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We calculate the single particle momentum distribution n(q) for a one-dimensional model with & forces.
There is a domain of g for which n(q) has an exponential falloff, but after allowance is made for the
nonsaturation in the model, that domain does not grow significantly with particle number. The relation of
this result to large momentum scattering from the nucleus and to the Hartree approximation is briefly

discussed.

[NUCLEAR STRUCTURE Single particle momentum distribution in a one—dimen-]
sional model and its large momentum behavior.

I. INTRODUCTION

The momentum distribution in the nucleus #(q),
gives the probability density for finding a nucleon
in the nucleus of momentum g with respect to the
center of mass. Although »(q) is important in a
wide variety of medium energy and high energy
physics situations, very little is known theoretical -
ly or empirically about the form or the constraints
on n(q) for large q. We have recently shown! the
important role n(g) plays in the remarkable high
momentum transfer scattering experiments of
Frankel et al.,? where n(q) seems to have an ex-
ponential falloff in g. We have also shown®* that
for local two-body potentials v, n(q) goes, for
very large g, like ¢~ *V %(q) where V is the Fourier
transform of v and would be expected to have a
power law falloff in g. An important question,
therefore, is whether the exponential experimental
falloff and the theoretical power law can be shown
to be compatible. In the related problem of the
form factor F(q) we showed®* that for an A-par-
ticle system the asymptotic dependence of F(q)
must be [ V(q)q~2]4" 1, but that for this to be the
dominant form it is ¢/A that must be large com-
pared to typical momenta of the system. For only
q large, the form factor does fall exponentially.

Is there a similar intermediate domain of ¢ for
n(q)? 1t is very difficult to answer this question
in general. If there is, it must arise, as does the
intermediate domain in the form factor case, from
features of the many-body wave function. We must,
therefore, examine this question in the context of
an interacting many-body system. For example,

it is easy to see both formally and intuitively that
the limiting form of n(q) [ ¢~ *V 2(q)] comes from
pair correlations. This arises because for suffi-
ciently large momentum the easiest way for the
nucleus to have a particle of momentum § with
respect to the center of mass is to have another

of momentum -{. But for smaller momenta might
it not be easier for one nucleon to acquire a mo-
mentum { via » coherent collisions with # nucleons
in which it gives each only —q/z, so long as q/A
is small? This could be more likely since there
are so many more ways for this to occur.

To investigate n(g) in this regime we need a
model rich enough to permit such complex cor-
relations, yet simple enough to permit analysis.
.Such a model is N bosons moving in one dimension
and interacting via 6 function forces.® The many-
body bound state of this model is known and the
purpose of this paper is to present a calculation
of its momentum distribution. The model has the
many-body correlations that we seek built into it
and it obeys the asymptotic form n(q)~q ¥ V3(q))
but for 5 functions V(q)=1. The specialization to
one dimension loses logarithmic corrections that
are probably not essential to understanding the
large g behavior of n(g), but the restriction to
bosons certainly affects the asymptotic behavior
since the Pauli principle will cause the true z(q)
to have higher momentum components than the
Bose system.

It is in the one-dimensional 6 function system
that we showed that the form factor has an inter-
mediate regime of exponential falloff.>** This
model has also been investigated extensively by
Colagero and Degasperis® in order to elucidate
the validity of the Hartree method. In the Hartree
approximation they find an exponentially falling
form factor that agrees with our “intermediate
regime” form factor. They also find, in the
Hartree approximation, an exponentially falling
n(g). Since the Hartree approximation is a large
A approximation, we are encouraged to believe
that the exact n(q), at least for large A systems,
may also have an important regime of exponential
falloff. We therefore undertake an exact calcula-
tion of n(g) for the one-dimensional system with
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6 function interactions.

In Sec. II we review briefly the one-dimensional
model and calculate its n(g) first for four par-
ticles in order to establish our Feynman graph
methods, and then for N particles. Some techni-
cal material related to these calculations is rele-
gated to the Appendices, but by and large the entire
section is technical and the reader interested on-
ly in results may wish to skim it to the result Eqgs.
(12) and (14). In Sec. III we analyze the result,
primarily numerically. In Sec. IV we give our
conclusions. In summary these are that n(g) has
a limited region of exponential falloff that grows
only slowly with particle number. The use of a
phenomenological momentum distribution with an
exponential tail to interpret the inclusive scat-
tering results of Frankel et al.,? while not strongly
supported by the one-dimensional model, cannot
be ruled out since more realistic models may well
have a far more extended exponential region.

