spin of the total
system. This equation tells us how the p-n inter-
action correlates the motions of protons and neu-
trons. The qualitative feature of this matrix ele-
ment depends mainly on the reduced matrix ele-
ments of the quadrupole operator, i.e.,
&«~IIQ&ll~'j&& ~d &pJ.IIQ. lip'j.'& T»s suggests
that two states between which the reduced matrix
element of Q& or Q„ is large are strongly coupled
by the P-n interactions. For example, it is well
understood through this equation why the excited
component Ij&=2', J„=2', ;J=O') has a large per-
centage (about 20%) of the 0+ ground state wave
function of an even-even nucleus such as Fe.
Since usually the J~ = 2', and J„=2', sta&es exhaust
most of the to~ sum of the E2 excitation from the
ground states, J~=O', and J„=O', , respectively, '
in other words, since the reduced matrix elements
&jp=gllQpllJj =0,') and (J.=2illQ. IIJ.=O', ) are
large, the matrix element
&J~=2'„J„=2',l(Q, Q„) IJ~=O,', J„=O',&,+ becomes the
biggest nondiagonal element of the Hamiltonian ma-
trix for J= 0. Almostequallyweighted mixing of the

IJ~ = 2, , J„=O', ;J= 2') a,nd the
IJ~ = 0» J„=2» J = 2')

components in the 2', state of the even-even pro-
ton-neutron nuclei can be explained in a similar
way.

According to the discussion above a truncation
method of the shell-model space is now proposed
and its results compared with the exact ones of
Ref. 3 mentioned above. A study of the states on
the (2P,&„2P,&„ lf,&,)'„nfciogr uti aoen. g. , the
nucleus "Ni, reveals to us that the J„=2', state
nearly exhausts the sum rule Z;B (E2; 0', - 2,') for
the ground state E2 transition. ' It is also true in
the N= 30 system that the J„=4,' state mostly ex-
hausts the sum rule Z, B(E2; 2', -4,'). From this
fact we can know that the reduced matrix elements
o«j.= KIIQ.IIJ.=O, & and (J.=4lllQ. IIj.= K&»e
much larger than others such as (J,=2,'IIQ„IIJ =0', )
or (J„=4,' IIQ „IIJ„=2', ) . Furthermore, the J„=2'

where H&(H'„) is Hamiltonian of the proton (neu-
tron) system with single particle energies modified
by the monopole force. The matrix elements of the
third term in Eq. (3) is written as

wave functions yield diagonal element
(J„=2; II Q„ II J„=2;& much larger than the nondiagonal
ones such as (J„=2,IIQ„IIJ„=2',). Now we can
select the most important neutron states for the
calculation of the energy spectra in the proton-
neutron nuclei with N= 30. Those are the states
J„Oy 2y and 41 because coupling between them
will be very strong owing to the quadrupole force
in the P-n interactions. Instead of taking into ac-
count the 14 neutron states produced by the
(2P,)„2P,(„1f,&,)'„configuration and adopted in
the exact shell-model calculations, we keep only
3 neutron states J„Oy 2y and 4', , which are
simply obtained by diagonalization of the Hamilto-
nian H'„and couple them with all proton-states of
the (f,&,)~

' configuration.
Resultsfor "Feare shown in Fig. 2 together with

the experimental7 and the exact shell-model spec-
tra. The truncated shell-model calculation suc-
cessfully reproduce the spectrum obtained by the
exact shell model. In other words, this trunca-
tion method explains well the observed spectrum.
Difference in the ground state energy between the
exact and the truncated calculations is 0.16 MeV.
Overlaps between wave functions are 0.967, 0.962,
0.970, 0.983, and 0.997 for J=O', , 2', , 4', , 6', , and
8', levels. These numbers show that this trunca-
tion is quite accurate especially for the calcula-
tion of the first yrast states. The one exception
in Fig. 2 is the 0,' level. The difference between
two calculated excitation energies is 0.8 MeV. But
this discrepancy is understandable because the 0,'
wave function obtained by the exact calculation
shows that its main component is the
IJ~=O'„J„=0,';J=0') one and the J„=0,' state is
omitted in the truncated calculation.