II. MOMENTUM DISTRIBUTION

In this section we review briefly the major fea-
tures of the one-dimensional model and the graphi-
cal methods for calculating the momentum dis-

J

"(q)=f e‘qx'w*(xl+%x" xz’ A ,xN)¢(x1 - %x" xz, ..
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tribution; we apply these methods to the four-
body case as an example, and then to the general
N-body case. A number of technical aspects are
relegated to the Appendices.

A. Model

For N particle moving in one dimension and in-
teracting with 6 forces, the Hamiltonian is (%
=2m=1)

N 32 N
== 58 2 d-x), g>0. ()

2
i=19% =1

The center of mass solution for the bound state is®

N

z[)(xl,xz,...,xN)=Mexp(— %g |xl_xll), (2)

i<j=1
where M is the normalization. The binding energy
corresponding to this state is

Ey=-Ag®N(N?-1) . (3)

The single particle momentum distribution xn(g) is
the probability of finding a particle of momentum
q in that state. In terms of the wave function (2)
it can be written

N

1 N
. ,xN)G(N Z xi)dx’ H dx; . 4)

i=1 i=1

The wave function (2) is a product of exponential factors of the form e~ ¢'*!, These have a particularly sim-

ple Fourier transform

dr e'®
=¢lxl 2 e
¢ 2§f21r P+

(5)

Thus each factor exp(- & |x|) corresponds to a propagator of “mass” i£. (This is no surprise since Green’s
functions are intimately related to 6 functions as sources.) Introducing (2) in (4) using the wave function

forms (5), we obtain?

n(q) =M2,',(N-1)(3N-4)22(N- 1)(3N-5)

X
i>J i=2

ji=2

dk ¥y / dk 1 ul (dk dr! 1 >
hatdd hadhd ¥ R, 2t 21
2r H( 2m k,,2+4y2>n 2 21 (ky P+ 72)(R(5+77)

N N
k /
X 216 ( 2q+‘2=2: (&, - ku)> 276 ( 7+ D i+ ku)>

N B N
Xnﬁ(ﬁ—ku—k;x"‘ Z k= ku): (6)
=2 jz2

where under the integrals we have put $g=7% to
simplify the propagators. From now on we will
call vy or 2y a mass (dropping the factor 7). Equa-
tion (6) can be interpreted as an integral corre-
sponding to a Feynman graph with N -1 vertices
2,3,...,N, and two vertices 1 and 1’. Each of the
pair of vertices 2,3,...,N is connected by a

r

propagator of mass 2y while from 1 (or 1’) to each
of 2,3, ..., N there is a propagator of mass y.
Momentum g enters at 1 and leaves at 1’. The &
functions ensure momentum conservation at each
vertex while the “extra” k integral removes the
over-all momentum conserving 6 function one
normally associates with a Feynman graph. After
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FIG. 1. Graphical representation of the four-body
momentum distribution. The lines I and II indicate two
inequivalent ways of cutting the graph.

eliminating the 6 functions, the remaining in-
tegrals can be done by contour integration since
all % integrals run from -« to + ., (This is the
great advantage of the one-dimensional case. In
three dimensions the presence of angular integrals
and/or a lower limit on the % integrals complicates
the analysis and introduces logarithmic factors.)
Since the integrand has only simple poles, the re-
sult of the successive % integrations leads to a
meromorphic function of ¢ (that is, a ratio of
polynomials). We have shown that n(g) ~¢q ~* for
large gq. Such a meromorphic function can be
written in a Laurent expansion as a sum of nth
order poles with residues. Thus the problem of
doing the integral (4) is equivalent to finding all
the poles of (6) and the coefficient of each. Lo-
cating all the poles of a Feynman graph is a stan-
dard problem using the methods of Landau.” The
coefficient of each singularity is also easily found
by the methods of Landau and Cutkosky for most
cases, but there is a special technical problem
that n(g) possesses. In general n(g) has both first
and second order poles at the same location. The
coefficient of the first order pole “under” the
second order pole is difficult to obtain directly.
We solve this problem by introducing different
masses into (6); this makes all poles first order
and it is straightforward to calculate the residues.
The masses are then put equal (by a carefully
limiting procedure that introduces second order
poles). We now proceed to illustrate this in the
four-body and then N-body cases.

B. Four-body case as as example

For four particles the momentum distribution is
represented by the graph shown in Fig. 1. The
dotted lines represent propagators of mass 2y and
the full lines of mass y. As discussed above, all
singularities of n,(q) are poles. The Landau equa-
tions” state that a Feynman graph has a singularity
when each line of the graph is either contracted
out of the graph (this is equivalent to putting its
Feynman parameter equal to zero) or is on mass

shell. The position of the singularity is determined
by the “invariant mass” of the. lines that are on
mass shell. The nature of the singularity can be
determined by calculating the reduced graph con-
sisting of those lines which on shell produce the
singularity. The wavy lines in Fig. 1 correspond
to the two inequivalent ways of “cutting” the graph
(the cut lines go on mass shell at the singular
point). Cut I cuts three lines and gives a sin-
gularity at g®=~ (37)?, while II cuts three y lines
and two 2y lines to give a singularity at ¢®= - (3y
+47)?. These singularities are both single and
double poles. For example, for the singularity

at g>=— 972, a contraction of the central (dotted)
triangle gives a pure double pole, while a con-
traction of all lines coming from the right (or
left) vertex gives a single pole. These two re-
duced graphs are shown in Fig. 2. There is also
a single and double pole at g®= - 49y%. The major
technical problem is to get the correct residue

at the single pole, which is “under” the double
pole. To do this we break the symmetry of the
graph by making the masses different. This
makes all poles single poles. We calculate the
position and residue of all the poles and then re-
introduce the symmetry. All masses coming from
the left vertex we call A, all those coming from
the right vertex we call p, and all those associated
with the central dotted lines we call u. After cal-
culating the graph we let A=p=7y, u=2y.

The graph of Fig. 1 now has four simple poles.
These come at ¢g2= - (31)? corresponding to the I
cut of Fig. 1, ¢%=~ (2 +2)x+p)? corresponding
to the II cut of Fig. 1 and at ¢%= - (3p)? and ¢*
=~ (2 +2p+2)%, corresponding to the interchange
of A with p. The graph can be evaluated (in terms
of a Laurent expansion) by calculating the residue
at each of these poles. To calculate the residue
we reduce the graph by making contractions until
only the singular part is left. The residue is
given in terms of the weight of the reduced graph
(the number of ways the contractions can be made),
the value of the contracted pieces evaluated at the
momentum corresponding to the singularity, and
the reduced graph itself. For the graph of Fig. 1
there is only one way to make the I contraction.
The reduced graph is shown in Fig. 3(a); it can be
evaluated by the formulas developed in Appendix
A. The part contracted out to obtain the reduced
graph is shown in Fig. 3(b), where the momenta
appropriate to the singularity in question are
shown flowing in and out the graph. The general

PN
N~— ~—————

FIG. 2. Reduced graphs corresponding to double and
single poles at g2=—9y?2,
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3ik

(a) (b)

FIG. 3. (a) The reduced graph for the singularity at
g®=-9y% (b) The factor graph contracted out of Fig. 1
to produce the reduced graph (a).

expression for such a factor graph is obtained in
Appendix B. The total contribution of this con-
traction is then

372 1 (1 3
N q2+9N u.)

(20+ L)l (p+ 1)
* 3 - ) (o+ k)P = X[ (p+20)F -2%] " M

There are three ways to make the II contraction.
One such way is shown in Fig. 4(a). The lines that
go on shell at the singular point are indicated with
an x. One line coming from the left is contracted
and it is shown carrying the appropriate momen-
tum. The loop that must be contracted out from the
right is shown in Fig. 4(b) and a reduced graph is
shown in Fig. 4(c). All parts can now be evaluated
by using Appendix A or Appendix B and we get for
the contribution of this contraction

3r® 22+ 20 +p)
223202t @2+ (21 + 2 + p)?

x( 1 _ 1 )
P2+ (L+ A2 (k+pfP—(+2)?