In the case of the nucleus "Cr (Z=24, N=30),
further truncation of the proton states is possible.
The proton configuration (f,&,)'~ gives eight states,
i.e., J=O'with seniority v=0, J=2', 4', and 6'
with v=2, and J=2', 4', 5', and 8'with v=4.
But in this configuration, reduced matrix elements
of the even-rank tensor operator vanish between
the two states with same seniority, because the

If7&~ shell is half filled: The example matrix ele-
ments (2'v = 2IIQ~II4'v = 2) and (4'v = 2IIQ~II6'v= 2)
are exactly zero. So we select five proton states
among the eight states. Those are the states
of J& —-0'(v = 0), 2'(v = 2), 4'(v = 4)i 6'(v = 2')i
and 8'(v =4). Quadruple matrix elements between
these are much larger than the others. These five
proton states are coupled to the three neutron
states (J„=Op 2] and 4y obtained from the Ham-
iltonian H„') The result of t.his truncated calcula-
tion for the nucleus ~Cr is compared in Fig. 3
with the exact shell-model calculation, the calcu-
lation with truncated neutron state, and the experi-
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FIG. 2. Energy spectra of ~6' (in MeV). Result of the truncated shell-model calculation (TSM) is compared with
the experiment and the exact shell-model calculation (ESM) (see Ref. 3).

mental spectrum. It is remarkable that agreement
of this highly truncated calculation with the exact
one and also with the experiment, is satisfactory.
In the highly truncated calculations the dimensions
of the Hamiltonian matrix are very much reduced
from those of the exact calculations. For example,
the dimension of the J=4 Hamiltonian matrix is
reduced from 70 to 9.

IV. SHELL MODEL AND PARTICLE-VIBRATION
MODEL COUPLING

Several eigenstates of the Hamiltonian H~ or H„'

are adopted as basic states in the truncated shell
model mentioned in the previous section. It is,
however, not our intention here to insist on how to
select basic states among the eigenstates of H~
and H„'. Rather, we wish to stress another way to
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FIQ. 3. Energy spectra of 5 Cr (in Mev). Results of the truncated shell model (TSM) and highly truncated shell
model (HTSM) where proton states as well as neutron states are truncated, are compared with the experiment (see
Ref. 7) and the exact shell model (ESM) (see Ref. 3). Only the lowest J= even spin levels are shown in the figure.

prepare basic wave functions for the truncation.
It is not always true that real eigenstates exhaust
mostly the E2 sum rule. For example a shell-
model study of "Ni reveals us that values of
(4,'[(Q„[(2',& and (4,'[)q„[)2,'& are comparable. ' In
this case it is better to make a new J„=4'wave
function which is a linear combination of the J„
= 4', and 4,' states so as to exhaust the sum rule for
the quadrupole transition from the 2', wave func-
tion. This new J„=4' state is no longer an eigen-
state of the neutron Hamiltonian, but is more
meaningful in the proton-neutron nuclei. Generally

speaking, motions of the like-nucleon system are
rearranged in the proton-neutron nuclei by the P-
n interactions whose strength favors preparing
basic wave functions that exhaust the sum rule of
the quadrupole operator. Such wave functions of
the like-nucleon system already include the rear-
rangement effect due to the P-n interactions. For
example, we can make a neutron state of the spin
J„=2' within a given configuration space by oper-
ating with Q„on a suitable J„=O' state. Then one
can also construct wave functions of the spin J„
=4', 6', . .. , up to the highest spin state which the
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F&6. 4. Energy spectra of Mn (in MeV). Two different predictions by the truncated shell model (TSM) and the
particle-vibration coupling model (PVCM) (see Ref. 11) are compared with the experiment (see Refs. 12 and 13).

configuration gives, by operating with Q„succes-
sively. These neutron states are coupled to the
proton wave functions which are determined in a
similar way. If it is necessary, we can prepare
another series of wave functions which are con-
structed from a different initial 0 state. This
truncation method will have wide validity in the
shell-model calculation of the nuclei with compli-
cated configurations. In the case of the N= 30 nu-
clei, J„=Op 2y and 4y states which are eigen-
states of H„' can be considered as being approxi-
mately the same as those obtained by the method
just mentioned.