(7=prmr) ®

There are two more contributions from inter-
changing A and p. In each of (7) and (8) there is a
denominator that vanishes when A=p. But when
the contribution from A p is added in, the
numerator will also be seen to vanish. Hence the
A= p limit must be taken by using 1’Hospital’s rule.
That will introduce second order poles. The final
result we obtain for the four-body momentum dis-
tribution is

@)= ms ( 49y 2 . 27y?2
n\gq)= Y1128\ 3(2+ 49y 2R (q2+972)2

1 1
1492 T a+ 97"’) ©)
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(with arbitrary normalization). It should be noted
that although these are single as well as double
poles, the 1/4® terms cancel for large g so that
n,(q) ~1/¢* for large g—as we have established in
general. It is a general property of n(q) that the
coefficients of the single pole terms sum to zero
so as to assure the correct large ¢ behavior for

n(g).

C. N-Body case

We now calculate the momentum distribution for
the N-body case. The method is the same as in the
four-body case. We take the masses to be differ-
ent and put them equal at the end. The general
graph has N -1 central points connected in pairs
by propagators mass p. Each of these N-1 points
is connected to point 1 (or 1’) by a propagator of
mass X (or p). Momentum ¢ flows in at 1 and out
at 1’. In the graph we calculate the normaliza-
tion is set equal to one and after all momentum
conserving & functions have been eliminated, each
independent momenta integral occurs without a
factor of 27. Successive contractions of the graph
are made by taking 0,1,2,...,3(N-2) (we take N
to be even) central points to the left and con-
tracting the remainder to the right. If s -1 points
are taken to be left, the pole is at g>=~[(s=1)p
+ (N =s)A+(N=s)(s-1)u]? and there are (N - 1)!
[(s =1)1(N-s)!]"! ways to make such a contrac-
tion. We can calculate the singular part of the
graph (with s - 1 p lines, N-s p lines, and
(N-=s)(s-=1) u lines) by the methods of Appendix

i(2h\+p+2p)

(a)

i(2u+2X\) A
7 T
E v
i(p+X)  i(p+)

(b) (c)

FIG. 4. (a) The four-body graph showing a particular
way of making the II contraction (see text) giving a
singularity at g%=—(@2A+p+2u)2. The lines marked x
are on shell at the singular point. The line carrying
momentum i(p+2u) is contracted from the left. (b)
The loop that must be contracted out of the four-body
graph from the right. (c) The resulting reduced graph.
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A. There will be two contracted factor graphs of
the kind discussed in Appendix B. The one on the
left will have s —1 X legs and carry a momentum
Q*=~(s-1)%[p+(n-s)r]?, while the one on the
right will have n - s p legs and carry Q*=—-(N

(N—l)! n,}N(N-l%l 1

- sy A+(s-1)n]%. There is, of course, another
completely equivalent contraction obtained by in-
terchanging X and p, and these two are to be added.
The general term, C,, with s -1 lines contracted
is given by

(s=1)p+(N=s)A+(N=5)s-1)u

C

s (s = 1)I(N=s)! p=3aN=3,172(N-2)(N-1) gN=-3 @+[(s=1)p+ (N=sA+(N=s)(s -1)p]?

X j[i (in+2)) N;Iil (iu+2p):[j {O+ipl=[p+ W=s)ulH{(o+ i) =[x+ (s = 1)u]?})?

x Nﬁl {o+ iy -2+ (s =1)p]2 Y[ p+ (s - Du]2= [+ (s =]} 1+ (A —p) . (10)

The complete graph is given by
N/2

Cy=D, C,.
s=1

11)

In (10) we have explicitly shown, as the last factor, the denominator that vanishes as p=x=v. It is the
only term that vanishes. It is clear that when we add in the A~ p term, it will have the same factor, but
of opposite sign. Thus the A=p=y, =2y limit must be taken carefully, by using 1’Hospital’s rule. Doing
this, we get for the momentum distribution, with our normalization (and even N)

7 ANN-1)-1 1
nylq) = JTFST=8 I FmD-3(y 1)1
y N/2 1
s=1 [q2+72[(N-1)+2(N_s)(s_1)]2

(N=25+1P[N-1+2(N=s)(s=-1)]*?
x< @+Y [ N=-1+2(N=s)(s-1)]?

As expected, this is a sum of single and double
poles. Since n(g)~q~* for large g, the sum of the

coefficients of the single pole terms must be zero.

It is straightforward to verify that in fact

N/2
}: [20N=s)(s-1)+ N-1-(N-2s+1)*]=0. (13)

If Nis odd, the summation in (12) would extend
from s=1to 3(N - 1) and an additional single pole
contribution

e -1){g+ (v - 1]} - (14)
would be added.

III. NUMERICAL RESULTS

The final expression (12) is far too complicated
for direct analysis. It is clear that it falls like
q ~* for large q but is there an intermediate do-
main of far faster decrease? This could be most
easily studied by writing n(q) as a ratio of poly-
nomials

n(q)=Nl(q)/D(q) - (15)
Because of the asymptotic form for », D(g) must

+-‘2-[2(N—s)(s—1)+N-1—(N—Zs+1)2]>] (12)

—

have two more powers of ¢? than N(q). Further-
more, we know from our Feynman graph analysis
that D(g) has single and double poles for negative
q®. The number and location of these poles moves
out in |¢?| for increasing numbers of particles.
The polynomial N(g) must have zeros. It is easy
to see that these must come for g2 negative or
complex. If its zeros interlace the poles of D,

the asymptotic form of » will set in for small 42,
but if, for example, all the zeros of N(q) were to
occur beyond the last pole of D, N(q) would ef-
fectively be a constant for a large part of the do-
main of positive ¢ and since D has more and more
poles with increasing particle number, » would ap-
pear to fall exponentially until ¢ got large enough
for the zeros of N(q) to become significant. For
example, for the three-body case we have from
(12) and (14) or direct integration

2 2
_ q°*+52y
(@)= AP 16 -

(Note—this result was misprinted in Ref. 4) and
we see that the zero of N(g) does indeed come
beyond the poles of D(q).

However, even for the four-body case, writing

(16)
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FIG. 5. The momentum distribution n(gq) for systems
of 10, 50, 100, and 200 particles as a function of mo-
mentum g. The dashed line shows the Hartree result
for n(q).

n in the form (15) and finding its factors is com-
plicated and for the general case (12) it is a
formidable task. We have therefore turned to a
numerical analysis of (12). This is a relatively
straightforward task on a high speed computer al-
though some caution and at least double precision
is necessary since there is considerable cancella-
tion among the terms. Our purpose is to see if
n(g) has a domain of exponential-like falloff in g,
which grows with increasing N, and to compare
that result with the Hartree result for n. The
Hartree form is

n(g) = (coshmg/x)"2 , (17)

where A=2yN. It is X and not 7 that determines
the size of the system, since the forces do not
saturate [ see (3)]. It should be recalled that, for
fixed A, the form factor F(q) has a domain of ex-
ponential falloff that grows with N.

Figure 5 shows n(g) for N=10, 50, 100, 200 as a
function of g with the normalization n(0)=1. The
Hartree result (17) is also shown. In Fig. 6 we
show the quantity (¢/A)n(g) which gives some in-
dication of when the asymptotic regime [#(q) ~¢™*]
has been attained. We see that for reasonably
large N the exact Hartree results for n(q) agree
for g~0(7) and that the asymptotic ¢~* behavior
sets in when ¢ is about 3Xx. Unlike the form factor
for which the domain of exponential falloff in-
creases proportionally® to N, the region of ex-
ponential behavior of #(g) increases exceedingly

IN THE NUCLEUS. 1II 2205

slowly with N. But we do see that (with our nor-
malization) the coefficient of the 1/4* part of n(q)
is of order 1/N. In Appendix C we show explicitly
that Eq. (12) reduces to the Hartree result (17)
for (/1) small and N large.

IV. CONCLUSION

Using Feynman graph methods, we have cal-
culated the single particle momentum distribution
n(g) in the one-dimensional model of bosons inter-
acting via 6 function forces. The model is suffi-
ciently sophisticated that the calculation is by no
means trivial, but one can question whether it is
rich enough to provide insight into the momentum
distribution of a real system like the nucleus.

We are particularly interested in whether n(q)
has a domain of exponential falloff, for example,
as provided by the Hartree approximation (17),
before the asymptotic power law ¢~* sets in, and
whether that exponential domain grows with N.
The diagrammatic representation of n(g) given in
Sec. II provides a mechanism for this. It is clear
that for sufficiently large ¢ the momentum flowing
in at point 1 can all flow in on one line to some
point 2,3,...,N and out from that point to 1’.
Since only two propagators will then contain ¢,
we get ¢~*. But is it also possible for ¢/N -1 to
flow from point 1 to each of the N-1 points
2,3,...,N and back out. For ¢ large but ¢/N-1
small the large number of ways of distributing the
momenta could compensate for the additional prop-
agators which must carry a momentum gq.