If the configuration space gives other J„=2' and
J„=O' wave functions which have large quadrupole
matrix elements with the J„=2' state obtained from
Q„(0„'), we should include those 2' and 0' states in
the truncated shell model. In such cases the situa-
tion resembles the particle-quadrupole-vibration-
coupling Harniltonian. So we can say the particle-

vibration coupling model (or Alaga model" ) cor-
responds to a special case of the truncated shell
model.

Recently the particle-vibration coupling model
has been applied to the nucleus "Mn (Z = 25 and
N = 30)" described by the coupling of the three-
proton-hole motion to a low frequency quadrupole
vibration. In other words, the motion of the neu-
tron system is assumed to be a quadrupole vibra-
tion and the J= 0,', 2,', and 4', states in "Ni are re-
garded as two-phonon states. Three proton holes
(f,(„s,g„d,(,) '~ are coupled to this vibrational
motion by the quadrupole interactions. In Fig. 4
the results of the particle-vibration coupling model
are compared with the truncated shell model, we
have kept the lowest J Oy 2y and 4y eigenstates
of H„' and coupled them to all proton states in the
(f7&~ ')~ configuration. The essential difference be-
tween the particle-vibration coupling model and
the truncated shell model lies in the assumptions
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about the neutron states. In the particle-vibration
model the J„=O,' and 2,' states are included, but
diagonal matrix elements (2'„~~Q„~~2',) or
(4,' [[Q„)[4',) are neglected. Figure 4 simply shows
us how these assumptions yield the different spec-
tra. Both calculations reproduce the ground state
with anonialous spin J= 2 and the first excited
state J= —,' . Around 1 MeV, three levels of J=+,
~2, and & are also predicted by both models, but
the detailed spacing of these three levels is pre-
dicted differently. The J=-,' level is calculated at
too low energy and the sequence of the levels of
J=& and ~ is inversed in the particle-vibration
model. From comparison with the experiment,
the truncated shell model gives better prediction
of the three levels than the particle-vibration
coupling model. Inclusion of the J„=O,' and 2,'
states is not essential in describing the "Mn nu-
cleus and the introduction of the large quadrupole
moment of the J„2y state will improve the pre-
diction by the particle-vibration coupling model.

Here we conclude that the N= 30 neutron system
is not purely vibrational, in spite of the phonon-
like spectrum of "Ni. Thus the particle quad-
rupole-vibration coupling model appears to have a
limit in applicability.

V. SUMMARY AND CONCLUSION

It has been shown that the monopole plus quad-
rupole forces can represent the empirical matrix
elements of the p-n interactions in the Pf shell.
Strong attractive quadrupole force contained in
the P-n interaction is indicated as one of the ori-
gins of the nuclear collectivity. Based on this
force, a truncation method of the shell-model
space is proposed and applied to the nuclei with
N= 30 for which the exact shell-model calculations

have already been carried out. Agreement between
the exact and truncated shell-model calculations
is satisfactory especially for so called yrast
states. Since the proton-neutron correlation is
strong in a proton-neutron nucleus, this new trun-
cation method will have a validity in nuclei with
configurations more complicated than the N= 30
nuclei. This method of truncation can be class-
ified among those not based on unperturbed en-
ergies or diagonal matrix, but on the nondiagonal
matrix elements" of the Hamiltonian. Hecht,
McGrory, and Draayer" considered the trunca-
tion method based on the surface-5 interactions in
some schematic cases. Our idea is similar to
theirs, but much simpler. Since the surface-6
interaction contains higher multipole forces be-
sides the quadrupole force, they therefore take
into account the sum rule of the higher multipole
operators. However, it is shown in the present
study of the Pf shell that the most important com-
ponent of the P-n interaction for the collective
motions is the quadrupole one. The inclusion of
the higher multipole forces will improve results,
but the simpler model presented here shall be
applied to various nuclei in order to understand
the nuclear col'ective motions like quadrupole
vibration or quadrupole deformation by the use
of the shell-model Hamiltonian.

Through this truncation scheme, we can easily
discuss the applicability of the particle-vibration
coupling model by comparing its Hamiltonian with
a simplified shell model one.
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