In the case of the form factor F(q) in the one-
dimensional model, there is an intermediate do-
main of ¢ that agrees with the Hartree form factor,
which is exponential, and that domain does grow
with N even after one factor of N is taken out to
account for the fact that the system does not satu-

T T T T
1072 —
o
= 10
<. 1073 —
< 50
o 100
0-4 200
| | 1 1
2 3 4 5

q (IN UNITS OF X\)

FIG. 6. The quantity (q/A)% (q) for systems of 10,
50, 100, and 200 particles as a function of momentum gq.
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rate.® For n(g) we saw in Sec. III that when one
factor of N is removed, the exponential region of
n does not grow linearly with N. One obvious con-
clusion is that, at least for the one-dimensional
system, the Hartree result for the momentum dis-
tribution has a smaller domain of validity than for
the form factor, which is the Fourier transform of
the position density. This is not totally surprising
since for the saturating infinite N system (nuclear
matter) the Hartree result for the position density
(uniform) is exact, while the n(g) (zero tempera-
ture Fermi gas) clearly is not.

In a previous article! we interpreted the in-
clusive scattering data of Frankel et al.? in terms
of a single scattering model. With this mechanism,
a momentum distribution with a large region of ex-
ponential falloff is required in order to describe

the data. The motivation for the present calculation

was to see if such behavior of the momentum dis-
tribution could be accounted for by the cooperative
effect of the many degrees of freedom in the N-
body wave function. From this point of view our
results are not encouraging. Our n(g) starts to
deviate from exponential falloff for momenta in the
range relevant to the data of Ref. 2. Furthermore,
n(g) only falls three or four decades before the
asymptotic power law takes over, while the Frankel
data require the momentum distribution to drop
many more orders of magnitude. It should be
remembered however that realistic nucleon-nu-
cleon forces and Fermi statistics would both lead
to a more rapid asymptotic decrease of n(q).
Therefore a larger domain of exponential falloff

of n(g) cannot be ruled out in more realistic models.

The authors are very grateful to Dr. H. A. Wel-
don for suggesting the unequal mass method for
dealing with the singularity analysis and one of us
(R.D.A.) wishes to thank Dr. J. R. Schrieffer for
a very helpful discussion on the relation of our
results to the Hartree approximation.

APPENDIX A: GENERAL N-LINE REDUCED GRAPH

Consider the integral I, represented by the N-
line reduced graph shown in Fig. 7(a). Each line
¢ has mass v;. Let us distribute the momenta as
shown in Fig. 7(b). The first loop is given by

f dk, _ (Y, +7s)
(B2 + 7,2 (g = 1) +757] YiYal o®+ (v1+7,)%]
(A1)
Hence
+
IN= ﬂ(:i}’zy ) IN-]_(YZ - 7'1 + 72) » (Az)

where the argument in I,_, signifies that I,_, is to
be evaluated with y, replaced by ¥, +7,. By induc-

2 s

kn-1+Q
(b)
FIG. 7. (a) The N-line reduced graph. (b) Distribution
of internal loop momenta.

tion we obtain

T2y + v+t Yyoy)

I, = g, A3)
N Vi1t " Vaes (
where
4= dk
—f [(k+Q)2+‘YN2](k2+ r2)’
with
N-1

I‘=Z Vi -

i=1

9 is the same integral as (A1l). We thus finally obtain
N-1

i ﬁl Vi 1

I, = .
N Yi¥a® " Vw Q2+(25 v, 2
i=1

(A4)

APPENDIX B: FACTOR GRAPHS

In calculating the residues at the poles of the
momentum distribution we must evaluate!® factors
corresponding to graphs (which we call factor
graphs) contracted out of the main graph when the
reduced graph is constructed. The general factor
graph S,(Q) has momentum @ flowing into a vertex
that is connected by 7 lines of mass X (or p) to »
vertices. Out of each of these flows momentum
Q/n. Each of these = vertices is connected to all
the others by lines of mass u. S, and S, are shown
in Fig. 8. These graphs are generalizations of the
form factor graphs (in that case pu= A) with the N-body
form factor corresponding to Sy, ,. As with the
form factor, there are » different contractions of
S, giving n poles, but since (again as with the form
factor) S,(Q)~ Q2" for large @, the general form of
S, must have the » poles multiplied together. Thus
to evaluate S, we need only find the residue at one
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Q/2 Q/2 Q/3 Q/3

S, (Q) S3 (Q)
FIG. 8. The factor graphs S,(Q) and S;(@).

pole to obtain the coefficient of that product form.

The mth contraction of S,(Q) will have n —m
lines of mass X and m(n —m) lines of mass u
through which flows a momentum [ (z-m)/n]Q
Hence we can write

n=-1

5,(Q)=C I__I()[Q2+n2(h+mu)2]", (B1)

where C must now be determined. The pole at

Q%= —n*\% (m =0) corresponds to contracting all
the u lines. The residue of (B1) at this pole is

given by

n-1
C H [ =222 +n2(+mp)?] !
m=1

n=-1 -1
= C(n"’u)"'”((n— O] H (mu.+2)x)> . (B2)
m=1
Direct examination of the contracted graph shows
that it is an n-loop reduced graph with all lines of
mass A times a factor represented by #» points
each connected to all the others with a line of mass
1 and with no momenta flowing through it. Call
this last factor L,(i). Then using Appendix A, we
obtain for the residue at the Q%= — n®)? pole

—J
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n(m/A)" LK) . (B3)

To calculate L,(1) we use the same ideas as
those fo S,(Q). Consider an n vertex graph with
momenta @ flowing in at one vertex and Q/(rn - 1)
flowing out at all other vertices. Let each vertex
be connected to all others by lines of mass u.
Call this P, _,(Q). Clearly

L,(w)=P,_,(0) . (B4)
By the same arguments used for S,(Q)
n=-1
1@ =CIJ [@%+ (- 1)2m2p?] -2 . (B5)
m=1
Now the pole at @®=— (2 — 1)?u2 has a residue given
by
(/w2 -1)L, (1) . (B6)

Comparing this with direct evaluation of the resi-
due in (B5), and using (B4) we obtain the recursion
relation

20=(2)” o -

From this and direct evaluation of L,(u) we obtain

tn-2)n-1) n 1
L=(5) w0

Using (B2), (B3), and (B7)

n-1(1) .

tn(n-1) -1 (G +220)
$:(Q)= (2x)"< ) 8 Qo v L)

APPENDIX C

In this Appendix we show that for ¢ < 22/4, and
N> 1, the exact form for n(g) (12) is well approxi-
mated by the Hartree result (17). In terms of A,
we can write for (12)

1 2WN-s)s=1)+N-1-(N=-2s+1)?

B W25+ 1P{[N=1+2(N -s)(s —1)] /N?}?
n(q)-CZ <{(2q/k)2+(1/N2)[N—1+2(N—s)(s—1)]2}2

where C is a constant containing factors of N, A,
c., but independent of g and of s. The quantity
in the denominator of (C1) can be written

(1/N2)[N-1+2(N-s)(s -1)]?
=[2s -1+ (25 -2s2-1)/N]2. (C2)

As s increases from 1 to 3 N this quantity grows
from (1 -1/N)? to (3 N-1/N)?. Hence if 24/X is of
order 1, and N large, only terms in the sum with
s~1 will have significant dependence on 2¢/X. We
therefore can obtain the ¢ dependence of n(q) for
N large, 2¢/x~1, by expanding (C1) (including ex-
tending the upper limit on the sum to infinity) for

2 @¢/AP+(A/NH[N-1+20=s)(s -1)]? )’ (c1)

r

S< N. To first order we get

25 @2s-1p
rlay=cn sZ; ( [Cq/AF+(@2s - 172
1 1
T2 Q¢ P+ (@s-17 ) ,  (c3)
CN? ~ (25 =12 - (2g/2\)?
2 Z [ 2g/2)?+ (2s = 1)2]% ° (c4)
=(coshmg/A)"2 . (c5)

In the last step we have used n(0)=1, and a stan-
dard form for sec?x in terms of simple fractions,*
with sec?ix=cosh™2x.
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